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A PIVOTING SCHEME FOR THE INTERVAL GAUSS-SEIDEL METHOD:
NUMERICAL EXPERIMENTS

Chen-Y: Hu and R. Baker Kearfort

Department of Mathematics, University of Southwestern Louisiana
U.S L. Box 4-1010, Lafavette. LA 70504

Abstract. Interval Newton methods in conjunction with generalized bisection form the basis of algorithms
which ind all real roots within a specified box X — R"™ of a system of nonlinear equations F/ X)) = 0 urth
mathematical certainty, even in finite precision arithmetic. The practicalitv and efficiency of such methods
is. in general. dependent upon preconditioning a certain interval linear svstem of equations. Here, we

present the resuits of numericai experiments {or such a prvoting preconditioner we are developing.

1. INTRODUCTION AND ALGORITHMS

The general problem we address is:

Find, with certaintv, approximations
to all solutions of the nonlinear svs-
rem

| FiXi={filzy,20,....Z0),. ...
(L.1) fa(z1,20,. .. 2,)) =0,

where bounds z, and z,

e —

are Xxnown such that

z, <r,<7I,torl <i1<n.

1 — —_— —

We write \' = {r,.75.....7,], and we denote the box given
by the inequalities on the vanables z, by B.

A successful approach to this problem is generalized
bisection in conunction with interval Newton methods. as
described in 1. § or numerous other works. For an intro-
duction to the interval arithmetic underlying these metnods,
see 1, 9, the recent review 6 ,etc. Also, the book 11 will
contain an overview of interval methods for linear and non-
linear svstems of equations.

Ir these methods. we first transform F(X) = 0 to the

,

[ Al d d

inear interval system

[ \ v o - = -

{\12\ Fi,_xk_’,‘-l;\}xk—‘\k)i—F{,\k)}

where F'/ X is a suitable {such as an elementwise) interval
extension of the Jacobian matrix over the box X, {with

Xo = B}, and where X, £ X, represents a predictor or
initial guess point. (Consult (1, 61, .91, [11i, (12}, etc. for
information on interval extensions.) If we formally solve
(1.2) using interval arithmetic, the resulting box Xy, which

actually just satisfies
1.2(b)) F/(X)(Xk - Xi) > - F{Xy),
will contain all solutions to all systems

AX — Xi) = —F(X4),

for A € F'(X,). Also, for suitable interval extensions
/ / - -
F'{Xy), the mean value theorem implies that X, will contain

all solutions to F{X)} = 0. We then define the next iterate
Xk-@-l b}'

-

(1.3) Xis1 = X X,

This scheme is termed an interval Newton method.

{7 the coordinate intervals of X 4., are not smaller than
those of X4, then we mayv bisect one of these intervals to
form two new boxes; we then continue the iteration with one
of these boxes, and put the other one on a stack for later
consideration. The following fact from 10} allows such
a composite generalized bisection algorithm to compute all

\

solutions to (1.1} with mathematical certainty. For many
methods of solving {1.2),

1f Xk - X4, then the system of equa-
tlons i1 (1.1 has a unique solution in
Lt X,. Converselv, if X; ~ Xy = 9 then
there are no solutions of the system

militin Xg.

We give complete detalis of the overall generalized bi-
section algorithm in 5. Here, we are interested in the fact
that the efficiency of generalized bisection depends on the
way we find the solution bounds Xg to 1.2,

In 2. we derived a pivorting scheme for the wnterval
Gauss-Seidel method for computing Xi. We review that
scheme and report computat.onal results here. For proofs
and additional details, see 2.

We use the following notation. We write

for Xt and we iet A,, be the interval in the i-th row and
7-th column of A = F'{X). We denote the comyp 'nents
of F' as boldface intervals, since they must be evaluated in
interval arithmetic with directed roundings, so that we have
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F(Xy)=F = (f,f,,..

,fn), and .Xk — (1‘1?1‘2,..,,3,1). In
this notation

. (1.2) becomes
ﬁfl-f’)) A{ik — .Yk} = —F.

We generally precondition {1.5) bv a scalar (i.e. non-
interval) matrix Y to obtain

(1.6) YA(Xi - X)) = -YF
Let ¥, = (y1,¥2,...,yn) denote the i-th row of the precon-
aitioner, let
k, = Y. F.
and let
Y'A=G, =(G,,,G,,. .. LG
={g 5.1 9,5, Gi2 s 9 Gin)

Then the preconditioned interval Gauss-Seidel algorithm is

ALGORITHEM 1. (Preconditioned version of interval Gauss.-
Seidelj Do the following furi1 = ¥ to n.
1. (Update a coordinate. ;
(a, Compute Y.
(b} Compute k, and G,

(c;, Compute

using interval arithmetic.
(The new box isempty.; If X, x, = 0, then signa! that
there is no root of F in'X. and continue the generalized
bisection algorithm.
3. (The new box is non-empty; prepare for the next coor.
dinate. |
a} Replace x, by x, ™ X,.
(b) Possibly re-evaluate F/(X,) to replace A by an
interval matrix whose corresponding widths are
smaller.

We will denote the width of the interval x, = z,,I, by

w(x,) = T, — z,. Similarlv, we will denote the lower bound
for the box

X = (521,51:, E"'—T%E?}a RN ignzfﬂz) '
by X |= (zy,2,, gn: and the upper bound for the box
bv X T={Z,,Z,, .. ) We will speak of the diameter of

the box X as {|X 7 -»7(

The following tneorem shows us that preconditioning
does not affect the reliability of the overal] generaiized Di-
section scheme.

THEOREM 2. Let X7 = (X{,X7....,X2) denote the new
(possibly altered and possibly empty; box which Algorithm
I returns, and refer to the X entering Algorithm ] as simply

X = (X1,X2,...,Xn}. Then any roots of F in X must aleo
be in the new X*.

See 5 for a proof of Theorem 2.

The pzvot ng preconditioner is based on the following
characterization.

THEOREM 3. In (]
0 ¢ G, ,, then

—_ . . n ? ;
/)_, II( }‘(1 T T 2}31 Gz_;tlx B I).} and

n
w(x)= Y max{g .3, julx
Oj;,;:;
S J. G, \
M|
where
max!{r,~1\3,{f,~z._’1 , .
U — } i wixt)y =0
/\‘ f— wﬁ.x__J h .} '
J .
0 otherwise.
where
O If ._.1_ _— l < s | -~ _i:-_
€11J;/\'. 'g‘l:]' QIJ 1“/\?
o ] —
J and 0 GI.J - ‘91133913 b
1 otherwise,
and where ) | | |
F X, " x, if j<q,
x] — - . .
X, it g > 1.

T'he idea in ‘2" and here is to develop preconditioners
which, though not necessarily giving a2 minimal w(x,), re-
quire no numerical linear algebra and only O(n?) arithmetic

operations, and are potentially effective on many problems.

See 2’ and '5: for rationale and details. We review the re-
sulting preconditicner here.
Noting that terms in the sums in Theorem 3 for which

w{x.) = 0 are irrelevant, we make

Ly

DEFINITION 4.

\';Oi — {]€ {1?2}"'12-_ 1}2.* 1:

Also, because of considerations explained in 2
preconditioner algorithm makes use of

DEFINITION 3. Njow = {5 = {1,2 ni0€ A, }.

Our pivoting preconditioner is based on se] ecting a row
of the interval Jacobian matrix A to use as the precond;-
tioned row G,:i.e.. on selecting ¥, to be
optimal In the sense of

a unit vector. I ig

DeriNiTioN 3.5, Wesav rhar Y, is preoting first optimal if
Y, vieldsa G, whick minimizes wixX,:. where X, is as in (17

suvject to the condition that Y, be a unit vector,

We use the following lemma to determine which column

ndices m give pivoting first optimal preconditioner.
O ) : :

LEM:1a 6. Suppuse there exists a pivoting first optimal pre-

conditioner row Y, = e Canuse further that, as in The-
- n
crem 3, k, & _T_.: A I,; and § &

.k, = f,, isthe m-th component ofrhe function value F{ X .
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Theﬂ
A — | v 1
JE“"c:]
_ aJ,:l
s 1
+ E A]w(Am})w(\c})
€N
7, =, .J
/ mln{lgm’tf,,am‘u}:
#where
{ max{(x,—x (T, -z}
3 *}"' ) P “ o e l\]
A = G(x0) Tow(x;) # 0
0 otnerwise,
Vf'bt?fe
0 if gy, (1A~ 1< @, , < 2mo
ZmL gyt 3 : T, 7| 1-_,\;
;= and 0z A, = a. . &, .
I - hML T Em g ¥m g
Il otherwise,
and where ) .
. X, Xy, 1oy <
XJ- =

X, i ) >
Lemma 6 follows from Theorem 3; see (2. and leads to

ALGORITEM 7. (Determination of the column index for the
1-th first optimal pivoting preconditioner row |
[ Check wix!Yfor;=1,2,.. 1-1,4~1,. ...n to find
Aol
2. Check the t-th column of the interval Jacobian matrix
A to determine \.,. .
3. Pick mo = \.,., which minimizes wix,) in Lemma 3.8

) ?
overalime< A\, ..

i Choose Y, = el in Step 17a; of Algorithm 1.2: where
el, is that unit row vector with | in the ms-th coord:-

nate and 0 in the other corrdinates.

2. ALTERNATE ALGORITHMS AND €COST

I'he pivoting preconditioner mav not resuit in an Opti-
mally small w{X, " x,} in Algorithm 1: see 2. However, it
can sometimes result in reduction of w(x,; with less arith-
metic operations than other preconditioners. Here, we com-
pare the number of arithmetic vperations t. complete Al-
gorithm 1, when various different procedures are used to
compute Y,. In particular, we will compare tne following
schemes:
the pivoting preconditioner { Algorithm 71
the minimum width linear programming precondition-
er;

) the inverse midpoint preconditioner:
4) solving for each variable in each equation.

Lhe linear programming precornditiorer is explained in
5. It gives a minimal w(k,: or each 1. but is expensive
to obtain. We are unsure of the exact »perations count.
but on two variable dimension tes: proolems. the tntal work
for the generalized bisection method ard possibly aiso for
Algorithm 1.2) seems to increase like Oin®i

N B
S N

G2

The inverse midpoint preconditioner is commonly used
in Algorithm 1. In it, we take Y, to be the i-th row of the
inverse of the n by n non-interval matrix formed by taking

the midpoint of each entry of the n by n interval matrix
F'(Xk). This preconditioner has some nice properties, but
is not always appropriate, as explained in 51

We use the following modification of the interval Gauyss.
Seidel algorithm when we solve for each coordinate.

ALGORITHM 8. (Solve for each variable in each equation.
Let A = F'(X). Do the following for for m = | to n and
fort =1 ton.

1. Compute
- -
n .
- B N / N \
X, = T, fn = Am,ix, - 1,) Am
1=
! rEm ]

ising interval arithmetic.
2. 1fx, " x, = Q. then signal that there is no root of F in
X, and continue the generalized bisection aigorithm.
3. {Prepare for the next coordinate.
(aj Replace x, by x, 7 x,.
(6) Possibly re-evaluate F'(Xy) to replace A by an
interval matrix whose corresponding widths are
smaller.

In our operations counts here, we assume a dense in-
terval Jacobian matrix.

We give summary of the arithmetic complexity of the
above algorithms, in terms of both non-interval and interval
operations, in Table 1. Precise values appear in 21, and
are derived in 3i. Values for sparse Jacobian matrices also
appear in those two places. We emphasize that the values
in Table 1 represent the order of operations to complete an
entire n steps of Algorithm 1.

Table |

Type Pivoting  Each inverse
of op. variable midpoint

Interval
1nterval —
interval -

O{n*) Of(n*) Ofn<
Oin) O{n®) (7
O(n*)  O(n*) Oin’:

Yy
usual « Oin”) ) O n.
usual = Otn? 0 () r
| L i B : .
isual - Of{n~: Oin- U:n’:

AD aiternative to the abuve three arecondl*liners s .
apply no preconditioner at all. e, to a,wavs rake .
[n *hat case. ‘here are no scalar arithmetic GDETALLNE, and
the numbers of interval arithmetic uperations aze *ne a7

2s {or the pivoting preconditioner,

3. EXPERIMENTAL RESULTS

{n this section. we report results of some preiminar
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experiments on the three preconditioners mentioned in Sec-
tion 2 and on the interval Gauss-Seidel method with no pre-
conditioner at all ¢ 1€, with Y equal to the identity matrix).
I'he computation mwhes repeated execution of Algorithm
I for each box X produced f{rom the initial box via bisec-
tion, until either one of the poss1b1htzes in 1.4} happens or
else until the maximum width u! X, ) is sma]ler than a fixed
tolerance (107> here). See 4, /5", and ‘7' for details of the
overall algorithm and of the wav the interval Gauss-Seidel
method is combined with generalized bisection.

Here, we examine a variable dimension test problem.
which can be solved with no preconditioner at all. This al-
lows us to measure the overhead costs of the preconditioner
schemes in a relativelv simple wav. A more thorough anai-
vsis of the types of probiems for which the pivoting precon-

citioner is appropriate appears in 2

\We report total virtual CPU times on an IBM 3090.
with a code similar to that in 7 .in Table 2. We report the
totai number of boxes considered in Table 3 and the total

number of interval Jacobian evaluations in Table 4: these
are measures of the eflectiveness of a preconditioner which
are independent of the cost to obtain the preconditioner.
(For this test problem, no preconditioner and the DIVOLIng
preconditioner seem to give the same row indices } In each
case, the first column gives the order of the problem

Thealgorithm was unable to finish in eleven CPU hours
for the entries in the table marked with asterisks.

Table 2 - CPU times

n  Pivoting  Each inverse none
vatianle midpoint

D U.61 (50 113 .40
L0 1., +.01 12174 17D
15 21.39 2173 - 0.46
20 18 .45 69 .80 x L7709
25 91.23 [41.63 - 34.84
30 14946 264 20 - 6:.21
35 22547 +1.42 . 98 47
10 32051 680.28 x 148.62

Table 3 - Number of boxes

n  Pivoting  Each INverse  none
variable midpoint

5 45 47 56 43
10 71 (3 589 67
15 113 103 x g7
2 141 139 . 133
25 171 169 x 163
30 201 199 x 193
35 231 229 x 223
40 261 259 x 253

P ..‘
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Table 4 - Number Jacobian matrix evajuations

n  Pivoting  Each Inverse  none
variable midpoint

D 52 52 29 00
10 82 82 294 86
15 126 116 x 120
20 154 154 x 158
25 L84 184 x 188
30 214 214 x 218
35 244 244 x 218
+{J 274 2 x 20X
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