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Abstract

We will first introduce the elements of
interval arithmetic. We will then out-
line areas of applicability in computer
science and engineering, giving simple,
illustrative examples. We will conclude
with references and brief presentations
of successful realistic applications.
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Outline of Talk

1. Review of Interval Arithmetic

2. Interval Newton Methods

3. A simple example – Computational
Existence Verification

4. Global Optimization

5. Successes in Practical Areas
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What is Interval Arithmetic?

Interval arithmetic is based on defining the four
elementary arithmetic operations on intervals.
Let a = [al, au] and b = [bl, bu] be intervals.
Then, if op ∈ {+,−, ∗, /}, we define

a op b = {x op y | x ∈ a and y ∈ b} .

For example, a+b = [al+bl, au+bu]. In fact, all
four operations can be defined in terms of addi-
tion, subtraction, multiplication, and division of
the endpoints of the intervals, although multi-
plication and division may require comparison
of several results. The result of these opera-
tions is an interval except when we compute
a/b and 0 ∈ b.
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Why Interval Arithmetic?

• With directed roundings, we can bound round-
off error in the computations. We can com-
bine interval arithmetic with tools such as
fixed-point iteration theorems to

– automatically verify rigorous bounds, from
approximate solutions.

– automatic theorem proving.

• Interval arithmetic provides rigorous
bounds on the ranges of functions. Po-
session of such bounds can be powerful, es-
pecially in rigorous global optimization.
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An Example of Interval
Arithmetic

[−1, 2] ([3, 4] + [−5, 6])) = [−1, 2] ([−2, 10])

= [−10, 20],

whereas

[−1, 2][3, 4] + [−1, 2][−5, 6] = [−4, 8] + [−10, 12]

= [−14, 20]

Here,

[−14, 20] = {x | x = x1 + x2, x1 ∈ [−4, 8],

x2 ∈ [−10, 12]},
and [−14, 20] contains the range of xy +xz for
x ∈ [−1, 2], y ∈ [3, 4], and z ∈ [−5, 6].
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Inclusion Monotonic Interval
Extensions of Functions

Definition. If f is a continuous function of a
real variable, then an inclusion monotonic in-
terval extension f is a function from the set of
intervals to the set of intervals, such that, if x
is an interval in the domain of f ,

{f (x) | x ∈ x} ⊂ f (x)

and such that

x ⊂ y⇒f (x) ⊂ f (y).

• We may obtain such interval extensions of a
polynomial by replacing real operations by
corresponding interval operations. For ex-
ample, if p(x) = x2 − 4, then p([1, 2]) may
be defined by

p([1, 2]) = ([1, 2])2 − 4 = ([1, 4])− [4, 4]

= [−3, 0].
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Interval Extensions of
Transcendental Functions

• We may use the mean value theorem or Taylor’s theorem
with remainder formula. For example, suppose x is an
interval and a ∈ x. Then, for any y ∈ x, we have

sin(y) = sin(a) + (y − a) cos(a)− (y − a)2/2 sin(c)

for some c between a and y. If a and y are both within
a range where the sine function is non-negative, then we
obtain

sin(y) ∈ sin(a) + (x− a) cos(a)− (x− a)2

2
.

Specifically, if x = [.1, .3] and we use a = .2, we would
obtain the “value”

sin([.1, .3]) ⊆ sin(.2) + [−.1, .1] cos(.1)

− ([−.1, .1]2)

2
⊆ [.0998, .0999]

+ [−.1, .1][.995, .996] + [−.005, 0]

= [−.0048, .1995]

• Sharper interval extensions may be obtained in specific
cases by using e.g. monotonicity of the original function.
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Pitfalls to Naive Interval
Arithmetic

• For rigorous bounds on roundoff error, one
may be tempted to translate floating-point
computer codes by merely replacing “real”
with “interval.”

• Due to interval dependencies, such naive de-
velopment often is unsuccessful.

• Interval arithmetic is successful if it is ap-
plied to appropriate tasks and with appro-
priate algorithms.

– It provides rigorous results from the com-
puter arithmetic.

– It can actually result in faster algorithms,
even if the interval arithmetic is in soft-
ware and much slower than floating point.

• Researchers continue to enlarge the domain
in which interval analysis can make compu-
tations rigorous and reliable.
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Introduction to Applications

Nonlinear Equations – Interval Newton
Methods

Interval analysis can be used either to

• Construct rigorous bounds around an ap-
proximate solution, in which an actual solu-
tion must lie.

• Exhaustively search a region to find all roots
of a nonlinear system.

Verification is easier than exhaustive search. How-
ever, both tasks are based on computational
existence / uniqueness theorems.
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Introduction to Applications

A Computational Existence / Uniqueness
Metatheorem

Let F : Rn → Rn correspond to the system

F (X) = (1)

(f1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))

= 0.

We write x = (x1, x2, . . . , xn), and we denote a
box (set of interval bounds on the variables xi)
by x.
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A Computational Existence /
Uniqueness Metatheorem

We first transform F (X) = 0 to the linear interval

system

F ′(x(k))(x̃(k) − x(k)) = −F (x(k)) (2)

where F ′(x(k)) is a suitable interval extension of the Ja-

cobian matrix of F . We then formally solve (2) using

interval arithmetic to obtain a box x̃(k) which satisfies

F ′(x(k))(x̃(k) − x(k)) ⊃ −F (x(k)), (3)

such that x̃(k) contains all solutions to the original non-

linear system within x(k). We then define the next iterate

x(k+1) by

x(k+1) = x(k) ∩ x̃(k). (4)

Depending on how we obtain x̃(k), this interval New-

ton method leads to a root inclusion test, since

If x̃(k) ⊆ x(k), then the nonlinear system of

equations has a unique solution in x(k). Con-

versely, if x̃(k) ∩ x(k) = ∅ then there are no so-

lutions of the system in x(k).
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Computational Existence /
Uniqueness

A Simple Example

Ife n = 1 and

f (x) = x2 − 4,

then the linear interval system becomes

2xi(x̃i − xi) = −f (xi).

The interval Newton iteration equation becomes

x̃i = x̃ = xi − f (xi)

2xi
= x− f (x)

2x
.

If we choose initial interval and point

x(k) = xi = x = [1, 2.5], xi = x = 1.75,

then

x̃ = 1.75− −.9375

[2, 5]
= 1.75− [.1875, .46875] (5)

= [1.9375, 2.21875] ⊂ x, (6)

so we may conclude that there is a unique root of f in x.

Interval Introduction 1994 UTEP–13



Finding All Roots

• In univariate problems, interval Newton meth-
ods can be iterated with extended interval
arithmetic to always find all roots.

• In multivariate problems, interval Newton
methods can be combined with generalized
bisection and binary search to always find
all roots.

• In both instances, failure modes are benign:

– Failure can only occur by exceeding the
computer’s resources or because of the
limited resolution of the floating-point num-
bers.

– When failure occurs, the algorithms still
print a list of boxes within which all roots
must lie.

Interval Introduction 1994 UTEP–14



Finding All Roots

An Example

As before, let f (x) = x2 − 4, but now let x(k) = xi =

x = [−2, 2] and xi = x = 0. The first iteration of the

interval Newton method thus becomes

x̃ = 0− −4

[−4, 4]
= 0− ([−∞,−1] ∪ [1,∞]) (7)

= ([−∞,−1] ∪ [1,∞]) (8)

Thus,

x̃ ∩ x(k) = [−2,−1] ∪ [1, 2]. (9)

• One of the intervals in Equation 9 is put on a list for

further processing, and the interval Newton method

is iterated on the other.

• The interval Newton method will converge to zero-

width intervals for each startin interval from Equa-

tion 9.

• Hansen has proven that this behavior is true in gen-

eral.
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Global Optimization

With interval methods, we can:

Find, with certainty, the global minimum of

the nonlinear objective function

ϕ(X) = ϕ(x1, x2, . . . , xn) (10)

where bounds xi and xi are known with xi ≤
xi ≤ xi for 1 ≤ i ≤ n.

To do this, a branch-and-bound algorithm with the fol-

lowing general features is used.

• A technique for partitioning a region into subregions

is combined with a technique for computing a lower

bound ϕ and an upper bound ϕ of the objective func-

tion ϕ over a region x.

• The subboxes are placed in a list in order of increas-

ing ϕ.

• The list is purged of those boxes for which ϕ is greater

than ϕ for some other box in the list.

• An interval Newton method accelerates the proce-

dure by quickly and rigorously locating critical points.
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Global Optimization

An Example

Suppose we are to minimize f (x) = x2−2x+
1 (written in that way), and the search region
is x = [.5, 2].

• f ((.5 + 2)/2)) = f (1.25) = 0.0625, so the
best estimate of the minimum is 0.0625.

• Split [.5, 2] to [.5, 1.25] and [1.25, 2]; com-
pute f ([.5, 1.25]) = [−1.25, 1.5625]; f (0.875) =
0.015625 < 0.0625, so 0.015625 is the new
best estimate. Store [.5, 1.25] on a list L.

• f ([1.25, 2]) = [−1.4375, 2.5]; f (1.625) =
.390625, so there is no new best estimate.
Store [1.25, 2] on L before [.5, 1.25], since
−1.4375 < −1.25.
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Optimization

(Continued)

• Continue such processing by popping the
first item from the list.

– if a lower bound on a box is bigger than
the best estimate, discard the box.

– Put a box on a final list if its diameter is
small.

• Interval Newton methods can be used to ac-
celerate the process.

• Traditional optimization codes are useful to
get good best estimates.
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An Optimization Example

List of boxes considered

(See blackboard.)
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Successes in Practical Areas

Summary

Nonlinear Algebraic Systems

Global Optimization

Linear Algebraic Systems: Error analysis

Sensitivity Analysis: Economic models, etc.

Geometric Computations

Rigorous bounds on solutions of ordinary and
partial differential equations are more difficult,
but notable successes have occurred recently.
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Practical Successes

Nonlinear Algebraic Systems

• Chemical Engineering Problems – Carol
Schnepper’s Ph.D. dissertation (University
of Illinois)

• Continuation Methods – a foolproof step
control for path following – Zhaoyun Xing’s
dissertation (USL)

• Theory is exhaustively written in a 1990 book
by Neumaier.

• We are presently working on a comprehen-
sive software environment.
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Practical Successes

Global Optimization

• Interval methods are generally very compet-
itive relative to alternatives, both determin-
istic and stochastic.

• Hansen has a monograph on the subject.

• Moore, Hansen, Leclerc, Jansson, and Knüppel
have developed algorithms for parallel archi-
tecture.

• Arnold Neumaier and David Gay at AT&T
are presently writing software for distribu-
tion.

• Our software system will also include such
code.
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Practical Successes

Sensitivity of Linear Systems

• Fixed-point contraction-mapping like theo-
rems, as above, can be used to obtain guar-
anteed bounds on solutions.

• Falcó Korn and Christian Ullrich have com-
bined these with the Linpack band matrix
routines.

• In theory and practice

– The interval bound widths are compara-
ble to the LINPACK condition estimator
size, but are rigorous.

– The interval bounds require much less
computation for very large, sparse sys-
tems.
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Practical Successes

Economic Models

• Matthews, Broadwater, and Brown have ap-
plied interval techniques to estimation of elec-
tric utility expenses and revenue.

• Uncertainty in items such as interest rates
is expressed as intervals.

• Computations are arranged so that interval
outputs are sharp and useful.
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Practical Successes

Geometric Computation

• Mudur and Koparkar (1984) – Outline tech-
niques for obtaining sharp bounds for geo-
metric computations such as evaluating lengths
and areas, curve-curve and surface-surface
intersections, testing linearity and planarity.

• Patrikalakis and co-workers (recent)

– Solution of nonlinear systems related to
robot vision and object recognition

– Computation of singularities and offsets
of planar curves.

• Other work is in progress, including apply-
ing our work on continuation methods.
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