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Abstract

We will first introduce the elements of
interval arithmetic. We will then out-
line areas of applicability in computer
science and engineering, giving simple,
illustrative examples. We will conclude
with references and briet presentations
of successtul realistic applications.
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Outline of Talk

1. Review of Interval Arithmetic
2. Interval Newton Methods

3. A simple example — Computational
Existence Verification

4. Global Optimization

5. Successes in Practical Areas
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What i1s Interval Arithmetic?

Interval arithmetic is based on defining the four
elementary arithmetic operations on intervals.
Let a = |a;,a,] and b = [b;, b,] be intervals.
Then, if op € {+, —, %, /}, we define

aop b={rop y|re€aandy e b}.

For example, a+b = [a;+b;, a,+b,]. In fact, all
four operations can be defined in terms of addi-
tion, subtraction, multiplication, and division of
the endpoints of the intervals, although multi-
plication and division may require comparison
of several results. The result of these opera-
tions is an interval except when we compute

a/band 0 € b.
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Why Interval Arithmetic?

e With directed roundings, we can bound round-
off error in the computations. We can com-
bine interval arithmetic with tools such as
fixed-point iteration theorems to

— automatically verity rigorous bounds, from
approximate solutions.
— automatic theorem proving.
e Interval arithmetic provides rigorous
bounds on the ranges of functions. Po-

session of such bounds can be powertul, es-
pecially in rigorous global optimization.
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An Example of Interval

Arithmetic
[_17 2] ([37 4] + [_57 6])) — [_17 2] <[_27 10])
= |—10, 20],
whereas
—1,2][3,4] + [—1,2][-5,6] = [—4,8] + [—10,12]
= [—14, 20]
Here,

[—14,20) = {z |z =21+ 22,21 € [—4,8],
s € [—10,12]},

and [—14, 20] contains the range of xy + xz for
re[—1,2],y € [3,4], and z € [-5,6].
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Inclusion Monotonic Interval
Extensions of Functions

Definition. If { is a continuous function of a
real variable, then an inclusion monotonic in-
terval extension f is a function from the set of
intervals to the set of intervals, such that, if x
is an interval in the domain of f,

{f(z) |z €z} C flx)
and such that

r C y=f(x) C f(y)

e We may obtain such interval extensions of a
polynomial by replacing real operations by
corresponding interval operations. For ex-
ample, if p(x) = z* — 4, then p([1,2]) may
be defined by

p([1,2) = ([1,2])* =4 =([1,4]) — [4,4]
= [-3,0].
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Interval Extensions of
Transcendental Functions

e We may use the mean value theorem or Taylor’s theorem
with remainder formula. For example, suppose x is an
interval and a € . Then, for any y € @, we have

sin(y) = sin(a) + (y — a) cos(a) — (y — a)?/2sin(c)

for some ¢ between a and y. If @ and y are both within
a range where the sine function is non-negative, then we
obtain

(@ — a)*

sin(y) € sin(a) 4+ (z — a) cos(a) — 5

Specifically, if = [.1,.3] and we use a = .2, we would
obtain the “value”

sin([.1,.3]) C sin(.2) + [—.1,.1] cos(.1)

_(=1aP)
2
C [.0998,.0999]
+[.1,.1][.995, .996] + [—.005, 0]
= [—.0048,.1995]

e Sharper interval extensions may be obtained in specific
cases by using e.g. monotonicity of the original function.
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Pitfalls to Naive Interval
Arithmetic

e For rigorous bounds on roundoff error, one
may be tempted to translate floating-point
computer codes by merely replacing “real”
with “interval.”

e Due to interval dependencies, such naive de-
velopment often is unsuccessful.

e Interval arithmetic is successtul if it is ap-
plied to appropriate tasks and with appro-
priate algorithms.

— It provides rigorous results from the com-
puter arithmetic.

— It can actually result in faster algorithms,
even if the interval arithmetic is in soft-
ware and much slower than floating point.

e Researchers continue to enlarge the domain
in which interval analysis can make compu-
tations rigorous and reliable.
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Introduction to Applications

Nonlinear Equations — Interval Newton
Methods

Interval analysis can be used either to

e Construct rigorous bounds around an ap-
proximate solution, in which an actual solu-
tion must lie.

e [ixhaustively search a region to find all roots
of a nonlinear system.

Verification is easier than exhaustive search. How-
ever, both tasks are based on computational
existence / uniqueness theorems.
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Introduction to Applications

A Computational Ezistence / Uniqueness
Metatheorem

Let F': R" — R" correspond to the system

F(X) = (1)
(filxr, 2o, yxn), ooy fu(xr, e, .0y 2)
= (.

We write © = (x1, 29, . . ., ), and we denote a

box (set of interval bounds on the variables z;)
by .
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A Computational Existence /
Uniqueness Metatheorem

We first transform F(X) = 0 to the linear interval

system
F’(zc(k>)(:%(k> _ x(’f)) _ —F(x(k>) (2)

where F'(2®) is a suitable interval extension of the Ja-
cobian matrix of F. We then formally solve (2) using
interval arithmetic to obtain a box &*) which satisfies

F/@(M)(@(k) _ a:““)) S _F(xﬂf))’ (3)

such that £*) contains all solutions to the original non-
linear system within *). We then define the next iterate
p(k+1) by

"D = W N g, (4)

Depending on how we obtain 53<k), this interval New-
ton method leads to a root inclusion test, since

If %) C &® | then the nonlinear system of
equations has a unique solution in &®. Con-
versely, if %) N &®) = (§ then there are no so-

lutions of the system in a*).
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Computational Existence /
Uniqueness

A Simple Example
Ife n =1 and
f(z) =2* -4,

then the linear interval system becomes
238@(53@ — ZL’Z) = —f(ZL’»

The interval Newton iteration equation becomes

zﬁizi:xi—M:x—@.
2x; 2x

[f we choose initial interval and point
eV =, =ax =1[1,25, a;=x=175,

then

— 9375
& =175— P 1.75 — [.1875,.46875]  (5)

= [1.9375,2.21875| C =, (6)

so we may conclude that there is a unique root of f in a.
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Finding All Roots

e In univariate problems, interval Newton meth-
ods can be iterated with extended interval
arithmetic to always find all roots.

e In multivariate problems, interval Newton
methods can be combined with generalized

bisection and binary search to always find
all roots.

e In both instances, failure modes are benign:

— Failure can only occur by exceeding the
computer’s resources or because of the
limited resolution of the floating-point num-
bers.

— When failure occurs, the algorithms still

print a list of boxes within which all roots
must lie.
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Finding All Roots

An Erample

As before, let f(x) = 2? — 4, but now let %) = x; =
x = [—2,2| and z; = x = 0. The first iteration of the

interval Newton method thus becomes

—4
v = 0— —0— ([—o0,—1JU]l 7
= ([=o0, —1J UL, o0]) (8)
Thus,

Nzt =[—2 —1]U[1,2. (9)

e One of the intervals in Equation 9 is put on a list for
further processing, and the interval Newton method
is iterated on the other.

e The interval Newton method will converge to zero-
width intervals for each startin interval from Equa-
tion 9.

e Hansen has proven that this behavior is true in gen-
eral.
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Global Optimization

With interval methods, we can:

Find, with certainty, the global minimum of
the nonlinear objective function

o(X) = p(x1,T9,...,20) (10)

where bounds z; and T; are known with z, <

To do this, a branch-and-bound algorithm with the fol-
lowing general features is used.

e A technique for partitioning a region into subregions
is combined with a technique for computing a lower
bound ¢ and an upper bound @ of the objective func-
tion ¢ over a region &.

e The subboxes are placed in a list in order of increas-
mng ¢.

e The list is purged of those boxes for which ¢ is greater
than © for some other box in the list.

e An interval Newton method accelerates the proce-
dure by quickly and rigorously locating critical points.
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Global Optimization

An Erample

Suppose we are to minimize f(z) = z*—2x+
1 (written in that way), and the search region
is = [.5,2].

o f((.5+2)/2)) = f(1.25) = 0.0625, so the

best estimate of the minimum is 0.0625.

e Split [.5,2] to [.5,1.25] and [1.25,2]; com-
pute f([.5,1.25]) = [—1.25,1.5625]; f(0.875) =
0.015625 < 0.0625, so 0.015625 is the new
best estimate. Store [.5,1.25] on a list L.

o f([1.25,2]) = [—1.4375,2.5]; f(1.625) =
390625, so there is no new best estimate.
Store [1.25,2] on L before [.5,1.25], since
—1.4375 < —1.25.
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Optimization

(Continued)

e Continue such processing by popping the
first item from the list.

— if a lower bound on a box is bigger than
the best estimate, discard the box.

— Put a box on a final list if its diameter is
small.

e Interval Newton methods can be used to ac-
celerate the process.

e Traditional optimization codes are useful to
get good best estimates.
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An Optimization Example

List of boxes considered

(See blackboard.)
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Successes in Practical Areas

Summary

Nonlinear Algebraic Systems

Global Optimization

Linear Algebraic Systems: Error analysis
Sensitivity Analysis: Economic models, etc.

Geometric Computations

Rigorous bounds on solutions of ordinary and
partial differential equations are more difficult,
but notable successes have occurred recently.
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Practical Successes

Nonlinear Algebraic Systems

e Chemical Engineering Problems — Carol
Schnepper’s Ph.D. dissertation (University
of [linois)

e Continuation Methods — a foolproof step

control for path following — Zhaoyun Xing’s
dissertation (USL)

e Theory is exhaustively written in a 1990 book
by Neumaier.

e We are presently working on a comprehen-
sive software environment.
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Practical Successes

Global Optimization

e Interval methods are generally very compet-
itive relative to alternatives, both determin-
istic and stochastic.

e Hansen has a monograph on the subject.

e Moore, Hansen, Leclerc, Jansson, and Kntuippel
have developed algorithms for parallel archi-
tecture.

e Arnold Neumaier and David Gay at AT&T
are presently writing software for distribu-

tion.

e Our software system will also include such
code.
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Practical Successes

Sensitivity of Linear Systems

e Fixed-point contraction-mapping like theo-
rems, as above, can be used to obtain guar-
anteed bounds on solutions.

e Falco Korn and Christian Ullrich have com-
bined these with the Linpack band matrix
routines.

e In theory and practice

— The interval bound widths are compara-
ble to the LINPACK condition estimator
size, but are rigorous.

— The interval bounds require much less
computation for very large, sparse sys-
tems.
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Practical Successes

Economic Models

e Matthews, Broadwater, and Brown have ap-
plied interval techniques to estimation of elec-
tric utility expenses and revenue.

e Uncertainty in items such as interest rates
is expressed as intervals.

e Computations are arranged so that interval
outputs are sharp and useful.
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Practical Successes

Geometric Computation

e Mudur and Koparkar (1984) — Outline tech-
niques for obtaining sharp bounds for geo-
metric computations such as evaluating lengths
and areas, curve-curve and surface-surface
intersections, testing linearity and planarity:.

e Patrikalakis and co-workers (recent)

— Solution of nonlinear systems related to
robot vision and object recognition

— Computation of singularities and offsets
of planar curves.

e Other work is in progress, including apply-
ing our work on continuation methods.
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