Preconditioners for the Interval Gauss-Seidel Method
by

R. Baker Kearfott

Department of Mathematics
Uu.8.L.
Lafavette, LA 70504

ABSTRACT
Iinterval Newton methods can form the basis of algsorithms
for reliably finding all real roots of a svstem of nonlinear
equations which lie within a specified box in R®™. 1If X
represents such a box in B, and M € X, then a step of an
interval Newton method can be viewed as solving the linear

interval system

(1) 0 E F(M) + F'(X) (X - M)
for the boxif, where F'(X} is a suitable interval extension of

the Jacobian matrix.

We wish to make the coordinate widths of X as small as
possible. To this end, for a wide range of methods., one
multiplies (1) bv a real preconditioner matrix Y so that ¥ F'(X)
approximates the identity matrix. A common choice of ¥V which has
been shown to be optimal under certain conditions is the inverse

of the Jacobian matrix F'(¥M).

The interval Gauss-Seidel method is conmpetitive for
solving (1). We describe techniques for computing
preconditioners for the interval Gauss-Seidel method which
involve optimality conditions expressable as linear programming

problems. In many instances, these preconditioners result in an

X of minimal width. They can also be applied when F'
approximates a singular matrix, and the optimality conditions can
be altered to describe preconditioners with a given structure.

We 1llustrate the technique with some simple examples and with a
battery of test problems, a generalized bisection code, and an
off-the-shelf linear programming vproblem soclver. These second
eXperiments indicate that use of these preconditioners results in
significantly less function and Jacobian evaluations, especially
for singular problems: however, considerable time is spent
solving the linear programnming problems. The method may be made
more practical by adapting the linear programming solution

technigue to this case.

AMS Subject Classification: Primarvyv: 85H10: Secondarv: 85G10

Key Words: nonlinear algebraic systems, Newton's method, interval
arithmetic, Gauss-Seidel method, global optimization,

preconditioners

P T e —

. Introduction and Motivation.

The general problem we address isg:

Find., with certainty, approximations to all solutions of
the nonlinear svstenm:

(1.1) Faley,. o,2,) = 0, 1 £ 4 £ m,

v N Fapd

where bounds {, and w,; are known such that:
Ly £ x; £ u; for 1 £ 14 £ n,

We write F{X) = 0, where J = (f¢g.Fo.,...,f,) and
X = (xy,%Tg,...,T,). We denote the box given by the inequalities

on the variables x; bv B.

A successful approach to this problem is generalized

bisection in conjunction with interval Newton methods, as

described in [2], [10], [51. [s8], [41, [1271, {131, 1171, etc.
These methods can be thought of as finding a box X, which

contains all solutions of the interval linear system

{1.2) FI{Xe) (Xp - Xp) = - F(X,),

where F'(X,) is a suitable interval extension of the Jacobian
matrix of ¥ over the box X, (with X, = B), and where X, is sone
point in X;. We then define the next iterate X,,; by

(1.3) ey = L N X,
This scheme is termed an <imnfterval Newiton method.

If each row of F' contains all possible vector values
that that row of the scalar Jacobian matrix takes on as X ranges

over all vectors in X,, then it follows from the mean value

theorem that all solutions of (1.1) in B must be in X341 for all

k. If the coordinate intervals of X,,,; are not smaller than
those of X, ., then we may bisect one of these intervals to form
two new boxes: we then continue the iteration with one of these

boxes, and put the other one on a stack for later consideration.
As 1is explained in [10], [53], and elsewhere, such a composite
generalized biseciion algorithm will reliably compute all
solutions to (1.1) to within a specified tolerance.

The efficiency of the generalized bisection algorithn
depends on

Preconditioners for Interval - Kearfott

Lty

{1} the sharpness of the interval extension toc the rows of
the Jacobian matrix: and

(2) the way we find the solution‘fk to (1.2).

In particular, iteration with formulas (1.2) and (1.3) should
exhibit the quadratic local convergence properties of Newton's

method, and repeated bisections are to be avoided if possible.
We are thus interested in arranging the computations so that X ;.

has coordinate intervals which are as narrow as possible.

—. One method of solving (1.2} is the Krawczvk method., in
which X, is given by

(1.4) Ly = K(Xp) = Xp - Yy F(Xp) + (I - Y. F' (X)) (X, - X.).

where I, is a preconditioner maitrixr which is an approximation to
[F‘(Xk)]ml. Moore observed in [9] that the Krawczvk method
converged (without bisection), provided

11 - v, Froxg) || < 1,

where the norm is the usual one for interval matrices. {See 1]
or [111.) Ihis condition, which also serves as part of a
computational existence and unigueness test, was subsegquently
weakened. Chen Xiaojun has shown in [19] that, for F'{X,) with
certain properties, choosing ¥, to be the inverse of the midpoint

matrix of F' minimizes || J - Y#«F'(X3) || . Thus, that choice of
Yr will tend to produce an interval vector A; whose components

have relatively small widths.

An interval version of the Gauss-Seidel method. with
extended interval arithmetic, is also a popular way ¢f solving
(1.2) (cf. eg. [3), or {41.). When we first multiply both sides
of (1.2) by Y, as above, we obtain a method which is usually
superior to the Krawczvk method. However, for large, banded or
sparse systems, multiplication by an inverse is impractical. For
example Schwandt (in [15], [16], etc.) has used the Gauss-Seidel
method without a preconditioner to solve instances of Poisson's
equation, where diagonal dominance obviates its need. An

excellent exposition and improvements of this technigque appear in
{181.

There are other instances where multiplication by an
inverse of an n byv n Jacobian matrix mayvy not be advisable. For
example, if the Jacobian matrix is singular somewhere in X, then
'y, may be ill-conditioned. and Yip F'(X,) will therefore have very
wide entries: this occurs, for example, for Powell's singular
function, which appears as problem 3 in [6j. Alternately, one or

Preconditioners for Interval -~ Kearfott ’

more of the f, may be more highly nonlinear than the others. or
may be evaluated poorly, in which case the corresponding row or
rows of the Jacobian matrix would have relatively wide entries:

this occurs for Brown's almost linear function. which is problem
4 in {61.

In this paper, we will develop a technique for computing
preconditioners Y for the Gauss—-Seidel method. Tnis technigue
involves solving a linear programming problem to find each row of
Y. The linear programming problems characterize certain simple
optimum width-reduction conditions. In contrast to previous
preconditioners (as mentioned above), the new preconditioners
implicitly take account of the relative widths of the entries of
A, in addition to both the widths and linear dependencies in
F'{X). Furthermore, computation of each row of ¥ can take place
during the pass through the variables in a Gauss-Seidel iteration
(instead of before), so that we may take full advantage of width
reductions which have already taken place during that pass.

Also, modifications to the constraints will allow us to compute a

preconditioner Y which is optimal subject to structure or
sparsity conditions.

In Section 2, we give notational preliminaries and we
present the relevant underlying interval arithmetic results. We
then present two types of preconditioners: in Section 3, we
present the C-Preconditioner, and we present the S-preconditioner
in Section 4. We prove certain optimalityv results for each tvpe
of preconditioner. In Section 5, we explain some examples
highlighting the C~preconditioner. In Section 6, we display
numerical results obtained from incorporating both the S~
preconditioner and the C-preconditioner into =a generalized
bisection code. In Section 7, we summarize and draw conclusions.

Preconditioners for Interval - Kearfott 3

<. Notation and [Underlying Resulis.

We assume the reader is already familiar with interval
mathematics in general, and we merely highlight some basic
results here. See [1] or [11]1 for careful and thorough
treatments.

As in the introduction, we denote vectors and matrices by
upper-case letters, and scalars by lower-case letters. We denote
interval vectors, matrices., and scalars by boldface. In what
follows, we will speak in terms of a single step of (1.2):
subscripts will denote components of vectors and matrices. Iin
(1.2), the box X, will simply be denoted X = (#y,25,...,2,). We
will understand X to represent the most current box in the case
that we have completed part of a Gauss-Seidel iteration. We will
assume that the point X; is such that ¥, € X¥. and we will denote
it by M = (my.ms,...m,). (Simplications in our formulas result
if we take ¥ to be the midpoint vector of X: also, Lemma 2.1 and
Theorem 3.6 require this to be so. However, ensuring this during
an entire Gauss-Seidel sweep would regquire repeated evaluation of
F{(M).) The interval derivative matrix F'{(X.) will be denoted by
A, and will have element

in its i-th row and 7-th column. We will denote the vector FIX.)
simply by F.

We will denote a hypothetical preconditioner matrix by Y,
and the preconditioned matrix Y 4 will be denoted by & it will
have entry

6%33 o [C‘..e"’j,&?:ajj

in its 4-th row and 7-th column. We will denote the vector Y F
by £, with entries ;. 1 & 1 £ n. We will deal with only the 1-
th row of the matrix Y at a time, and we will denote it Y7 we
will denote the m entries of that row by ¥;, 1 2 5 2 0.

If v = [¢,%], then w{(w) = (u-t) is the width of wv. it ¥
is an interval vector or matrix. then w{¥) is understood to be
the vector or matrix whose elements are corresponding widths of
the elements of V.

Throughout, if 2 and w are intervals., we understand wu > W
to mean that each element of % is greater than the corresponding

element of w.

We will identify real numbers with intervals both of

Preconditioners for Interval - Kearfott 4

whose endpoints are equal.

With this notation, solution for the 4-th component in a
Gauss—-Seidel iteration becomes

A

8 |
I
|
&
i
)
e
.
&
e
!
2
Soud
P
o
&

M.

(2.1)

¢ e
& x,i ﬁ x?',.

(It is understopod that, if 1 > 1, we replace z, by z.' for 3 < 4

. J J
when we define =z, .)

Regardless of the choice of Y, if

X b4 }
""Y ~ (x11x230ﬁ03xn)9

and 1f the dquotient in (2.1) is defined in extended interval
arithmetic, then any ¥ & X with F(X) = 0 is also contained in X'

(cf. Theorem 2.4 infra). Qur goal is therefore to choose T
I 2 5 = n to make w (x; N ;) as small as possible. There are
two cases:

Case 1. there are elements of the i-th column of 4 which do not
contain zero: and

Case 2. each element of the i-th column of 4 contains zero.

We will consider Case 1 in Section 8 with the help of the

following lemmas. We will consider interval guotients of the
form
(p,q]

b4

Le,d]
where we think of [p,¢] as the numerator in the guotient in
(2.1), and where we think of [e¢.d] as the dencminator in that

guotient. We define
(2.2) mg = min {|ec] ., | a]}

We thus have

r
W

Preconditioners for Interval - Kearfott

Lemma 2.1. Assume 0 & [e,d]. If 0 € [p,g], then

w (|e,ql/le.d]) = w ([p,g]) / m,.

If, in addition, [p,¢] is the numerator in (2.1), and
each m is the midpoint of %,;, then

Th

(2‘3\’ ’w([pi{E}) . Z max {lc'@’gl ?]d-},a.?!)w(xj)
7 =1
7 F 1

The proof of Lemma 2.1 follows fron elementary properties of
interval arithmetic.

In the case 0 & le,d] and 0 & ip,.gl, we have the
following lemnma.

Lemma 2.2. Assume [p,g] is the numerator in {(2.1), assume
0 & [e¢,d], and assume 0 & o, al. Then

w(z,Naey,) < max { (m; - L;), {(w; - m,) }.

Proof of Lemma 2.2. First, [p,ql/{e,d]l > 0 or e, gl/[e,d1 < 0.
Therefore, #; < m, or x;, > m,. The result follows immediately.
(See fig. 1.)

| in Case 2, it is not possible to choose Y, so that
0 & [e,d]. If, in addition, 0 & {p,¢], then x,_in (2.1) is the
entire real line. However, if 0 & [p,g]. then =z, in (2.1)
consists of two disjoint semi-infinite intervals. We then hope
to choose ¥;, 1 £ 3 2 n, to make the intersection of each of

these semi-infinite intervals with x, as small as possible. We

consider this case in Section 4 with the aid of the following
lemmas.

Lemma 2.3. Suppose [p,g] represents the numerator in (2.1},

suppose &y ; = [c, d], suppose 0 € [c,d], and suppose
Iv.¢] > 0. Then «, consists of two disjoint intervals
®; 1 and x; o such that

' p

(i) w | xingﬁg) < max { {(my; - 1,), (my; - m,) } for L = 1,2;
(ii) if xiﬁzﬁai is non-enmnpty, then
w(z,Nz;) = (my - 1,) - p/d: and

P

Preconditioners for Interval - EKearfott G

ese apess sgessse . - e wr mmeees equmsmes R — -y o - — - . - - - SAABIRED 2
MY FAY L S AL A S\ gk g ym ey gy = YT e WL A AT B e s e ey g e R wEEE Y AWTE el o808 . e . SVt M APt PA RS T ATA Te L s e metmL.e meNETT AP AREmA . 1 el enmmciie e mm me e ey s e e tmme es ey P "N tiwesememyiaer ‘e e, © vares we FREN b e v s INNASS RS YAy L i e S N T L e e e o i Eant kTt Ly b T T e e L ——— PUYBYY GQIAS NS S 04 hlewd Al La " TSlw ovrs _ o= &

(iidi) if =,MNMx; » is non-empty, then

s L

w(zNe; g) = (u; - my) - (p/(-c)).

Proof of Lemma 2.3. See fig. 2 and refer to [4] for an earlier
discussion of extended interval arithmetic in this
context. Elementary properties of extended interval
arithmetic imply that
— P 2
x g = (~o, my; — =~] V | my - = , +o)

f C

Fuarthermore., we also have

£; = | m; - (m; - 1.}, My o (wy ~ mg)]
o - + +
Thus, =;Nx; = =7, (Ux*, 5, where
y 3
) 2
N e [m; -~ (m;, - 1.) |, my - =]
el

The conclusions of Lemma 2.3 follow directly from these
characterizations.

We conclude this section with a known observation about
general preconditioners.

Theorem 2.4. Let X be a box in R™, let F: X » R™, let M € ¥ and
let A be a rowwise interval extension of the Jacobian matrix of
F. Let Y be an arbitrary » by n matrix, let & = Y 4, and let

k = Y F(M). Then any roots of F in X must also be in ¥Y'.

Remark {: The set X' is always defined when using extended
interval arithmetic, since all guotients ip,gl/le,d]l are defined.
Note that x§+ will consist of two disjoint intervals if

0 & [e,d], [ec,d] # 0, and 0 & l»,9], and that xi% = R if

¥ e

0 = [p,.qg] and 0 € [e,d].

Remark 2: By a rowwise interval extension, we mean an interval

extension such that the 4-th row of 4 is an interval extension of
gradient of the 4-th component of F.

Preconditioners for Interval - Xearfott 'y

Lt N e e TR L R S S —

Remark 3 In particular, as long as the extended interval
arithmetic is defined, the inclusion property {(and hence the
ability of the method to reliably find all roots) holds
regardless of whether Y is singular or not.

Proof of Theorem _2.4. Suppose) Gl (xi*‘mg*,o,.,xﬁ$} c X is such
that /(X) = 0. Then, since 4 is a rowwise interval
exTtension of the Jacobian matrix of F, there is an 4 €& 4
such that

0 = F(X) = F(M) + 4 (X% - iy

Denote the element in the 4-th row and 7-th column of Y 4

by & Then, when we multiply the above equation by Y

3

and write down the i-th row of it, after some rearranging

we obtain

!
P
&
. W
=
o
il
emmmm—
!
&
i
g
poc
T
&3
Ly
[
e

i
%

S,

;
;
If &; ; # 0, then we mav solve the above formula for xi$
when we compare the result with {(2.1), the fact that the
interval arithmetic result contains all possible scalar
results we can obtain by selecting elements of the
intervals as operands implies mé* = ag . If »;, ;, = 0,
then the numerator in {(2.1) and the denominator in (2.1)

both contain zero, so = @, and trivially «,* « =,.
This proves Theorem 2

agh
.4

Preconditioners for Interval - Xearfott

.
3

o

3. The {—~Preconditioner.

In this section, we discuss contraction or (-
preconditioners, the i-th row of which are defined when not all

of the entries in the 4-th column of 4 contain zero. Our
discussion will center on computation of the 4~th row of the
preconditioner matrix Y; = (y,,¥2.,....¥,). Let z,, =z=,, z, T, €,

and k¥ be as in (2.1), let [p,¢] denote the numerator in (2.1},
and let Gi,i = [e¢,d]. We will denote the <-th row of & by & .

Let k¥ be such that 0 # Ak . Then, by choosing y,; = 0 if
7 # k and ¥, = 1, the resulting row &; = Y, A has 0 & 6, ,. By

multiplyving Y, by the appropriate Scalar, we may also ar%ange i€
sgo that ¢ = 1. Thus, we have

Lemma 3.1. Suppose there is an index 5 such that 0 & 4. K Then

there is a row vector Y, such that the denominator e, d]

in the resulting Gauss- Seidel iteration (2.1} is of the
form [1.,d]1.

We wish to choose Y; to minimize w{xi*) = w(xiﬁgi). In
the C-preconditioners, we attempt to minimize with respect to Y.,
subject to the constraint ¢ = 1, or similar constraint which
forces 0 # le,d] and which somehow normalizes fc.d1. The. .

following lemma and corollary show that this is a reas sognable
simplification.

Lemma 3.2. Let ¥; be an arbitrary row-vector in R™. Then the
interval «; in (2.1) defined by ¥, is the same if we
replace Y, by &« ¥, for any nonzero scalar &.

Corollary 3.3. Let (= s} be a real valued function of x where
x; 1s as in {(2.1). Then
min $(x,) = min $(=x,),
Y, & R" Y, & R"
OE[cd] ¢ = 1

provided the minima exist.

There are three strategies for producing C-

preconditioners, depending upon how we assume x;, Lo intersect =,.
Define §; and wu, by

'gi = {l;,u;], where
w’,& s [5?’,%?’].
Then the three possibilities are illustrated in figure 3. They

Preconditioners for Interval - Kearfott 9

al’ e

Strategy 1. (e«f. fig. 3(a)) Choose Yy to maxinmize ?@ subject to a
condition on [c¢.d].

Strategy 2. {(ef. fig 3(b)) Choose Y, to minimize ;i subject to a
condition on [e¢,d}.

Strategy 3. (¢f. fig 3(c)) Choose Y, to minimize
w{x,) = w{{p,.g]) subject to e = 1.

If we assume @ priori that 0 & [p,g], then the
optimization problems posed in each of these si{rategies are
solutions to moderately sized linear programming problems, as we
show below. I1f, however, the numerator [p, ¢} corresponding to
the solution of the linear programming problem for Strategy 3
does not contain zero, then that solution is not an optimal one.
However, Lemma 2.2 states that we still obtain an adeguate
reduction of width, provided m; is not too near the edge of z,; .

We do not presently know how to embody all three
strateglies 1In a single simple optimization problem. Also, the
conditions on [e¢,d] in Strategy 1 and Strategy 2 are different
depending on whether we assume @« priori that 0 € [p,q],

(p.g] > 0, or [p,qg] < 0. The following lemma, which is
essentially a restatement of elementary properties of interval
arithmetic, hints at why this is so.

Lemma 3.4. Assume [e,d] > 0.
{ i) If [,.g] > 0, then
— 7 — L
‘T"i = ?n?: e e dnd 'Mr% = m?: -~ e
& ¢t
(ii) If [»p,9g1 < 0, then
— &f — Fo
i = Mg - and U, = M,
¢f o
(iii) If 0 = [p,q9], then
—) — £
Z% e mi - . and u(i —— ??}?: - s
C o

On a given iteration, we may compute three separate ¥,
which are optimal according to Strategy 1. Strategy 2, and
Strategy 3 and perform the Gauss-Seidel iteration three times.

Preconditioners for Interval - Kearfaott 10

This may result in a smallerp w{xi+) (and must result in the xi%
of minimal width, since all cases would have been exhaustively
considered), but we would incur some extra cost. This additional
overhead may be worthwhile in manv cases to the ocverall
algoritimic efficiencv, but adds conceptual complexity to the

algorithm. The following theorem indicates that Strategyv 3 would
be a reasonable choice to use by itself.

Theorem 3.5. Suppose that for some j between 1 and =», 0 % 4
Then the row vector ¥, which minimizes wlax,) in (2.1

a solution to

[2.q]
(3.1) min 1wy s——————
}"i {C,d]

' 1

) 'is

Furthermore, suppose we compute a Y, which solves the
problen

(3.2) min wii{p,q]}.

Then a Y, which solves (83.2) is a Y, for which wl{x,) is
minimal, provided the resulting [p,¢? is such that

0 € [p,9]. If, on the other hand. Y., solves {(3.2) but
the corresponding [»,¢] does not contain 0. then the
resulting xi+ is such that

wi{x,; < max { {(m,; - Ls), {u; - ms)).

Proof of Theorem 3.5. In (2.1), =z, differs from ~{e,agl/le.,d] by
the scalar m;. Therefore, w(x,;) = w(lp,¢]/[e,d]): this
fact and Corollary 3.3 imply that the minimum of wlx,;)
with respect to Y, occurs at a solution of (3.1).

suppose now that Y, is a solution to (3.2). Then, if the
resulting [p,¢] is such that 0 € [p,qg], then

wl{z,;) = W{ "“'““'} = = = w([p,q]).
e, d] e

However, it follows from the definition of division of
intervals that, for ¢ = 1, w([p,q1/[c.d]) 2 w([p.q]).

These last two facts imply that Y, is also a solution to
(2.1), and therefore minimizes wl{x,).

Preconditioners for Interval - Kearfott 113

The last assertion in Theorem 3.5 is a direct corollary
of Lemma 2.2.

Nole: Solution of (3.1) appears to be a nonlinear problen,
whereas solution of {3.2) can be done via linear programming
techniques, in the case that each m,; is the midpoint of the
correspoonding =, .

In the remainder of this section, we will present the
method of computing Y,; based on Strategy 3 and solution of (3.2).
More careful consideration of solution of (3.1), as well as

consideration of methods based on Strategy 1 and Strategy 2,
should and will be presented in znother work.

The linear programming problem we pose to solve (3.2)
will be based on a set of 3n - 1 auxiliary variables and 2n - 1
constraints. We base the structure on Lemna 2.1: our cost
function will be the right member of (2.3). We define the
auxiliary variables v:, 1 2 2 £ m-1 such that the intended value
of v, is maxﬂ Ci,fl J diaji} if 4 < 4% and maxﬂ ei$j+i§ J &§$j+ii}
if 7 2 4, We first note that

TE S'—I Te
(3.8a) ¢y ; = E Yt Pt T : Ye B¢
7 = 1 3 = 1
yi 2 0 yt < 0
and
T R (£
(3.3b) d; ; = } yy by ;0 ¢ E Y Gy g
r =1 7 = 1
(2, 2 0 Y 3 < 0

Based on {3.3), we define auxiliary variables v,.;,; and Vo § 4 F
1 & 7 & n, so that the intended value of Vo-qi1+¢ 18 max{0,yv;} and

the intended value of ws,.¢4; is min{0,y,}. Finally, define 3’
by
[7 if 7§ < 4
g =i
7 o+ 1 if 57 2 1
With the above 3n-1 auxiliary variables V and 7', the

linear programming problem can be written down as

Preconditicners for Interval - XKearfott i2

(3.4a) minimize (V) =) vy ow(X,)
7 =1
subject to
T N T W]
(3.4Db) Yy Z - > Ya=14+t @ 7 07 E VZn~141¢ btjj‘[’ 1253n-1,
t = 1 ¢ = 1 ..!
A 1 Y"“""‘I Fi
(3.4c) Y4 2 + ? Ve 4 ¢ ﬁte;}’ "}'2-_' Y2n~1+¢ atag" » 1s2En-1,
to= 1 t = 1 |
T T 0
(3.4d) 1 > E Un=it4t @ 4 F 2 Van-t4t By ,
t = 1 t = 1
and

(3.4e) w,.14; 2 0 and Vou-145 = 0 for 1 52 5 £ n.

Once we compute the solution components vy, 1 % 7 % 3n-1, we
compute the elements of the preconditioner by

(3'5) yt - Q"{ne—ilfi + Q}gﬂml-ftq fOI‘ 1 t 5 Ty .,

Tnere are several interesting questions concerning

broperties of the solution to (3.4). In particular, we viewed
Yn-1+¢ and ¥p,_y44 as the positive and negative parts of Yy,
respectively; the bracketed expressions in (3.4b) and (3.4¢c) are

in general equal to the endpoints R and di,f only in the case
that, for each ¢, at most one of Vp=1+¢ 8N4 VYo,_.144 1% nonzero
(and thus, solutions of (3.4) would correspond to solutions of
(3.2) only in that case). Since there are 38mn-1 variables and
(3.4b), (8.4c), and (3.4d) represent only 2nr-1 constraints, we
would expect at least n of the 2n nonnegativity constraints
(3.4e) to be binding at the solution to (3.4} . in fact, in
actual computational tests, we have seldom observed Voe14¢ and
Van-g14+t L0 be simultaneously non-zero. Also, the following

theorem shows that this would not be a concern.

Preconditioners for Interval - Kearfott 13

Theorem 3.6. Suppose that vy;, 1 2 7 £ 383n-1 form a solution of
{(3.4), and suppose each m, 1% the midpoint of the
corresponding x;. If Y, is defined by (8.5), then Y,
solves (3.2}, regardliess of whether or not there ig a ¢
for which v,.q3¢ # 0 and vg,-y44 # 0 simultaneously.

Proof of Theorem 3.6. We first pote that all solutions Y, of
(3.2) are representable as feasible points of (3.4) in
which v,.y4: represents the nonnegative part of ¥ and
VYan-1+t represents the negative part of y,. Thus, if ¥
solves (3.4) and for every ¢ between 1 and » has the
property that at least one of v,.74; and vYo,.14: iS zero,
then the bracketed expressions in (3.4b) and (3.4c¢)
represent [e¢, -,diﬁj}? and Lemma (2.1) implies that Y,

y J
defined by {(3.5) solves 3.2.

in the case that, in the solution of (2.4) there is a ¢
for which v,.y4¢y # 0 and vo,.q4¢ # 0 simultaneously, we
may still form Y, from (3.5). The subdistributivity of
interval arithmetic then implies

Tt Tk
G, ;5 = [Cigjﬁgi,jj = 2 (Vpmgtt + Yopegse) [&ﬁ,j,bﬁ,j]
t = 1
" T 7
Z Yn-1+t &ﬁ,j +> VYon=14¢ bﬁgg :
AR
t = 1 t = 1
(3.6) C
T ?;ﬁ T]
g Vpei4t B¢ 5 F Van-t4t %t
}c — i k = }.

However, the left and right endpoints of the iarger
interval in (3.6) are simply the bracketed expressions 1in
(3.4b) and (3.4c), respectively. Therefore. Lemma 2.1
implies that w({[p,ql) € C(V). Since (V) was a solution
of (3.4} and since the set over which we are minimizing
in (3.2) corresponds to a subset of the set of feasible
points ¥V of (3.4) for which wip.¢] = (V). Y; must
minimize {(3.2) even in this case.

Finally in this section, we state the following corollary

Preconditioners for Interval - Kearfott 14

of Lemma 3.1.

Theorem 3.7.

The linear programming problem has a feasible point

if and only if the i-th column of the interval matrix A4
has an entry [a, ,,b; ;1 for which 0 & [a, i 0y 51

3 y- 3

Preconditioners for Interval - EKearfott i5

4. The S-Preconditiecner.

In this section, we discuss the splitting or S-
preconditioner, which can be applied when the 4-th column of the
interval matrix 4 has an entry {[a, ;,b; ;1 for which
0 & [a, ;.5 41, , a

_ The S-preconditioners will make use of Lemma 2.3. When
x; consists of two semi-infinite intervals, to minimize the
volume of =x,;MNx; we need to minimize the sum of two widths. 1In

particular, we have the following characterization, which is a
direct corollary of Lemma 2.3.

Theorem 4.1. Suppose [p,g] and [e,d] obey the hypotheses of

Lemma 2.3, set w; = w(x;), and define
Y P
Vi g = min {— , (m;~-1;}} and Vi 2 = min {=— , {(wu;-m;)}.
| d -

Then the volume of x@ﬁ;i is

W; - (@igl + viag}, where

w; 18 the width of =,. More specifically, the volume of
x, ey ¢ 18

and the volume of =z Nx, ,; is
y

(uz"m'&) - ‘U-e,,z

In the case 0 & [e,d], =, = R unless we also assume
0 [p,g]l. Under this assumption, we may also assume » = 1. and
we have analogues of Lemma 3.2 and Corollary 3.3, with »
replacing c. However, even with this normalization, it does not
appear that minimization of w,; - (”igl -+ Wigg) can be posed as a
single linear problem. However, we can probably pose
maximization of either v, 1 or v,y 5 as a single linear
programming problem. We may obta3n an optimum reduction of width
by computing x, ' first from the preconditioner obtained by
minimizing v,; ¢; we then replace x; by =, +, then compute a new
xi+ from the precondltloner obtalned by maximizing v, i, 2 (Note:

in some cases the width mav be reduced more by maximizing v,; o
» :
first.)

In the remainder of this section, we will propose two
methods of computing Y,; which are intended to give ¥,'s which

Preconditioners for Interval - Kearfott 16

maximize v, ; and w; o, respectively. The methods are based on
3 y
Theorem 4.1 and Lemma 3.2.

Method 1. To hopefullv phtain Y. for.which, as(o N P
» ’ 7
minimum, we solve

(4.1) max { p }.
¥
d = 1

Method 2. To hopefully obtain the Y, for which w(miﬂgg 2) 1is
minimum, we solve

(4.2) max { p }.
Y
¢ = -1
Kemark [: We do not require ¢ £ 0 in (4.1) because, if e > 0

then Method 1 will hopefully lead to a preconditioner for which
“y 1s minimized according to Strategy 2 of Section 3 (¢f. Lemnma

3.4}, Similarly, we do not reguire d 2 0 in (4.2) because d < 0
will hopefully lead to a preconditioner for which Iy 1s

maximized.

Remark 2: These conditions do not allow [e,d] = 0. if this
condition occurs simultaneously with 0 & l»,g1, then we mavy
conclude there are no roots in X. However, this special case 1is
probably most easily checked separately.

Just as in Section 3, we introduce 3n-1 auxiliary
variables to pose the linear programming problen. The variables
Up=14; aNd VYo, _y4, will denote the positive and negative parts of
¥;,. 1 % ; &2 n, just as in Section 8. However, we define the
auxlliary variables v., 1 £ 9 £ n-1 somewhat differently. As in

:’} -
Section 3, we define

k] if 2 < 14

H

7
2 + 1 if 4 2z 1

and define E% and W by

The intended value of vy 1is then
,Uj pd max { "‘C?:g‘?-; (53:’ “m?;), "”i.??zz?a (u:};: ‘“’mr‘;r‘},
mdy g Lige momg), B A L . B

Preconagitioners for Interval -~ Kearfott 1%

The linear programming problem corresponding to (4.1) can thus be
posed as

Tt
S (Ypmitk * Yop-tse) Jp{H)

]

(4.3a) maximize (V)

A
kL = 1
'i:\';‘"""“i -1

—_ 1) j
Lo
3 =1

subject to
v 2 0 for 1 £ 3 & n-1
(4.3b) Vp=-14; 2 0 for 1 £ 5 £ = ,

T T\ L
4.3 v, 2 - > be ; . L m .,
(C)] V=145 ak,;} T/ Y2n=1+4k bksg ("3 sy)

e
I
pmad
oy
i
fcd

for 1 £ 4 &£ n-1,

T 7 T
- - ‘
(4.3d) wv; 2 Z Yn-ttk e 5 F E Van-1tk Y% g | (M- myu)

k = 1

&
1
funst

for 1 £ 73 & n-1,

Preconditioners for Interval - Xearfott 18

[f 3—1 T
£ - - a— « " F- —— .
{4'39) y:j A E Vne itk bk,;;’ * Ven=14k a’kag’ ("3’ mg'}

ik = 1 k = 1
for 1 & 3 & n-1,
(4.3f) Vj 2 o vnmi+k bkgj; -+ Wz%“i+k akaj: (uj:“ mj:}
k - j k s j_
for 1 £ 3 £ n—-1,
and
(1))
(4.3g) E Vp-14k P ¢ ? Ven-ttk % 4 = 1.
—
kK = 1 £k = 1

Similarly, the linear programming problem corresponding
to (4.2) can be posed as

(4.4a)- maximize (V) as in (4.3a), subject to (4.3b), {4.3c),
(4.4F) (4.3e), (4.3f), and

i
i
e

e I Tn
(4.4g) Z Vpmtdk %k 5t Van-ltk Pk 3

kK = 1 k = 1

A thorough analysis of these methods will occur
elsewhere.

Preconditioners for Interval - Kearfott 19

5. Some Examples of the {-Preconditioner.

In this section, we compare the C-preconditioner defined
in {(3.4) with the preconditioner defined as the inverse of the
midpoint matrix of 4; we will refer to the latter as the inverse
preconditioner. We denote the C-preconditioner by Y and the
inverse preconditioner by yd, we denote the corresponding
interval matrices €& by €Y and 6! and the corresponding widths
wi{lp.¢l/[e.d]) in the i-th variable by wig and wiz. To clearly
see the possibilities, we use the following six simple cases.

When giving widths, we assume 0 & [p.g] so that Lemnma 2.1
holds. (The validity of this assumption depends on the values of
£, which we leave unspecified here.)

Problem {. A nonsingular point matrizx: egual widths in all
varitables,

1,17 2,21 1,21
4 = ; X =
(3,31 [4,41 (1,21

The results of applying the inverse preconditioner and (3.4) to
problem 1 were identical; we obtained

- 2 1
y¢ = y! = , 6Y = ¢ =~ I, and w® :::w}f 2 0
1.5 -0.5 ' ’

to within roundoff error.

Problem 2. A matrix for which the inverse preconditioner leads
i o xe = R.
11,3] 12,4] (1,2]
A e : X ==
[3,5] [4.6] [1,2]

The inverse preconditioner gives

-2.5 1.5 [[-3.5] [~4,4]
vyt ~ L ! -
2 -1 L [-8.31 [-2,4]
Since 0 & Gfi’j for all 4 and j, wif = wgf = @, For the solution

of {(3.4), we obtain

Preconditioners for Interval - Kearfott 20

0 .333 | | [1,1.67]1 [1.33,2]]
Y¢ =~ S !,
0 .25 1.75,1.25] [1,1.581 §
Thus, wle = 2, but wgc 2 1.25. Therefore, depending on F{(¥), a

Gauss—-8Seidel step with G may be worthwhile, whereas a step with
the inverse preconditioner has no chance of reducing the widths.

Problem 3. A matrix for which the inverse precondiiioner gives
large widths, one of which i1s finite.

11.8,2.21 12,4] (1,21
A ; X =
13.8.,4.2] [4,6] (1,2]

The inverse preconditioner gives

~2.5 1.5 |.2,1.8] [-4.,4]
vyt o« S
2.0 -1.0 (—.6..6] [-2,4]
wlf = 20 and WQI = @, For the preconditioner based on (3.4) we
obtain
0 .263 1 (1,1.111 [1.05,1.58]
VS o] GC o~
2 — , —
0 .28 j 1.95,1.05] [1,1.5]
Thus, wic = 1.58 < 20 and ws" ~ 1.05 < ®: hence, depending on

F(M), a Gauss-Seidel step wzth ¢° will be more worthwhile in
reducing the width of the either coordinate than a Gauss—-Seidel
step with ¢Y.

Problem 4. A simple three-dimensional problem for which ¥ grUes
reasonatle results,

;’ (9,11) [2,4] [2,4] 11,27
A =] [3.8,4.2] (19,211 (4,6 . X = (1,27
{3,8,4.2] (4,6] [29,81] i 1,2]

The inverse preconditioner gives

Preconditioners for Interval - Kearfott 271

109 ~.014 ~-.009
yi = -.019 . 055 - . 007 . and
~.011 - . 007 .036 J
[.886,1.11] [~.132,.132] [-.132,.132]
¢! = [-.081, .0831] [.919,1.08] [-.081,.081]

[-.020,.020] [-.054, .054} [.946,1.05]

-

We thus have w;’ = .298, wgf - 122, and*wgg ~ .079. The
preconditioner based on (3.4) gives
123 ~-.018 -.010
¥¥ =« ~-,.021 .060 -, 008 : andad
~.012 ~-.008 .038
[1.00,1.26] [-.149, .149] [-.149,.149]]
A [-.034,.034] [1.00,1.18] (-.088,.088]
[~.021,.021] [-.057,.057) [1.00,1.11]
A A

Thus, w;y . 298 = wll, we ¢ = 122 = wzl, and wWaq 079 = ng,

Hence, depending on F(H),Mwe would expect a Gauss-8Seidel step

with 6% to accomplish about the same width reduction as a Gauss-
Seidel step with €7.

At
A

Problem §. The same as problem 4 except the widths of the
componenits of X are not all egual,

(9,111 [2,4] [2,4] (1,2]
4 =1|13.8,4.2] (19,21 [4,6] . X =] 1-10,10]
(3.8,4.2] [4,8] [29,31] | [.01,.02]

We get the same Y! and ¢! for the inverse preconditioner as in
problem 4, but the widths w;' are different, and are listed
below. For the C-preconditioner, we obtain

-

Kearfott

Preconditioners for Interval

22

R e e e e e e VT ke . e P, o s g g = g —— W atm A P s mme. g e R — 2 mmse =n TN ® s SrEa ey e S .

' .119 -.018 0
Y¢ = -.021 060 -.008 | ; and
0 -.009 .036 J
11.,1.25] | -.137,.137] [.131,.406]
¢ ~ [-.034,.034] [1.,1.18]7 [-.088,.088]
| .1, .118] | -.046, .046] 11,1.091]
Thus, wle Z L2799 < wif =~ .299, wzc 2 0429 = ng, and
wgg ~ 1.03 < 1.17 LY w3f. Hence, depending on F{(M), we would

eXpect a Gauss-Seidel step with 6 to be better in the first and
third coordinates than a Gauss-Seidel step with ¢! This problem
illustrates that the C-preconditioner can take advantage of width

Problem 6§, Initial X and Jacobian matrizxz fer Problem 4 from [6]
{Brown’s almost linear funeiion),

[2,2] [(1,1] (1,11 [1,1] (1,11
[1,1] [2,2] [1,1] [1,1] [1,1]

4 = (1,17 [1,1] (2,21 (1,17 (1,17 :
[1.11 (1,11 [1,1] [2,2] (1,17
|-i6,16] [-16,16] [-16,186] |-16,161 [-16,16]

and X = ([-2,2], [-2,2], [-2.2], [-2,21, [-2.21)T.

The problem from which this example came is difficult for
interval Newton methods which are not able to separate the nighly
nonlinear behavior of the last function component from the
linearity of the remaning n»-1 function components. The matrices
¥ and ¢f in this example are not even defined, since the
midpoint matrix is singular. For the C-preconditioner, we obtain

Preconditioners for Interval - Kearfott 23

and wy

1%

£2

f;f'wgl

:wg

|
o

[1.1]
[0,0]
[0,0]
[0.0]

12,2]

A

2%}4

10,0]
11,1]
L0, 0]
10,0]

11,1]

P 8
e + »

AW

kY

o

10,0
10,0
[1,1]
[0,0]

[1,1]

while wg

[0,0]
10,0]
[10,0]
[1,1]

[1,1]

~ 0.

2,.2] |
2, .21 1 ‘
e, .2
(1,11 |

We note that we

can expect o make progress in the 1-th coordinate in the Gauss-
Seidel process if'wic
preconaitioner is of great potential value for such problenms.

< 1.

Preconditioners for Interval -

Kearfott

This example thus shows that the C-

24

6. Numerical Results from an Actual Interval Newton / Bisection
Code

nere, we report results obtained by incorporating the C-
preconditioner and the two S-preconditioners mentioned above into
a generalized bisection / interval Newton code. The code is
similar to that described in [6], with a few differences, to be
described in [7]. These differences include: (i) use of
simulated directed roundings for true interval arithmetic: (ii)
use of the Gauss/Seidel method instead of the Krawczvk method:
(111} use of interval arithmetic to evaluate F{M): (iv) use of
'volume change' to determine when to stop iteration of the Gauss-
Seidel method; and (v) use of a special technigque to choose
coordinate directions in which to bisect, which is based on
‘maximal smear" in F'(X)(X-M), where F'(X) denotes the interval
extension of the Jacobian matrix. ITtems (i) and (iii) are
necessary for total reliability, while items (ii), (iv), and (v)
are related to efficiency.

We used the IMSL routine DDLPRS to solve the linear
programming problems associated with the new preconditioners.

We will compare the code which includes the new
preconditioners to the code which includes only the inverse
preconditioner.

The problem set is that in [6]. We do not include
problems 5, 6, 7, 8, and 13, since these are linear and hence
trivial for interval Newton methods.

The preconditioners are applied row by row. For each
row, we perform the following steps.

Algorithm 6.1. (Applied to the <-th row, 1 € 4 € n) The
following steps are done first for the C-preconditioner,
then for the first S-preconditioner, then for the second
S-preconditioner

1. If M % X, then recompute F(M).

Do

Attempt to compute the preconditioner.

3. IT successful (that is. if (8.4}, (4.3), or (4.4),
respectively, has a solution), then compute k, and &, * using it.

4 . If not successful, but the inverse preconditioner is
defined, then compute k; and &, % using the inverse
preconditioner. '

1
93

Preconditioners for Interval - Kearfott

o1

Otherwise, use k; = F(M) and ¢ = F'(X).
6 . Apply (2.1}.

In Table 1, we attempt to compare the amount of work for
the method with just the inverse preconditioner to the amount of
work for the method which includes Algorithm 6.1. The first
column gives the problem number from [6], while the second colunmn
gives the number of variables. The column labeled NFUN gives the
number of evaluations of F(X) {(i.e. the number of interval
function evaluations), the column labeled NSCALF gives the number
of evaluations of F(M}) (i.e. the number of scalar function
evaluations), and the column labeled NJAC gives the number of
evaluations of the interval Jacobian matrix F'(X).

The total work is estimated to bhe

%

(6.1) WORK - NFUN + NSCALF + n * NJAC,

We ran the code on an IBM 3090 after having compiled it
with the VS-Fortran compiler. The column labelled "Tot. CPU"
gives the total amount of CPU time, excluding input and output.
The column labelled "CPU in LP" is the total amount of CPU time
spent solving (3.4), (4.3}, and (4.4} via DDLPRS, while the
column labelled "CPU TOT/LP" gives the percentage of total CPU
time spent solving these problems. We observe solving (3.4},
(4.3), and (4.4) is the predominant computation when the C- and
S-preconditioners are used. Future algorithms may include more
sophisticated techniques for weighing this expense against
possibly fewer function and Jacobian evaluations. We mav also be
able to implement a linear programming solver which is
specifically more efficient for (3.4), (4.3), and (4.4).

The last column represents the ratio of estimated total

work per unit of CPU tinme. If the numbers in this column, for a
given method, are constant over all problems, then the estimated
total work is a good estimate. We see that this is only very

roughly so.

The method with the new preconditioners performed better
on all problems except problem 11. It performed impressively
better on problems 3 and 4.

The last few rows of the table compare the code with just
the inverse preconditioner with the code which employs Algorithm

6.1. The two rows lahelled U'TOT !"_give_the torsls Ffor f2o0he aown
column, while the row labelled "Ratio" gives the ratios of these
totals. We see that, with regard to numbers of Jacobian

evaluations and estimated total work, the code with the linear

Preconditioners for Interval - Xearfott 26

programming preconditioners was approximately six times better
than the code using just the inverse preconditioner. Iin fact,
with regard to these measures, the code with the new
preconditioners performed better on all problems except problen
11, and performed impressively better on problems 3 and 4.

Wwe do not presently know precisely why the new
preconditioners performed worse on problem 11. However, this
problem is special in that it has independent subsvstems of
equations and variables. Iteration of an interval Newton method
on this problem tyvpically results in widths in certain coordinate
directions which are almost zero, while widths in other
coordinate directions are still large. We suspect that the
problems on this problem are due to effects of the machine
arithmetic. They may possibly be ameliorated via a technique for
analyzing subsystems such as that in [19]1. Also, a more
sophisticated way of determining when to stop the interval Newton
method mav help.

Problem 10 is difficult perhaps because of the large
differences in scales of the variables and equations. The new
preconditioners implicitly take account of these differences by
including (X-M) in the computations.

Problem 8 is a variant of Powell's singular function,

which is doubly singular at the solution. Hence, near the
solution, we could expect the inverse preconditioner to lead to
very large widths. (See [{8].) The new preconditioners are based

on minimizing widths.

Problem 4 is Brown's almost linear function. As
explained 1in Section 5, the new preconditioners result in linear
combinations which do not include the excessively wide entries in
the last row of the Jacobian matrix.

Since we apply all three new preconditioners, and
possibly also apply rows of the inverse preconditioner. we need
to present more data to illustrate where the gains in efficiency
are., We do this in Table 2. The column labeled NROTOT gives the
total number of rows to which Gauss/Seidel was applied to each
preconditioner. (This is the total number of times Algorithm 6.1
was applied to each preconditioner.) The column labeled %C gives
the percentage of these times that the C-preconditioner gave a
reduction in width, the column labeled %81 gives the percentage
of the time that the first S-preconditioner gave a reduction in
width, and the column labeled %82 gives the percentage of the
time that the second S-preconditioner gave a reduction in width.
The column labeled %GEC gives the percentage of the time that the
C-preconditioner could not be computed, but the inverse

Preconditioners for Interval - Xearfott 27

preconditioner gave a reduction in width. The column labeled
%GES gives the percentage of the time that one of the 8-
preconditioners could not be computed, but the inverse
preconditioner gave a reduction in width.

The results in Table 2 seem to indicate that the
increased performance with regard to numbers of Jacobian
evaluations is due to the preconditioners, as opposed to the fact
that we iterate three times in each coordinate before going on to

the next. The worth of the two S-preconditioners may be
underestimated because thev were applied after the C-
preconditioner was. We note that there are very few cases when

the inverse preconditioner is successful but the new
preconditioners are not.

Our final table in this section gives the number of

"splits"” which resulted from each tyvpe of preconditioner, i.e.
the number of times x; consisted of two disjoint intervals. The
S-preconditioners are meant to cause such splits, which are
desirable when the initial X contains more than one root. (Such
is the case with problems 1, 4, 9, 11, and 12.) The first column
gives the problem number in [6], the column labeled "C" gives the
number of splits due to the C-preconditioner, the column labeled
"S1" gives the number of splits due to the first §-

preconditioner, and the column labeled "S2" gives the number of

splits due to the second S-preconditioner. Spiits could also
occur when one of the preconditioners is not successfully
computed and a row of the inverse preconditioner is used. The
labeled IPC gives the number of splits when the inverse
preconditioner was used instead of the C-preconditioner; the

column labeled IPS1 gives the number of splits when the inverse
preconditioner was used instead of the first S-preconditioner,
and the column labeled IPS2 gives the number of splits when the

inverse preconditioner was used instead of the second S-
preconditioner.

The table indicates that these preconditioners do indeed

result in splits, and that this mechanism probably adds

significantly to the efficiency. However even if =, contains two
semi-infinite components, xi+ may only contain one component, and
it may happen that w(mi+) = wl{x,). Even s8¢0, we have reason to
believe that the S-preconditioners are effective. The process
appears to be a major one in problem 38, for which there is a
single singular rcocot, and in problem 12, where there are 12
separate roots. It is not as effective as it should be in

problem 11;: possible reasons are cited above.

Since the constraints defining the C-preconditioner
preclude any splits when it is used. the second column of Table 3

Preconditioners for Interval - Kearfott 28

merely corroborates the fact that the C-preconditioner is being

computed properly. (There were, however, possibly some splits
from the inverse preconditioner when the C-preconditioner was not
defined.)

Preconditioners for Interval - Kearfott

29

7. Summary, (onclusions, and Future ¥Work

We have described examples of two types of
preconditioners for the interval Gauss-Seidel method. These
preconditioners are meant to optimize quantities specifically
associated with the interval Gauss-Seidel method. In certain
cases, they significantly decrease the total number of required
Jacobian evaluations over preconditioners based on the inverse of
the midpoint matrix of the interval Jacobian matrix, at the
expense of solving large numbers of small linear programming
problems. This includes cases where there is a singularity
near the root or where there is a component function which is
more highly nonlinear than the others.

Computation of a row of one o0of these preconditioners
requires solution of a linear programming problem with 3n-1
variables, where n» is the order of the system. These linear
programming problems have a special structure which can perhaps
pe exploited. Additional studv will enable us to develop
criteria for deciding when to use each of the preconditioners.

Finally, we note that we may compute a sparse
preconditioner simply by posing the linear programming problems
in low-dimensional subspaces. Also, we may force & to have a
number of properties by imposing additional constraints. These
prospects are exciting, and will be investigated.

Preconditioners for Interval - Kearfott 30

O .

10.

11.

12,

13.

14,

Bibiliographyv

Alefelid, G.. and Herzberger, J. Introduction to Interval
(omputaiions, Academic Press, New York. etec., 1983,
Hansen, E. R. On solving systems of equations using

interval arithmetic, Math. Comp. 22 (1968), 374-384.

Hansen, E. R., and Greenberg, R. TI. An Interval Newton
Method, 4ppl. Maith., Comput. 12 (1983), 89-98.

Hansen, E. R., and Sengupta., §S. Bounding solutions of
systems of equations using interval analysis, BIiT 21
(1981), 203-211

Kearfott, R. B. Abstract generalized bisection and a
cost bound, Math, Comput. 49, 179 (July, 1987), 187-202.

Kearfott R. B. Some tests of generalized bisection,
ACM Trans, Math., Software (3, 3 (Sept., 1987), 197-220,

Kearfott, R. B., and Novoa, M. A program for generalized
bisection, manuscript.

Kearfott, R. B. On handling singular svstems with
interval Newton methods, in the proceedings of the
Twelfth TMACS World Congress on Scientific Computation,
1988.

Moore, R. E. A tesiT for existence of solutions to
nonlinear systems, SIAM J. Numer. Anal. 14, A4 (Sept.
1977), 611-615.,

Moore, R. E., and Jones, §. T. Safe starting regions for
iterative methods, SIAM J. Numer. 4nol., 14, 6 {Dec.
1977), 10531-10865.

Moore, R. E. Methods ond Applications of Interval
Analysis, SIAM, Philadelphia, 1979.

Neumaier, A. Interval iteration for zeros of systems of
equations, BIT 25, 1 (19885)., 258-273.

Nickel, K. On the Newton method in interval analysis,
Technical Summary Report no. 1136, Mathematics Research
Center, University of Wisconsin at Madison. 1971 .

Ojika, T. Structure analysis for large scale nonlinear
equations, Memodirs of O0seka Kyoiku University, Ser.]}

(Interval preconditioners -- Kearfott) (Bibliography)

19.

16.

i7.

18.

19.

32, 1 (1983), 63-72.

Scawandt, H. An interval arithmetic approach for the
construction of an almost globally convergent method for
the solution of the nonlinear Poisson equation, SIfAM J.
Sei., Staiist, Comput. 5, 2 (June, 1984), 427-452.

Schwandt, H. The solution of nonlinear elliptic
Dirichlet problems on rectangles by almost globally
convergent interval methods, SJAM J. Se¢i, Steitist,
Comput., 6. 3 (July, 1985), 617-638.

Shearer, J. M., and Wolfe, M. A. sSome computable
existence, uniqueness, and convergence tests for
noniinear systems, SIAM J. Numer. Anal. 22. 6 {Dec .,
1988), 1200-1207.

Thiel, §. Intervalliterationsverfahren fur
discretisierte elliptische Differentialgleichungen,

preprint, Fredburger I%f@?@&53“3€?§0h$2“88/8, institut
fur Angewandte Mathematik der Universitat Freliburg, 1-72.

Xiaojun, C., and Deren, W, Cn the optimal properties of
the Krawczyk-type interval operator, preprint,
Freiburgery Intervali-Berichte 87/5, Institut fur
Angewandte Mathematik der Universitat Freiburg, 1-15.

(Interval preconditioners --— Kearfott) (Bibliocgraphy)

n meth.
1 2 01d
New Pre.
2 2 014
New Pre.
3 4 01d
New Pre.
4 5 01lad
New Pre.
9 2 01d
New Pre.
10 4 0Q1d
New Pre.
11 8 0la4d
New Pre.
12 3 01ld
New Pre.
14 2 014
New Pre.
15 2 01ld
New Pre.
16 4 Qld
New Pre.
17 5 01d
New Pre.
TOT. 0ld
New Pre.
Ratio:
Old/New:
Table 1.

Comparison of the efficiencies

NFUN NSCALF NJAC

22
14

68
23

1963
258

8628
60

31
25

145
62

457
668

132
416

31
25

= N

N N

108
29

12189

1583

7.70

21
472

50
52

1276
619

6420
98

12
7

116
156

216
1286

589
874

28
47

W N

w0 N

19
45

8871
3238

2.74

21
13

50
23

1301
200

6440
55

28
25

116
56

366
521

590
375

28
25

= N

DN N

80
27

9024
1323

6.82

est.
total
work

85
82

218
121

8443
1677

47248
433

115
122

125
4472

3661
©122

3091
2415

115
122

oy Q0

12
19

587
209

64308
11770

5.46

oI the composite method to the method
with just the inverse preconditioner.

TOTL

b

11
251

125
63

QO

154.
1600.

CPU

.03
.49

.14
.00

. 23
.11

. 09
.97

. 02
.31

.41
.96

. 44
. 93

.21
.15

.05
. 69

., 00
. 12

.01
.20

. 36
. 59

19
10

. 10

CPU
in
LP

247,

©3.

32.

1090,

19,

30.

1549.

.45

.89

95

08

. 28

33

33

28

.62

.11

.18

06

16

CPU
TOT/
LP

Q7%

89%

S9%

99%

91%

98%

06%

94%

91%

100%

98%

98%

S7%

work/

CPU

2833.

54

1557
121

751

377

4791
394

514.
.41

13

387

993.
. 10

28

2340
178

3200.
.90

1348

376.
.83

417

56.

33

. 30

.14
.18

. 83
.68

.11
. 17

. 67
.41

18

.82
.41

28

. 94
.06

00

.31
15.

85

28

. 06
. 36

10

10

11

12

14

15

16

17

Tot. :

n NRTOT
2 25
2 42
4 139
5 234
2 13
4 210
8 4115
3 1071
2 33
2 2
4 8
5 121
6492
Table 2.

efficiencies of the inverse,

method.

% C

712%

62%

46%

36%

17%

43%

40%

11%

64%

100%

100%

41%

47%

68%100%

38%

39%

18%

38%

25%

C%

34%

18%

50%

0%

26%

12%

31%
17%
12%
23%
8%
0%
27%
21%
0%
0%
11%

8%

8%

0%

0%

0%

8%

2%

2%

1%

6%

0%

0%

0%

2%

%$S1 ¥S2 %GECX%GES

24%

1%

9%

6%

15%

15%

0%

5%

30%

0%

0%

0%

3%

Comparison of the relative

and
S—-preconditioners in the composite

C_!

10

11

12

14

15

16

17

Tot.

Table 3.

preconditioner.

S1

14

37

199

Number of

S2

96

IPC IPS1 IPS2

2

O

19

12

94

O

2

17

"splits”
produced by each type of

O

2

33

48

Figure 1 b. Inthiscase, [p,g]/[c.d] < 0, 50
evary element of m; — [p.gl/[c.d] is greater

than m; .

wixnNk; ;)

— 1/l — e
A
{_——_:-"'
Xi1
! U,

Figure 2. lllustration of two semi— infinite

intervals obtained when [p.g] > 0 and
[c.d] contains zero.

wlxNX)=wk)

L /

Root may lie
fNere.

Figure 3c. In this case, Strateqy 3 (mini—
- mizingw{X;)) seems most appropriate.

Root may lie
nere.

wlxNX)

Figure 3h. In this case, Strategy 2 {(mini—
mizing u.) seems most appropriate.

