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Abstract. We present a step control for continuation methods which is

deterministic in the sense that it will never cause the algorithm to

jump across paths; (ii) it computationally but rigorously veries that

the corrector iteration will converge; and (iii) each predictor step is

as large as possible, subject to assured convergence of the corrector

iteration. The technique is general in the sense that it can be used with

various choices Of predictor direction and corrector manifold. We present

performance data and comparisons for Brown’s almost linear function

and the Layne Watson exponential function in various dimensions.

1. MOTIVATION AND INTRODUCTION

Throughout, we will assume knowledge of both continuation methods

and interval mathematics. An excellent introduction to continuation

methods appears in Thorough introductions to interval methods

appear in the books [13] or The proceedings [14] contains surveys

and descriptions of applications of interval methods, while the recent

survey [10] summarizes some Of the basic facts.

Continuation methods are used to compute sequences of points on

solution manifolds of systems Of n equations in n + 1 unknowns; i.e.,

they are used to compute points on arcs in the set

(1.1) Z: {Y eRn+1$H(Y):O},

where H: Rn+1 —> R".

There is a wealth of literature on applications which involve nding
I

arcs in the set Z Of (1.1). These applications divide naturally into two

classes. In the rst class, H models a parametrized physical system,

which we wish to study as the parameter varies, such as in [12]. In the

second class, we introduce an articial parameter in order to solve (or

nd all solutions to) a system of n nonlinear equations in n unknowns

for which locally convergent methods are unsuccessful. For problems in

the second class, we may have mathematically rigorous guarantees that

we will nd all solutions to the original system Of equations, provided

the continuation method reliably tracks the arcs in Z Of (1.1); see [15],

for an introductory explanation.

Many continuation methods are instances Of the following general

,predictor—corrector algorithm.



ALGORITHM 1.1.

1. Input:

(a) the initial point on the arc Y <— Y0 and an arc-following stopping

criterion PS;

(b) the minimum predictor stepsize 6min, and the maximum predictor

stepsize 6m”; and

(c) a corrector stopping criterion CS.

2. (Predictor-corrector iteration) Repeat the following until 'P5 is satis-

ed.1

(a) Compute a predictor step length 6;

(b) Compute a predictor step direction B (where : 1) and a

predicted point on the arc

Zo : Y + (SE.

(c) Choose an n—dimensional corrector manifold S such that Z0 E S.

(d) Compute a corrected point Z by using a locally convergent method

whose starting point is Z0 and whose iterates all lie in S; iterate

the method until CS is satised.

(e) Replace Y by Z.

The direction B may be taken to be tangent to the arc, it may be a

coordinate vector which is adaptively chosen on each corrector step, it

may be a xed coordinate vector, or it may only be implicitly given as

B = Y — Z0 when a higher-order method is used to determine Z0.

The corrector iteration manifold S is often taken to be the afne space

containing 20 and orthogonal to B. In that case, the corrector iteration

may be dened by applying Newton’s method or variations (such as

quasi-Newton methods) to the augmented system H(Y) : 0, where

Alternately, for the same S as in (1.2), the corrector iteration may consist

of applying Newton’s method to the system H. = 0, where

(1.3) MP) 2 HH + Zips-W)= 0,

where P : (p1,p2,...,pn) and Where {Wj}?:1is a set of orthogonal

vectors such that WJ-o B : 0 for between 1 and n.

1The items in this step may be computed in an order dierent from that given here,

depending on the details of how they are computed.
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Step 2(a) of Algorithm 1.1, termed the steplength algorithm, has been

much studied; see [5], [6], [7], and [20], among much such work. As

is mentioned in [7], such step controls involve heuristics which, under

certain circumstances, may lead to failure of Algorithm 1.1. In partic—

ular, if 6 is chosen too large, then the corrector iteration may converge

to a point which is not on the original arc; see Figure 1. Such failures

would be difcult to detect automatically, and may lead to misleading

conclusions about the problem. The failure can be corrected for specic

problems by using a more conservative heuristic, but only provided we

know it has occurred.

Fig. 1. An undetectable failure of the step

control algorithm.

In this paper, we describe a step control for which it is mathematically

impossible for failures as in Figure 1, even when the procedure is im-

plemented on a nite precision computer. Our step control is based on

interval arithmetic procedures which provide computational verication

that there is a unique root in a given region, and that Newton’s method

will converge to that root. Such procedures generally give unambiguous

results provided the size of the region is small enough, while, in our

context, we may control the region’s size by increasing or decreasing the

stepsize.
An alternate interval method for describing the solution set Z of (1.1)
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is given in [18]. In that method, Neumaier obtains the entire solution

set, as opposed to a set of points on a single arc. However, that technique

involves (adaptive) subdivision of the entire space, for some problems,
the amount of work may increase too rapidly as a function of n. In con—

trast, the method proposed here reliably solves a more modest problem,
but may possibly be more easily modied to work practically for larger
n.

In Section 2, we present the ideas underlying the interval step control.

In Section 3, we give the interval step control algorithm, and we also

present a simple but successful non—interval step control which we will

use for comparisons. In Section 4, we present our numerical comparisons.

In Section 5, we summarize and present conclusions.

2. THE UNDERLYING CONVERGENCE TEST

Throughout, we will denote points in R” or n—vectors by uppercase

letters and scalars by lowercase letters. We will denote the corresponding
interval quantities by boldface.

We denote the box in n—space described by

{X :(1131,a:2,...,:1:n)|l¢< xi for 1 S i S n}

by X. We may then transform the nonlinear problem

Find all solutions of the nonlinear system

F(X): (f1(:c1,m2,...,érn),...,fn(:c1,m2,...,xn)) :0,

where bounds l,- and u,- are known such that

ligmiligmiligmi

(2.1)

to the linear interval problem

Find a box X which contains all solutions of the

linear interval system

(2-2) F'(X)(x — X) = —F(X),
Where F’ is an elementwise interval extension

of the J acobian matrix,

and where X E X is an approximation to a root of F. (See, eg. [13].)
Neumaier shows in [17] that, for many common ways of solving (2.2),

if X C X, then the system of equations in (2.1)
(2-3) has a unique solution in X, and Newton’s method

starting at X will converge to that solution.
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Furthermore, if directed roundings [13]) are used, then the condition

in (2.3) may be checked with mathematical rigor on a computer.

Our interval step control will be based on (2.2) and (2.3). By including

the interval value d : [0,5] in the computations, we will verify the

condition (2.3) simultaneously for all corrector iterations corresponding
to predictor steps between 0 and 5.

In the remainder of this section, we will rst present the convergence

test based on (2.2) and (2.3) in a general setting. We will then de-

scribe the specic version of this convergence test which we used in the

numerical experiments.
'

Suppose that the corrector manifold S corresponding to initial point

Y and predictor step 3 is given by

(24) s : {TO/33,13); P e R“}

Also choose a function such that

(1) W) = 0;

(2) q(6) is a monotonically increasing function of 3;

We make the following assumption in order to assure that the test will

accept the predictor step for all sufciently small 6.

ASSUMPTION 2.1. The functions r and q are continuous, andr is one-to—

one. Furthermore, for each c such that 0 < c g 1 and each 6 > 0, there

exists a 60 > 0 such that, ifg S 60, then, for every W with : 1

and W o B Z 6, there is a V : 77W for somen with 17 S 5, with V :

r(Y,g,—X)— Y for some 3(—in the interior of{X E R" l I|X||oOg

Also, the Jacobian matrix 81*(Y,<5,X)/6X is offul] rank for every X such

that HXHOOS 3q(3),and each vector U with U o (r(Y,6,X) — Y) = 0 is

in the range of 5r(Y,6, X)/8X.

The conditions on the Jacobian matrix 5r(Y, 6,X)/8X preclude the

surface 7'(Y,6, *) from dipping tangentially towards Y. They also assure

that the surfaces r(Y, 6, 0) where O is a xed open set in the interior of

X with O E 0 will intersect, in the limit as 5 —> 0, all arcs emanating

from Y at an acute angle with B. These conditions are convenient in

the proofs, have not been proven to be necessary.

Assumption 2.1 would hold if S is dened as in (1.3), if

.

r(Y,6,P) : Y+5B+Zp,-W,,
1:0

and if q(6) = 6—77 for some 17 > 0. This situation is illustrated in Figure

2.



Fig. 2. Illustration of Assumption 2.1 when S

is the hyperplane perpendicular to B.

Assumption 2._1would also hold if the S corresponding to 3 were a

sphere of radius 6 centered at Y, and if the parametrization P and q(6)
were such that {X E R" l HXHOOS were the hemisphere centered

at Y + EB. (Such could be arranged easily with a parametrization in

terms of spherical coordinates and with 6q(6) the appropriate constant.)
When we solve (2.2) for i, the components of i will generally have

smaller widths than those of X provided each matrix A in the interval

extension F’ (X) of the Jacobian matrix of F is well-conditioned and pro-

vided the widths of the entries of F'(X) are sufciently small. (Compare
'with Proposition 5 in [17].) For common interval extensions of compo—

nents of continuous F’, the widths of F'(X) tend to zero as the widths

of X tend to 0. In other words, if there is an X“ E X with F(X*) = 0, if

the entries of F’ are continuous, and if F'(X") is nonsingular, then (2.3)
will hold provided the widths of the components of X are sufciently
small. For this reason, we wish to have the following property.

ASSUMPTION 2.2. Assume limgno 5q(5) : 0.

We may now state our main results. For 0 S 3 S 6, let

X; = {X e R” 1HXHOO: 6q(3)},
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let

(2.5) X; : X5 : U X5.
03535

Dene
~

F5(X) : H(r(Y,6,,

so that
a (Y 6 X)~I r r r

r (a 7‘

F5(.X):H'(r(l’,6,}s)) 8X
.

Furthermore, dene the extension of FAX) to d by

FAX) = H (‘r(Y,d,X)),

and extend id to X6 by

mpg) : H (my, d,X6)).

Similarly extend by

(97‘

(3X(2.6,) Eton) = 11' (r(1’,d,Xa)) (mm

Where $95601d, X5) is the matrix of partial derivatives of r with respect

to the variables X
, formally evaluated with argument Y and interval

arguments d and X5. We then have

THEOREM 2.3. Assume X 6 X5. Consider (2.2), with X5 replacing

X, £71102)replacing F(X) (Where X E X5 replaces X), and

replacing F'(X). Also assume that the interval enclosure 3(- of the so-

lution set to (2.2) is inclusion monotonic with respect to F’(X) and

If(X).2HE C XE, then, for each 0 S 3 g 6, the system of equations

FE(X) = H (7'(Y,5,X))= O has a unique solution X3, and Newton’s

method applied to F3(X)and with starting point X will converge to

X.
6.

PROOF OF THEOREM 2.3: As described in the statement of the theo-

rem, (2.2) becomes

(2.7)

H’ (r(Y,d,X6)) ———8T(Y’6’X)
V

' '

8X
(Y,d,X5) (i- X): -Fd(X).

On the other hand7 the system corresponding to (2.2) for F3(X): 0 is

2Such is the case for the methods of obtaining i treated in [16] and [17].
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[11"(7‘0",6, X3) argé’X)( E, 3))
Q [H’(r(Y,d,Xa))Waiting),

provided we have made inclusion monotonic interval extensions

(cf. [13]). Since we also have FAX) Q Fd(X) and since we are also

assuming that Y in (2.2) is inclusion monotonic with respect to the

interval function and Jacobian matrices, we obtain

igéiCXg,
where the second inclusion is true by hypothesis. Therefore, (2.3) is true

for X3 replacing i, with X5 replacing X, and with F3—replacing F in

(2.1). That completes the proof.
Theorem 2.3 assures us that, if (2.7) holds, then there is a unique

solution to the corrector equation (as in (1.2) or (1.3)) for each predictor
step 3 E [0,5], and corrector iteration with initial guess X will converge

to that solution.

The next theorem will assert that the point XE of Theorem 2.3 to

which corrector iteration converges corresponds to a point Z E Z of

(1.1) on the same connected component of Z as the previous point Y;
in other words, we are assured that the phenomenon of Figure 1 cannot

occur. We make the following assumption in order to apply the implicit
function theorem as in

ASSUMPTION 2.4. Assume that H, q, and I have continuous rst partial
derivatives.

We make the following assumption so that, in combination with As-

sumption 2.1, we may conclude that r(Y, d, X5) has an (n + 1)-dimen—
sional interior.

ASSUMPTION 2.5. IfH’(Y)V0 : 0, then V0 0 B 7E0.

THEOREM 2.6. Suppose the hypotheses of Theorem 2.3 and Assump-
tions 2.1, 2.4, and 2.5 hold. Then the point X; to which corrector
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iteration converges corresponds to a point Z on the same arc on as Y.

Furthermore, the Jacobian matrix is nonsingular at every point on the

are between Y and Z.

PROOF OF THEOREM 2.6: First, observe Xinust contain~all solutions

to all systems of equations of the form A(X E X) : FAX), where

A. E F:5(X5); therefore, Fé(X)is nonsingular for every X E X5 and every

with 0 g 3 g 5. Thus, H’ (To; 5, X)) is of full rank and an; 5, X) /aX
must be nonsingular for every (6,X) E d X X5, so the implicit function

theorem as stated on p. 20 of is true at every point Z0 E 7°(Y,d, X5).
Also, r(Y,d,X5) is compact and, by Assumption 2.1 and Assumption
2.4, must be (11+1)—dimensional. These facts allow us to conclude that

Z (1 7'(Y,d,X5) consists of a nite number of nonintersecting arcs and

circles.

Let 16(5) represent the arc such that 16(0) : Y and such that .5

represents arclength, let V(s) : 1’b(s)- Y, and let V0 denote the tangent
to the arc at Y, i.e. VD : YO'(O).Furthermore, orient VOso that VOOB =

2c0 > 0. Also, since lims_,0 : VD, there is an 5 such

that, for 5 < E, (V(s) o > CO.

The above and Assumption 2.1 allow us to conclude that there is a

60 __ 6 such that, for each 3 g 50, there is an s < 5 such that Y0(5)
corresponds to a solution of FX) : 0 in X5. To see this, choose

6 < maxsgg ]|V(.s)||2, then use Assumption 2.1 to set a 60 so that, if

3 g 60, there are W and V as in Assumption 2.1 with W o B 2 c0.

Now note that, since limsag HV(5)|I2: 0, there are an .91 g 3 such that

llV(51)ll2 = minWEijé) “WM, and an 32 with .51 S .52 g 5 with

.92, dene W(s) E 7*(Y,3,X5)to be a vector in r(Y,3,X5) in the same

direction as V(s). must exist by Assumption 2.1.) We then set

h(s) : HV(5)H2— “Vt/(5)“, Then, from the portion of Assumption 2.1

dealing with 8r/8X, W(s) may be dened so that h(s) is continuous.

Furthermore, h(sl) __ 0 and Mn) 2 0. Therefore, for some 53 between

51 and .92, h(53) = 0, so V(53) : W(53). Thus, since Theorem 2.3

asserts that such solutions in X5 are unique, if 5 = 50, the conclusion of

Theorem 2.6 is true.
,

Assume that 5 > 60, and that the conclusion to Theorem 2.6 is

not true. We note that {Y0(s) l s 2 0}  r(Y,d,X5) is closed since

X5 and d are closed. But, if for each 3 S 6, there were an 53—with

Y0(5g)E r(Y,3,X5), then Theorem 2.6 would be true by the unique-
ness conclusion of Theorem 23. Therefore, we must conclude there are

an 54 and a 61 2 60 such that Y0(54) E 87'(Y,61,X5), and there is no

HV(32)H2=

maxWEdyyax, Then, for each s with .51 < s <
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point of Y0(s) in r(bY,3,X5)for 3 > 51. (See Figure 3.) However, for

each 3 with 61 < 6 < 6, there must be an arc Yg(s) and an 33 such

that Y3(53)E r(Y,3,X6). But Y3(s) r(Y,d,X6) must also be closed,
so there is a 62 withg61 < 62 < 3 such that there is no point of Yg in

r(Y, 6*,X5) for 6* < 62. Therefore, there must be a third arc Y5_ which

intersects 71(Y,(1,X5). We may continue this argument to conclude that

there are an innite number of arcs which intersect r(Y, (1,X5); but that

contradicts our previous conclusions. Therefore, Theorem 2.6 must be

true. I

Fig. 3. Illustration of what must occur if con-

vergence in Theorem 2.3 is to more than one

arc.

The nal theorem in this section assures us that i C X5 whenever

we choose 6 small enough.

THEOREM 2.7. Suppose Assumptions 2.1, 2.4, and 2.5 hold, and X5,
F5, and F'sare as in Theorem 2.3. Furthermore, assume H’ is offull rank

in a neighborhood of Y. Finally, assume that the interval extension F2
is such that, ifA E.F2(X5),then A —> Fg(.X)as (d,X5) —> (6, Also,
assume we solve (2.2) Via one of the methods explained in [17]. Then,
for X sufcientlyclose to a solution of FAX) : O and for 6 sufciently
small, X C X5.
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We note that most common interval extensions obey the assumption

on in Theorem 2.7. We also note that most common predictor steps

B and corrector manifolds r obey Assumptions 2.1, 2.2, 2.4, and 2.5,

provided q is chosen as explained below Assumption 2.1.

PROOF OF THEOREM 2.7: The proof will be based on Proposition 5, p.

265 of [17].
By the assumption on the interval extension F2,by the nonsingularity

assumptions on H' and 8r/(9X, by Assumption 2.2, and by the portion

of Assumption 2.1 dealing with the range of (aw/(3X, we may choose a

(51such that, if (5 < 61, then each A E FHXg) is nonsingular, so that the

interval inverse F2(X5)I(in one of the senses in exists. Also, let

X3"be the solution to EEOC): O which corresponds to the arc through

Y. Then, as in the proof of Theorem 2.6, we may take 60 S 51 so that

X5emuxnngadm“maemmxmsmemmnmofx6y
If X : (X1,X2, . . . ,Xn), where X,- : [ably], then we dene p(X) to be

the vector abl a a1,b2 ‘

(12,... ,bn — an), and dene p(M) similarly, if

M is an interval matrix. Also, we dene

: (maxall: amaxa’zla a
' ' ' amax‘llalla

and dene similarly. (See [16] for details of these denitions.) Then

a consequence of Proposition 5 of [17] is

am HK—X
where

.. I -

a = Ham)Fuxnllm.
On the other hand, since X—gE int(X5) and since [0,6] is compact,

T : In‘in > 0,
03636

Where d(P, 6Q) is the distance of the point P to the boundary of the set

Q in the innity norm. By this denition, it follows that

<7 z; ieXg,
(X)Ills-st

so that it remains to show that, for sufciently small 5, we have

<7.



But (2.9) implies

7'
n

< -' for every 6 f 5.
i 00 0'

<7 if X—XgNIX—X?“00

l
‘

as

00

l a

To complete the proof, we show that we can make lX —

XE"
small.)2 A x“

6 I 00

But, for 6 small_enough,we may apply the implicit function theorem on

p. 20 of to F5 to obtain, for 0 f 6 S 5,

small as we please by making 5 small and by making

: 0(6).[

lloo(2.10)
~ XE

We complete the proof by applying (2.10) in conjunction with the tri—

angle inequality. I

We conclude this section with some interpretive observations. First,

Assumptions 2.1, 2.4, and 2.5 are not restrictive, but can usually be

made to hold if the continuation method algorithm is constructed prop—

erly. Also, Assumption 2.2 deals with how we construct the step control

algorithm, and can be made to hold. Finally, we note that we can ob—

tain an interval extension to any function which is Lipschitz continuous.

Hence, we can, in theory, devise a foolproof continuation method for

any parameter-dependent system H the components of whose Jacobian

matrix are Lipschitz continuous.

3. SPECIFIC ALGORITHMS

In this section, we give details of the algorithms in which we have

implemented the ideas in Section 2, while in Section 4, we report nu-

merical experiments based on these algorithms. Our algorithms have

several parts, which we single out. In Section 3.1, we describe the con-

struction of 7' and construction of the function F5 and interval Jacobian

matrix F2. In Section 3.2, we detail the interval Gauss-Seidel procedure

we use to solve (2.2). In Section 3.3, we describe the algorithm we use

to adjust 6 so that the conditions of Theorem 2.3, Theorem 2.6, and

Theorem 2.7 are satised. In Section 3.4, we outline the non-interval

step control procedure we employ for comparisons. Finally, in Section

3.5, we indicate the three ways which we choose the predictor step B in

the experiments.

3.1 The functions F5 and F’.
As is indicated above (2.6), we must compute 7' in order to obtain

values for F5 and In our experiments, we take 7' consistent with

12



(1.3), namely

(3.1) T012213) : Y + 513 + 21mm,
1:0

where P : (p1,p2,...,pn) and where {l/Vj}?:1is a set of orthogonal
vectors such that W, o B : 0 forj between 1 and n.

See Section 3.5 for the three ways in which we select B in the experi-
ments.

Once we have computed B, we determine the orthogonal set {VVj}?:1
by computing a QR—factorization of the Jacobian matrix of B dened in

(1.2); the rst 71 columns of Q are then vectors W] which are orthogonal
to B.

Once B, {VI/j}?Z and 6 Section 3.3 below) are available, we

compute F5, Fd, and Fd directly from (3.1) and from the denitions

of Fd and Fd above (2.6). We similarly compute and F’(X)
directly from (3.1) and (2.6), once we have observed that jth column of

7‘ X - ‘

7

%(Y,d,X5) is Simply W]. _

We also similarly compute F5 and F'

The computations simplify considerably if B. is one of the coordinate

vectors. In that case, the Wj are also chosen to be coordinate vectors.

3.2 The interval Gauss-Seidel procedure.
The basic procedure for computing enclosures to the system (2.2) is

similar to that in [10] and in [11], but is adapted to this context. The

purpose of the algorithm in this context is to determine whether a given

stepsize 6 is acceptable according to the criterion X C X of Theorem

2.3, Theorem 2.6, and Theorem 2.7. We summarize in the following

algorithm.

ALGORITHM 3.1.

(1) Input Y, B, {W1}? and 6.
J=1’

(2) (Get hypothetical bounds for the new point on the arc.)

(a) Evaluate q(6) = 60““, Where

{
10g(T)/10s(6m) if 10g(T)/ 108(6m) > -1

a = ,

—.9 if log(T)/10g(6m) g —1

Where T is the maximum allowed tangent of an angle between

the predictor step and the tangent to the arc at Y, and 5m

is the minimum predictor stepsize.3

3This sets it up so that the secant between the arc at Y and the point on 7- at 6m is

assumed to be at most T. In the experiments, we used T : 50 and 6m : V1067” i

4.7 x 10—8,where cm is our double precision machine epsilon.
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(b) Compute X : (x1,X2, . . . 7Xn) by setting xz : (~q(6),q(6)]
fort: 1,...,n.

(3) (Obtain the point approximation.) »

(a) lfpossible, compute an approximation X : (521,332,. . .

, in)
to the solution of FAX) : O by applying the traditional

Newton ’5 method to this equation.4
(b) If Newton ’s method in (a) does not seem to converge, then

X <— O.

(4) (Check the interval function value.)
(a) Compute FAX).
(b) HO ¢ FAX), then return With an indication that the stepsize

5 is too large.
(5) Compute the interval Jacobian matrix

(6) (Compute and check the preconditioner matrix.)
(a) Compute the matrix Y, as in [10], etc.5

(b) If Y is numerically singular, then return with an indication

that the stepsize 5 is too large.

(7) Form G = (g.,J);fj:1: rmX) and K : (k1,k2,...,kn)T :

YF‘dUt').
(8) ZMSTDE?‘ 7727/15.

(9) (Do the actual interval Gauss—Seidel method; one pass through
each substep represents the method applied to one coordinate.)
Do the following for i : 1 to n.

(a) Compute

aza— ki—ZgMXj—i’i)/gzkij=1
iaéi

in extended interval arithmetic.

(b) If E!- H x,- = (Dor if i- consists of two intervals, then return

With an indication that the stepsize 5 is too large.
(c) If i- gZxi, then INSIDE <— fACSg.

((1) Replace x,- by x1- 0 35¢.

(10) If IVSZ’DEz T7715, then return With an indication that the step-
size 6 is acceptable.

4This value will actually be used as the corrected point Z in Step 2(d) of Algorithm
1.1, provided that the stepsize has been veried to be adequate.
sin the experiments, we chose Y to be the inverse of the midpoint matrix of

different choices could signicantly affect this algorithm. Research on the choice of

Y appears in [8] and
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(11) Compute the ratio of volumes of the old X (before execution of

Step 9) to the present X.6

(12) If the‘volume ratio in Step 11 is too near to 1, or ifO §ZX, then

return with an indication that the stepsize 6 is not acceptable.

(13) If this step has been reached more than AJAXITR times, then

return with an indication that the stepsize 6 is not acceptable.

Otherwise, return to Step 8.

3.3 The step adjustment procedure for the interval criterion.

Algorithm 3.1 gives a criterion for acceptance or'rejection of a predic-

tor stepsize 6. Here, we give one possible scheme for adjusting 5 based

on the outcome of Algorithm 3.1. The ansatz for this scheme is the

assumption that it is always advantageous in the overall algorithm to

use the maximum predictor step 6 which Algorithm 3.1 nds acceptable,

regardless of the expense of determining that 6. This assumption may

not be reasonable in practice, but in initial studies it should give us an

indication of the limits of the method.

ALGORITHM 3.2.

(1) Input an initial 6.

(2) Execute Algorithm 3.1 initially.

(3) If the initial stepsize is acceptable, then do the following.

(a) Compute MAXIT based on the present 6 and the maximum

allowable stepsize. (See Step (c) below.)

(b) 6 +— 26.

(c) If this step has been reached more than MAXIT times, then

return with an error message.

(d) Execute Algorithm 3.1. If the present 6 is acceptable, then

return to Step (b); otherwise, take 6/2 as the present predic-
tor stepsize.

(4) If the initial stepsize is not acceptable, then do the following.

(3) Compute MAXIT based on the present 6 and the minimum

allowable stepsize.

(b) 5 <— 6/2.
(c) If this step has been reached more than MAXIT times, then

return with an error message.

(d) Execute Algorithm 3.1. If the present 6 is not acceptable,
then return to Step (b); otherwise, take 6 to be the present

predictor stepsize.

6We actually only compute the volumes of the projections into the subspace of R"

containing those coordinate vectors whose corresponding components of the old X

have acceptably large widths.
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3.4 The non-interval step control.

It is difficult to computationally compare an interval step control

with a non-interval step control, since non-interval step controls involve

heuristics and parameters which can be used to tune the step control

to specic problems. For some values of these tuning parameters, the

heuristic step control will cause Algorithm 1.1 to follow many arcs safely
but inefciently, while for other values, Algorithm 1.1 will follow some

arcs efficiently, but jump across other arcs. In contrast, the only issue

in our interval step control is efficiency.
Nonetheless, we have chosen the following simple but effective step

control algorithm for comparison purposes.

ALGORITHM 3.3.

(1) (Input)
(a) Input the present predictor direction B, the previous predic—

tor direction E, the upper target dot product Cmax, and the

lower target dot product 0min.

(b) Input the number of times I that Step 2(d) of Algorithm 1.]

has been executed before CS was satised. Also input the

upper target value [max and the lower target value 1min for

I.

(2) IfB o E 2 CW and I 3 1mm then

(a) 5 <— 26.

(b) H6 > 5m then 6 P am.

(3) BB 0 73’< cm or I > [m then

(a) 5 +— 6/2.
(b) H6 < 6min then 6 <— 6min.

The above algorithm is used when B is taken to be the tangent to

the arc. In the cases where we use the elevator predictor or the sim-

plified Rheinboldt/den Heijer local coordinate scheme (see Section 3.5),
we delete all references to Cmin, Cm“, and B CF (and delete the corre—

sponding conditions in Steps 2(a) and 3(a)).
In our experiments, we took [min = 3 and [max = 6. When applicable,

we also took C'max = .9 and Cum, 2 .1.

Since Algorithm 3.3 is heuristic, it is possible that the corrector iter-

ation (Step 2(d) of Algorithm 1.1; Newton’s method applied to (1.2))
will fail. In such instances, we must adjust 5, then restart the correc-

tor iteration. The following algorithm (unnecessary for the interval step

control) checks for divergence at the beginning of each corrector step.

ALGORITHM 3.4. (Adjustment of5 when corrector iteration diverges)

(1) (Input)
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(a) Input the magnication factor ltlZ by which the Euclidean

norm of the corrector step can increase from one corrector

iteration to the next.

(b) Input the magnication factor ltIH by which the Euclidean

norm of can increase from one corrector iteration to

the next.

(c) Input the maximum allowable number ill” of corrector iter—

ations.

(2) Let E denote the Euclidean norm of the present corrector step, let

5 denote the Euclidean norm of the previous corrector step, let U

denote the Euclidean norm of the present H(Z), and let u denote

the Euclidean norm of the previous Also let I denote the

number of corrector steps which have been executed to this point
in the present predictor step. If

(i) 3 2 ltIZs, or

(ii) i Z lt/IHu, or

(iii) I > AIR}
then

(a) 5 +— 6/2;
(b) Compute a new predicted point Z0 in Step 1(b) ofAlgorithm

1.1 using the new 6.

(c) Restart the corrector iteration with I <— O.

In the experiments of the next section, we chose Mz : My 2 10.0

and Mt = 15.

We Wish to emphasize here that in the non—interval case, the corrector

iteration is executed by applying Newton’s method to (1.2), Whereas, in

the interval case, the corrector iteration is executed in Step 2 of Algo-
rithm 3.1, and consists of applying Newton’s method to (1.3).

3.5 The predictor direction B.

In the experiments, we select B to be one of the following three pre—

dictor steps:

(1) the tangent to the arc (i.e. the appropriately oriented Vector B

such that H'(Y)B : O);
(2) a coordinate vector chosen via a simplied version of the scheme

in [19].
3 the ”elevator” redictor, i.e. the coordinate vectorP

en+1 I (O,0, . . . ,0,

7We may also check and the condition number of the Jacobian matrix of

H(Z) in order to prevent overow when we compute the corrector step. However,

that condition seldom occurs.
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There are a number of satisfactory ways to Obtain the tangent vector

B as in (1); we computed it from the QR-decomposition for the Jacobian

matrix for H. The elevator predictor in (3) requires no computation.
The following algorithm, used in our experiments, is a simplied version

of that in [19].

ALGORITHM 3.5 (CHOICEOF COORDINATE VECTOR).

(1) Compute the tangent vector T : (t1,t2, . . . ,tn) to the arc at Y.

(2) Possibly change the sign of T so that its dot product With the

previous predictor step is positive.

(3) Take as predictor step that coordinate vector B = e; such that

#1) : maxlSz-Sn Hz).
(4) Possibly change the sign ofB so that B o T > 0

4. THE NUMERICAL EXPERIMENTS

We describe here the test problems and experimental results.

Our goal here is not exhaustive comparison, but an initial exploration
of the interval step control. With this in mind7 we chose the following
two test functions. We use the notation

H(Yl : (h1(y)) h2(Yli ‘ ' ‘ >hn(Yl)Ta
T

and Y = (y1,yg,...,y7L + 1).

TEST FUNCTION 1. Brown ’5 almost linear function.

(1—yn+1)yn ‘l' yn+1 [H2121yz'
- 1] fort : n

The coordinate yn+1 increases monotonically for this function along
a single path from yn+1 = 0 to yn+1 : 1. However, the Jacobian matrix

becomes ill-conditioned at yn+1 : 1, especially for large n.

TEST FUNCTION 2. The Layne Watson exponential cosine function.

hi(Y) = yi
—

yn+1exp cos i2 yj ,1 S i S n.

i=1

This function has a path from Y = O to yn+1 : 1. However, this path
has sharp changes in curvature and numerous turning points in yn+1,

especially for n greater than about five or six.

In the tests, we started the algorithm at Y = 0 in the direction of

increasing yn+1, and completed the computation when ynil attained or

crossed the value 1.
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In the tests, we used the simple, reasonably portable Fortran-77 rou-

tines in [11] for the interval arithmetic; we specially wrote interval rou-

tines for the sine, cosine, and exponential which use that package. We

computed analytic Jacobian matrices manually, but we interfaced our

package with the Augment precompiler to ease the burden of

programming the interval operations.
Behavior of the non-interval step control algorithm (Algorithm 3.3)

depends strongly on the tolerance with which we follow the arcs. In

particular, we select 1/1 and 1/2 such that the corrector stopping criterion

CS is satised if either the norm of the most recent corrector step is less

than 1/1 or the norm of the most recent value of [if is less than 1/2. In

the experiments, we took 1/1 : 1/2 : 10—5.8

Additionally, an initial predictor stepsize 60 must be heuristically cho-

sen for the non—interval step control. \Ne selected 60 : 10‘3 in the ex-

periments. (This value is also used initially in Algorithm 3.1, but its

size has little effect there on subsequent values of 6.)
Because we did not wish at this point to be concerned with opti—

mization of the interval arithmetic for our particular machine and test

problems, because the philosophy behind Algorithm 3.2 is to maximize

the predictor steplength at each iteration, regardless of cost, and because

of technical questions concerning CPU time, our main comparisons do

not involve CPU time. (However, we give some CPU times at the end

of this section for a rough idea.) In our tables, we report the total num-

ber of predictor iterations Npred to traverse the arc from yn+1 I 0 to

yn+1 = 1, the minimum attained predictor steplength 51, the maximum

attained predictor steplength <52,the average predictor steplength 6a, the

minimum number of corrector iterations 01, the maximum number of

corrector iterations 02, and the aVerage number of corrector iterations

Ca.

8The interval step control algorithm in theory also depends on these tolerances, since

we use Newton’s method to obtain a point approximation to the next point on the

arc in Step 3(a) of Algorithm 3.1. However, Algorithm 3.1 is in practice insensitive

to the accuracy of this point approximation.
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Table 1(a). B is the tangent vector.

Brown’s Almost Linear Function

Problem Ngred 61

n : 2

Interval

Non-int.

n : 4

Interval

N on-int.

n : 5

Interval

Nonoint.

n : 1O

Interval

Non-int.

76

117

496

156

857

172

4854

120

Problem N pred

n = 2

Interval

Non-int.

n = 4

Interval

Non-int.

n = 5

Interval

Non-int.

56

55

7708

460

71867

915

6.2 X1073

4.0 X 10*3

7.7 x 10—4

4.0 x 10‘3

3.9 x 10'4

4.0 ><10‘3

2.4 X 10—5

4.0 x1073

61

2.5 x 10—2

4.0 x 10—3

1.9 x 10‘4

4.0 x 10’3

4.8 x 10*5

2.0 x 10“3

52

2.0 X 10—1

1.6 X10—2

4.9 x1072

1.6 ><10v2

4.9 X 10'2

1.6 X 10'2

2.5 ><10_2

3.2 ><10'2

52

4.9 x 104

3.2 x 10‘2

1.2 x 10‘2

3.2 x 10*2

6.1 x 10‘3

6.4 x 10—2

20

66

2.4 ><10'2

1.6 ><10V2

4.9 x 10—3

1.6 x10”

3.2 X 10‘3

1.6 x 10‘2

7.7 X 10“4

3.1 x 10—2

Table 1(b). B is the tangent vector.

Watson’s Exponential Cosine Function

6:1

2.9 X 10‘2

3.0 x 10—2

8.5 x 10‘4

1.4 X 10‘2

2.1 x 10—4

1.6 x 10‘2

C1

01

1.41

1.96

1.05

1.97

1.00

1.97

1.00

1.95

1.84

1.89

1.00

1.98

1.00

1.98



Problem Npred
n : 2

Interval 21

Non-int. 160

n : 4

Interval 94

Non—int. 316

n : 5

Interval 155

Non-int. 336

n : 10

Interval 872

Non—int. 384

Problem Npred
n : 2

Interval 24

Non—int. 121

n = 4

Interval 2152

Non-int. 411

n I 5

Interval 17766

Non—int. 2768

Table 2(a). B is by Algorithm 3.5.

Brown’s Almost Linear Function

51

2.5 X10‘2

4.0 ><10’3

1.5 x 10‘3

4.0 X 10‘3

7.7 X 10“1

4.0 X 10—3

2.4 ><10‘5

4.0 X 10‘3

52

2.0 X10_l

1.6 x10“2

9.9 X10—2

1.6 X10_2

9.9 x 1072

1.6 ><10—2

9.9 x10—2

1.6 X 1072

6.1

6.4 x1072

8.3 ><10—3

1.6 X 10—2

4.6 X10"3

9.7 X 10'3

4.5 X10_3

1.9 ><10‘3

4.3 X10_3

Table 2(b). B is by Algorithm 3.5.

51

4.9 X10-2

4.0 ><10_3

7.7 x 10—4

4.0 x 10—3

1.9 x 10—4

2.0 x 10'3

62

9.9 x 10—2

1.6 x 10‘2

4.9 X 10’2

3.2 x 10—2

2.5 x 10—2

3.2 x 10—2

Watson’s Exponential Cosine Function

60.

5.6 x 10”2

1.1 X 10—2

2.4 x 10—3

1.3 X 10—2

6.3 x 10*4

4.1 X 10—3

01

Cl

1.95

1.97

1.66

1.98

1.59

1.99

1.30

1.98

Ca.

2.58

1.96

1.49

1.98

1.00

2.00

The computation time was excessive for the interval step control and

Watson’s function for higher values of n.

The interval step control algorithm does better vis it via Algorithm 3.3

when the predictor direction B is chosen to be a coordinate vector. This

may be due to less widening of intervals during the computation when

one of the coordinate intervals has Width zero during evaluation of H.
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Even better results could probably be obtained if we took additional care

with the form in which we program H. Also, the interval step control

should generally work relatively better for H which are algebraically

simple, such as low degree polynomials or, perhaps, systems arising from

low-order discretizations of partial differential equations.

We note that the degree of the last component of Brown’s function

increases with the dimension. This could account for the more rapid

increase with n in the number of predictor steps required when the

interval step control algorithm is used. Also, our additional work on the

interval Newton algorithm, as in [8] and [9], would help on systems like.

Brown’s almost linear function.

NS)

0.6

0.1L

v 1 t .

0.0 0.5 1.0 I.5 all) 2.5

1H}

Fig. 4. Iterates for the Watson exponential co—

sine function with n = 5, the elevator predictor,
and interval step control.

Except for those H for which theory justies its use, the elevator

predictor (i.e. always using en+1 for B) generally gives inferior results

vis d vi: the predictor chosen via Algorithm 3.5. We used it mainly to

test the interval step control, since, if it is properly programmed, it will

.
never allow a step which jumps beyond a turning point. Our experiments

conrmed this. In fact, for Watson’s function the interval step control

stalled at a turning point, as it should, whereas when Algorithm 3.3 and

Algorithm 3.4 were used, the iterates jumped across large loops of the
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0'0 0'5 L” '5 2'11

Fig. 5. lterates for the watson exponential co-

sine function with n = 5, the elevatorpredictor,
and non-interval step control.

curve without indicating trouble. Figures 4, 5, and 6 illustrate this.
The CPU time on an IBM 3090 for Brown’s function with n : 5, using

Algorithm 3.5 for B, was approximately 16 seconds for the interval step
control and 4 seconds for the non-interval step control.9
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