
Preconditioners for the Interval Gauss—Seidel Method

by

R. Baker Kearfott

Department of Mathematics

U.S.L.

Lafayette. LA 70504

ABSTRACT

Interval Newton methods can form the basis of algorithms

for reliably finding all real roots of a system of nonlinear

equations which lie within a specified box in R“. If X

represents such a box in R”, and M E X, then a step of an

interval Newton method can be viewed as solving the linear

interval system

(1) 0 E F(M) + F’(X) (X — M)

for the box E, where F‘(X) is a suitable interval extension of

the Jacobian matrix.

We wish to make the coordinate widths of E as small as

possible. To this end, for a wide range of methods. one

multiplies (1) by a real preconditioner matrix Y so that Y F’(X)

approximates the identity matrix. A common choice of Y which has

been shown to be optimal under certain conditions is the inverse

of the Jacobian matrix F’(M).

The interval GauSSMSeidel method is competitive for

solving (1). We describe techniques for computing

preconditioners for the interval Gauss~Seidel method which

involve optimality conditions expressable as linear programming

problems. In many instances, these preconditioners result in an

E of minimai width. They can also he applied when F'

approximates a singular matrix, and the optimality conditions can

be altered to describe preconditioners with a given structure.

We illustrate the technique with some simple examples and with a

battery of test problems, a generalized bisection code, and an

offethe—shelf linear programming problem solver. These second

experiments indicate that use of these preconditioners results in

significantly less function and Jacobian evaluations. especially

for singular problems; however, considerable time is spent

solving the linear programming problemsi The method may be made

more practical by adapting the linear programming solution

technique to this case.

AMS Subject Classification: Primary: 65H10; Secondary: 65610

Key Words: nonlinear algebraic systems, Newton's method, interval

arithmetic, Gauss~Seidel method. global optimization,

preconditioners

I. Introduction and Motivation.

The general problem we address is:

Find, with gaitaintvg approximations to allmsolutions of

the nonlinear system:

(1.1) fé(x1,x2,..‘,xn) = 0, 1 E i S n,

Where bounds ii and ui are known such that:

ii 5 xi 5 ui for 1 $ i E n.

We write F(X) 0, where F = (fi.fg.....f) and
X = (x1,x2,...,xn). We denote the box given by the inequalities
on the variables xi by B.

A successful approach to this problem is generalized
bisection in conjunction with interval Newton methods, as

described in {2], [10], {5], {6], [4]. [12}. [13]; [17], etcd
These methods can be thought of as finding a box Xk which
contains all solutions of the interval linear system

(1-2) F’(Xk) {Xx “ Xe) 2 “ F(Xk),

where F‘(Xk) is a suitable interval extension of the Jacobian
matrix of F over the box Xk (with X9 = B), and where Xk is some

point in Xk. We then define the next iterate Xk+1 by

(1.3) X“! = Xk n Eh.

This scheme is termed an interval Newton method.

If each row of F' contains all possible Vector values
that that row of the scalar Jacobian matrix takes on as X ranges
over all vectors in XE. then it follows from the mean value
theorem that all solutions of (1.1) in 3 must be in Xg+1 for all
k. If the coordinate intervals of Xk+1 are not smaller than
those of Xk. then we may bisect one of these intervals to form
two new boxes: we then continue the iteration with one of these
boxes, and put the other one on a stack for later consideration,
As is explained in [10}, [5], and elsewhere, such a composite
genevalised bisection algorithm will reliably compute all
solutions to (1.1) to within a specified tolerance.

The efficiency of the generalized bisection algorithm
depends on

Preconditioners for Interval ~ Kearfott l

a(1} the sharpness of the interval extension to the rows 01

the Jacobian matrix: and

(2) the way we find the solution 3k to (1 2).

in particular, iteration with formulas (1.2) and (1.3) should
exhibit the quadratic local convergence properties of Newton’s
method, and repeated hisections are to be avoided if possibleé
We are thus interested in arranging the computations so that Xk
has coordinate intervals which are as narrow as possible.

_
One method of solving (1.2) is the Krawczyk method. in

which Xk is given by

Xk 2 : ‘Xk "

Y}: + ‘_

fYk "' X’s)-

where Yk is a preconditioner matrix which is an approximation to

[F’(Xk)]'l. Moore observed in [9] that the Krawczyk method

converged (without bisection), provided

HI - Ye F’(Xk)ll< L

where the norm is the usual one for interval matrices. (See {1]
or [11].) This condition, which also serves as part of a

computational existence and uniqueness test, was subsequently
weakened. Chen Xiaojun has shown in [19] that, for F (Xk) with
certain properties, choosing Yk to be the inverse of the midpoint
matrix of F' minimizes I]! ~ YkF’(Xk)II . lhus, that choice of
Yk will tend to producs an interval vector Xk whoss components
have relatively small widths.

An interval version of the Gauss-Seidel method, with
extended interval arithmetic, is also a popular way of solving
(1.2) (cf. eg. [3}, or {43.}. When we first multiply both sides
of (1.2) by Yk as above, we obtain a method which is usually
superior to the Krawczyk method. However, for large, banded or

sparse systems, multiplication by an inverse is impractical. For
example Schwandt (in [15], [16]. etc.) has used the Gauss—Seidel
method without a preconditioner to solve instances of Poisson's
equation, where diagonal dominance obviates its need. An
excellent exposition and improvements of this technique appear in
{18].

There are other instances where multiplication by an

inverse of an n by n Jacobian matrix may not be advisable. For
example, if the Jacobian matrix is singular somewhere in Xk, then

Yk may be ill~conditioned, and YR F’(Xk) will therefore have very
wide entries; this occurs. for example, for Powell’s singular
function. which appears as problem 3 in [6]. Alternately? one or

Preconditioners for Interval « Kearfott 3

more of the fi may he more highly nonlinear than the others. or

may be evaluated poorly, in which case the corresponding row or

rows of the Jacobian matrix would have relatively wide entries;
this occurs for Brown‘s almost linear function, which is problem
4 in {6].

In this paper, we will develop a technique for computing
preconditioners Y for the GaussmSeidel method. This technique
involves solving a linear programming problem to find each row of
Y. The linear programming problems characterize certain simple
optimum widthwreduction conditions. In contrast to previous
preconditioners (as mentioned above), the new preconditioners
implicitly take account of the relative widths of the entries of
X, in addition to both the widths and linear dependencies in

F'(X). Furthermore, computation of each row of Y can take place
during the pass through the variables in a Gauss~Seidel iteration
(instead of before), so that we may take full advantage of width
reductions which have already taken place during that pass.
Also, modifications to the constraints will allow us to compute a

preconditioner Y which is optimal subject to structure or

sparsity conditions.

In Section 2; we give notational preliminaries and we

present the relevant underlying interval arithmetic results. We
then present two types of preconditioners: In Section 3. we

present the C—Preconditioner, and we present the S~preconditioner
in Section 4. We prove certain optimality results for each type
of preconditioner. In Section 5, we explain some examples
highlighting the C~preconditioner. In Section 6, we display
numerical results obtained from incorporating both the S"

preconditioner and the prreconditioner into a generalized
bisection code. In Section 7, we summarize and draw conclusions.

Preconditioners for Interval ~ Kearfott 8

3. Notation and Underlying Results.

We assume the reader is already familiar with interval
mathematics in general, and we merely highlight some basic
results here. See [1] or [11] for careful and thorough
treatments.

As in the introduction. we denote vectors and matrices by
upperwcase letters, and scalars by lower—case letters. We denote
interval vectors, matrices. and scalars by boldface. In what
follows, we will speak in terms of a single step of (1.2):
subscripts will denote components of vectors and matrices. In
(1.2), the box Xk will simply be denoted X = {x1.x2,...,xn). We
will understand X to represent the most current box in the case

that we have completed part of a Gauss—Seidel iteration. We will
assume that the point Xk is such that Xk E X. and we will denote
it by M = (m1,m3,...mn). (Simplications in our formulas result
if we take M to be the midpoint vector of X: also, Lemma 2.1 and
Theorem 3.6 require this to be so. However, ensuring this during
an entire GaussmSeidel sweep would require repeated evaluation of
F(M).) The interval derivative matrix F'(Xk) will be denoted by
A. and will have element

Ai’j z [aéaj'bigj]
in its i~th row and j—th column. We will denote the vector F(Xk)
simply by F.

We will denote a hypothetical preconditioner matrix by Y,
and the preconditioned matrix Y A will be denoted by 6; it will
have entry

glisj 2

[0,5,35,017193-1
in its i~th row and jmth column. We will denote the vector Y F
by K. with entries kg. 1 E i S n. We will deal with only the in
th row of the matrix Y at a time, and we will denote it Yé; we

will denote the n entries of that row by yj, l S j S a.

If v = t,u], then w(v) = (net) is the width of v. If V
is an interval vector or matrix. then w(V) is understood to he
the vector or matrix whose elements are corresponding widths of
the elements of V.

Throughout. if v and w are intervals, we understand v > w

to mean that each element of v is greater than the corresponding
element of w.

We will identify real numbers with intervals both of

Preconditioners for Interval « Kearfott 4

whose endpoints are equal.

With this notation, solution for the {wth component in a

GausseSeidel iteration becomes

@

H \\‘54.”
(2.1)

‘— xixi.i

(It is understood that, if i > 1, we replace x- by x-+
3 3

for j < i
when we define xi.)

Regardless of the choice of Y, if

+
+ + +

X 2 (x1.xg,.,.,xn)q

and if the quotient in (2.1) is defined in extended interval

arithmetic, then any X E X with F(X) = O is also contained in X+
(of. Theorem 2.4 infra). Qur goal is therefore to Choose yj.
l S j S n to make w (xg  xi) as small as possible. There are

two cases:

Case 1. there are elements of the i~th column of A which do not

contain zero; and

Case 2. each element of the iwth column of A contains zero.

We will consider Case 1 in Section 3 with the help of the

following lemmas. We will consider interval quotients of the
form

[204}

[c.dl

where we think of [p.q] as the numerator in the quotient in

(2.1). and Where we think of [c.d] as the denominator in that

quotient. We define

<2.2>md=min{icl.!d1}

We thus have

r a.

rPreconditioners for Interval ~ Kearfott

Lemma 2.1. Assume O E [3,d]. If 0 E [p.q}, then

w ([p.ql/[c.dl) = w (ip.ql) / me.

If, in addition, [p.q] is the numerator in (2.1), and

each mi is the midpoint of xi, then

3—17}(2.3) wrisqi) =

M max(ici,3'ivldi,jl)w(xf) -

j = l

j i i

The proof of Lemma 2.1 follows from elementary properties of
interval arithmetic.

In the case 0 E [c.d] and 0 E [p.q], we have the

following lemma.

Lemma 2.2. Assume [p.q] is the numerator in (2.1), assume

0 E [c.d], and assume 0 E {p.sl. Then

w(x§n;i) < max { (mi *

Proof of Lemma 2.2.

Therefore, x,g < mi

(See fig. 1.)

First?
or xi

[p.ql/[c,d] > 0 or [p,q]/[c.dl < 0-
> mi. The result follows immediately.

7

In Case 2. it is not possible to choose Yé so that
O E [c.d]. If, in addition, 0 E [p,q], then xi_in (2.1) is the
entire real line. However. if 0 E [p.g], then xi in (2.1)
consists of two disjoint semiwinfinite intervals. We then hope
to choose yj, 1 S j S n, to make the intersection of each of
these semi—infinite intervals with w; as small as possible. We
consider this case in Section 4 with the aid of the following
lemmas.

Lemma 2.3. Suppose [p,q] represents the numerator in (2.1),
suppose 85 5

= [c‘d], suppose 0 E {0,d}, and suppose
ip.q] > 0" Then xi consists of two disjoint intervals

xial and xig such that

w (min}; 5) < max { (mg —

3 it). (ui ~ mi) } for l = 1.2;

if xizi 1 is non~empty. then
9

w(xixijl) = (m.é ~ lg) — p/d; and

Preoonditioners for Interval ~ Kearfott 6

(iii) if xigi 3 is non—empty, then
,

w(x§xisg) = (me ~ mi) W (r/("C))-

Proof of Lemma 2L3. See fig. 2 and refer to [4] for an earlier
discussion of extended interval arithmetic in this

contextn Elementary properties of extended interval
arithmetic imply that

_. 3’ 3?

xi
2 (“”« mi

“ “ l U [me
* “

,
t”)-

d 0

Furthermore, we also have

x2
= [m?

~ (m1 — 5i), m% + (1i,e ~ mz)]

Thus, xizi * 2+i 1Ux+, 2, where
a 7

+
p

x931=img
“ '0 ‘3’?) vm‘i. "—1

d

The conclusions of Lemma 2.3 follow directly from these

Characterizations.

We conclude this section with a known observation about
general preconditioners.

Theorem 2.4. Let X be a box in R", let F: X 9 R”, let M E X, and
let A be a rowwise interval extension of the Jacobian matrix of
F. Let Y be an arbitrary n by a matrix, let G = Y A. and let
k = Y F(M}. Then any roots of F in X must also be in X+.

Remark 1: The set X+ is always defined when using extended
interval arithmetic, since all quotients {p,q]/[c,d] are defined.
Note that xi+ will consist of two disjoint intervals if
0 E [9,d], [0,d] ¢ 0, and O E [p,q], and that xié = R if

,—

0 t [p.q] and O E [0,d],

Remark 2: By a rowwise interval extension. we

extension such that the i—th row of A is

gradient of the i—th component of F.

mean an interval

an interval extension of

Preconditioners for Interval — Kearfott

Remark 3: In particular, as long as the extended interval
arithmetic is defined, the inclusion property (and hence the

ability of the method to reliably find all roots) holds

regardless of Whether Y is singular or not.

* s s s
Proof of Theorem*2.4. Suppose X = (x1 _x2 ,...,x) E X is such

that F(X) = 0. Then, since A is a rowwise interval
extension of the Jacobian matrix of F. there is an A E A
such that

s s
O = F(X) 2 F(M) + A (X ~ M).

Denote the element in the i—th row and j—th column of Y A

by 8i 5. Then, when we multiply the above equation by Y
and write down the i~th row of it, after some rearranging
we obtain

1

2‘.

m
g

8
a

3
s

u

W”_““"“‘I
: a“

o
a

‘44.

nj

E

If 6i i # 0, then we may solve the above formula for xi$;
when we compare the result with (2.1). the fact that the
interval arithmetic result contains all possible scalar
results we can obtain by selecting elements of the
intervals as operands implies W§* : Ii. If oi i

= 0,
then the numerator in (2.1) and the denominator in (2.1)
both contain zero, so = a, and trivially *i* a Ii“
This proves Theorem 2

*2

.4.

GI)Preconditioners for Interval ~ Keerfott

3. The CwPreconditioner.

In this section.

preconditioners,

we discuss contraction or C-

the i~th row of which are defined when not all
of the entries in the inth column of A contain zero. Our
discussion will center on computation of the i~th row of the
preconditioner matrix Yi = (y1,yg.....yn}. Let xi, xi, xg+a 9.
and k be as in (2.1), let [p,q] denote the numerator in (2.1),
and let Gi,i = {c.d]. We will denote the iwth row of G by 85.

Let k be such that 0 E Aksi. Then. by choosing yj
= 0 if

j 1 k and yk = 1. the resulting row Ci = Yi A has 0 E Gigi. By
multiplying Yi by the appropriate scalar, we may also arrange it
so that o = 1. Thus. we have

Lemma 3.1. Suppose there is an index j such that 0  Ag j. Then
there is a row vector Yi such that the denominator [c.d]
in the resulting Gauss«Seidel iteration (2.1) is of the
form [1.d].

We wish to choose Yi to minimize w(x€+) 2 w(xi;§). In
the C-preconditioners, we attempt to minimize with respect to Y1.
subject to the constraint 0 = i, or similar constraint which
forces 0 E [c.d] and which somehow normalizes [c.d]. The

following lemma and corollary Show that this is a reasonable
simplification.

Lemma 3.2. Let Y; be an arbitrary rowvvector in R". Then the
interval xg in (2.1) defined by Yi is the same if we

replace Ye by a Yi for any nonzero scalar a.

Corollary 3.3. Let @(Eg) be a real valued function of 3%; where
xi is as in (2.1). Then

min in?” = min $65.5),
Yi E R“ Yi E R”
o E [c.d] 0 =1

provided the minima exist.

There are three strategies for producing Cw

preconditionerg, depending upon how we assume xi to intersect xi.
Define ii and ug by

;i = [?i,;i], where

17.; =3 [Eigui].

Then the three possibilities are illustrated in figure 3. They

Preconditioners for Interval ~ Kearfott 9

are

Strategy 1. (of. fig. 3(a)) Choose Yi to maximize ii subject to a

condition on [c.d].

Strategy 2. (of. fig 3(h)) Choose Yi to minimize 5% subject to a

condition on [9,d}.

Strategy 3; (sf. fig 3(c)) Choose Yi to minimize

w(xi) = w([p.g}) subject to c = 1.

If we assume o priori that 0 E [P.9], then the

optimization problems posed in each of these strategies are

solutions to moderately sized linear programming problems, as we

show below. If, however, the numerator [p,q} corresponding to
the solution of the linear programming problem for Strategy 3
does not contain zero, then that solution is not an optimal one.

However, Lemma 2.2 states that we still obtain an adequate
reduction of width. provided mi is not too near the edge of xi.

We do not presently know how to embody all three

strategies in a single simple optimization problem. Also, the
conditions on [0,d] in Strategy 1 and Strategy 2 are different

depending on whether We assume a priori that 0 E [p,q],
[p,q] > 0. or [p.q] < 0. The following lemma, which is

essentially a restatement of elementary properties of interval
arithmetic, hints at why this is so.

Lemma 3.4. Assume [c.d] > 0.

(i) If [p.q] > 0, then

W q
“ P

5i =

W;
r " and ui

=

mi
- m

e &

(ii) If [p,q] < 0, then

_ q
H F

ii =

mi
~ m and mi

=

mi
— ~

d 0

(iii) If 0 E [p.q], then

Q
2%m -

"“N!
“a

U S
a

| I

Q3 33 51. £1
.9

I!

On a given iteration, we may compute three separate Y4
which are optimal according to Strategy 1, Strategy 2. and

Strategy 3 and perform the Gauss—Seidel iteration three times.

Preconditioners for Interval — Kearfott 1o

This may result in a smaller wixi+) (and must result in the xi+
of minimal width; since all cases would have been exhaustively
considered), but we would incur some extra cost. This additional
overhead may be worthwhile in many cases to the overall

algorithmic efficiency, but adds conceptual complexity to the

algorithm. The following theorem indicates that Strategy 3 would
be a reasonable choice to use by itself.

Theorem 3.5. Suppose that for some j between 1 and n, 0 E A
Then the row vector Yd which minimizes w(xi) in (2.1
a solution to

[eel
(3.1) min w -—-—~

Yi [0,d]
0 1

i j-
)’is

Furthermore. suppose we compute a Yi which solves the
problem

(3.2) m

Then a Yi which solves (3.2) is a Yi for which w(xi) is

minimal, provided the resulting {p,q} is such that
O E [p,q}. If, on the other hand, Y1 solves (3.2) but
the corresponding [p,q] does not contain 0, then the

resulting xi+ is such that

w(x¢ < max { (mi ~ 5i), (mi »

mi) }.

Proof of Theorem 3.5. In (2.1), avg diifers from "[F.Ql/[c,d] by
the scalar mi. Therefore, w(xi) = w([p,q}/[e,d]); _this
fact and Corollary 3.3 imply that the minimum of w(xi)
with respect to Y5 occurs at a solution of (3.1).

Suppose now that Yd is a solution to (3.2). Then, if the

resulting [p,q] is such that 0 E [?,Q], then

_ [20,13] 42
a

r

w(x,,;) 2w{m}=m=w(lp193)-
[0,d] 0

However. it follows from the definition of division of
intervals that, for c = 1. w([?.Ql/[G.dl) 2 w([P.Ql)‘
These last two facts imply that Y; is also a solution to
(2.1), and therefore minimizes w(x€).

Preconditioners for Interval ~ Kearfott 11

The last assertion in Theorem 3.5 is a direct corollary
of Lemma 2.2.

Note: Solution of (3.1) appears to be a nonlinear problem,
whereas solution of (3.2) can be done via linear programming
techniques, in the case that each mi is the midpoint of the

correspoonding mi.

in the remainder of this section, we will present the
method of computing Y1 based on Strategy 3 and solution of (3.2).
More careful consideration of solution of (3.1), as well as

consideration of methods based on Strategy 1 and Strategy 2,
should and will be presented in another work.

The linear programming problem we pose to solve (3.2)
will be based on a set of 3% ~ 1 auxiliary variables and 2n « 1

constraints. We base the structure on Lemma 2.1; our cost
function will be the right member of (2.3). We define the

auxiliary variables of, 1 g j s n~1 such that the intended value
of vi is max{!cigjl ,Idiajl} if j < i and max{jci’j+li ,idi’j+ll}
if j 3 i. We first note that

n n

(3.33) ci’j = E yt at,j + g y; btgj
) z 1 j = l

and

(“a a “

(3.3b) dijj =

E y; btaj t E y: “taj'

j : 1 j : l

gt 2 0 3%: < 0

Based on (3.3), we define auxiliary variables on-1+t and vgn§+g.
1 S j E n, so that the intended value of vn_1+g is max{0,yt} and
the intended value of vgn_1+t is min{0.yt}. Finally, define j’
by

{ j if j < i

3" =

i j + i if j 2 i

With the above 3o~l auxiliary variables V and j‘. the
linear programming problem can be written down as

Preconditioners for Interval — Kearfott 32

(3.4a) minimize C(V) :— 3 u- mqu

subject to

P"! 1'3 ("—1 n

'Uj Z "‘ > Obie}; '3"? vgnul+t htjyr , 1—JEW“1,

i = l t = l

m 1?; W 73

(3.40) uj 2 + ? v_1+t btajl +zld van—1+: “t,j’ v 1-25W‘1.

f a 1 2‘. z 1 j

73 v.1 W:

1 = E Un_1+t 65,1”; +3 Ugn_1+£ bf’l ,

t = l i = 1

and

(3.46) vni1+j a 0 and Ug_1+j i O for 1 S j 5 n.

Once we compute the solution components vi, 1 S j S Snml. we

compute the elements of the preconditioner by

(3-5) gt : ®n_1+t + Wg_1+t. for 1 S t S n.

There are several interesting questions concerning
properties of the solution to (3.4). In particular, we viewed

vn_l+t and ven-1+t as the positive and negative parts of yt.
respectively; the bracketed expressions in (3.4b} and (3.4c) are

in general equal to the endpoints cgj and dig} only in the case
that, for each t. at most one of vn_1+t and van-1+t is nonzero

(and thus, solutions of (3.4) would correspond to solutions of
(3.2) only in that case). Since there are Snwi variables and
(3.4b), (3.4c), and (3.4d) represent only Zn—l constraints. we

would expect at least n of the Zn nonnegetivity constraints
(3.4a) to be binding at the solution to (3.4). In fact. in
actual computational tests. we have seldom observed Un_l+g and

vgn_1+t to be simultaneously nonwzero. Also, the following
theorem shows that this would not be a concern.

Preconditioners for Interval ~ Kearfott 13

Theorem 3.6. Suppose that vi, 1 S j S 3n~1 form a solution of

(3.4), and suppose each mi is the midpoint of the

corresponding xi. If Yi is defined by (3.5), then Yé
solves (3.2), regardless of whether or not there is a t

for which v_i+t ¢ 0 and vg%_1+t ¢ 0 simultaneously.

Proof of Theorem 3.6. We first note that all solutions Yi of

(3.2) are representable as feasible points of (3.4) in
which vn_1+i represents the nonnegative part of yt and

vgn_1+t represents the negative part of gt. Thus, if V
solves (3.4) and for every t between 1 and n has the

property that at least one of sn_l+t and eg_1+g is zero,
then the bracketed expressions in (3.4b) and (3.40)
represent [c§’j,di3j], and Lemma (2.1) implies that Yi
defined by (3.5) solves 3.2.

In the case that, in the solution of (3.4) there is a t

for which vn~1+t i O and vgn~l+t ¢ 0 simultaneously, we

may still form Yi from (3.5). The subdistributivity of
interval arithmetic then implies

WW:

ci,j = [0%,j’di,j] z 2 (”n~1+t + ten-1+5) [ag,j.btaj]
f = l

71 M77:

E vn~1+t “6,3 1‘> Wen—1+: biog ~

Inn—J

g 2 1 t 2 l

(3.6)

n

3.7%
-

E vn~1+t bigj + Wgnm1+s ut,j

k=l 162:1

However, the left and right endpoints of the larger
interval in (3.6) are simply the bracketed expressions in

(3.4b) and (3.4a). respectively. Therefore. Lemma 2.1

implies that w([p,q]) S C(V). Since C(V) was a solution
of (3.4) and since the set over which we are minimizing
in (3.2) corresponds to a subset of the set of feasible

points V of (3.4) for which w[p.g] = C(V). Yi must

minimize (3.2) even in this case.

Finally in this section. we state the following corollary

Preconditioners for Interval « Kearfott 14

of Lemma 3.1.

Theorem 3.7. The linear programming problem has a feasible point
if and only if the i-th column of the interval matrix A
has an entry [at i,bt,i} for which 0 E [at‘i,bt,i}.

Preconditioners for Interval ~ Kearfctt 15

4. The S-Preconditioner.

in this section. we discuss the splitting or S“
preeonditioner, which can he applied when the i~th column of the

interval matrix A has an entry [at 1,6; g] for which
0 E [a93iibt151-

: a

_
The S~preconditioners will make use of Lemma 2.3. When

xi consists 0; two semi—infinite intervals. to minimize the
volume of xixi we need to minimize the sum of two widths. In

particular, we have the following characterization. which is a

direct corollary of Lemma 2.3.

Theorem 4.1. Suppose [p,q3 and [0,d] obey the hypotheses of

Lemma 2.3, set mi = w(xi), and define

P P

vial
= min {“ , (mi~li)} and vigg

= min {- , (ui~m§)}.
d we

Then the volume of xigi is

wé
—

(vial + viag), where

wi is the width of xi. More specifically, the volume of

xixi,l ls

(mi—5i) ‘

vi,1

and the volume of xixz g is
3

(Mi—mi) '—

’Uisg.

In the case 0 E [0,d], x;
H R unless we also assume

0 f [9,9]. Under this assumption, we may also assume p = 1. and

we have analogues of Lemma 3.2 and Corollary 3.3, with 9

replacing 0. However, even with this normalization, it does not

appear that minimization of wé
—

(vial + wig?) can be posed as a

single linear problem. However, we can probably pose
maximization of either vi 1 or vi 2 as a single linear

programming problem. We may obtain an optimum reduction of width

by computing xi+ first from the preconditioner obtained by
minimizing vi 1: we then replace xi by xi+, then compute a new

xi+ from the preconditioner obtained by maximizing vé’g. (Note:
in some cases the width may be reduced more by maximizing vi 3

_ 3

first.)

In the remainder of this section, we will propose two

methods of computing Yi which are intended to give Yi‘s which

Preconditioners for Interval ~ Kearfott 15

maximize vi 1 and vi 3, respectively. The methods are based on
) .5

Theorem 4.1 and Lemma 3.2.

Method 1. To hopefully obtain Y1 for which w(xi;§ 1) is
minimum. we solve

(4.1) max { p }.

Ye
d = 1

Method 2. To hopefully obtain the ii for which w(mio§iag) is
minimum. we solve

{4.2) max { p }-

Ye
c = ~l

Remark 1: We do not require c S 0 in (4.1) because. if c > 0

then Method 1 will hopefully lead to a preconditioner for which
ui is minimized according to Strategy 2 of Section 8 (of. Lemma

3.4). Similarly, we do not require d 2 0 in (4.21 because d < 0
will hopefully lead to a preconditioner for which ii is
maximized.

Remark 2: These conditions do not allow [c.d] = 0. if this
condition occurs simultaneously with O E [P,Q]» then we may
conclude there are no roots in X. However, this special case is

probably most easily checked separately.

Just as in Section 3.1 we introduce 3a~l auxiliary
variables to pose the linear programming problem. The variables

vn_1+j and vgn_1+j will denote the positive and negative parts of

yj. 1 S j 5 a. just as in Section 3. However. we define the

auxiliary variables of. 1 E j S a~1 somewhat differently. As in
Section 3. we define

{
j if j < i

}j’ =

j + 1 if j a i

The intended value of v; is then

'Uj 2 max { “Ci 3-:
*‘ -:), -8.)- 4) (11,-: — m

3 m

(53-! m
9

4.

Preconditioners for Interval ~ Kearfott i7

The linear programming problem corresponding to (4.1) can thus be

posed as

H

w

(4.3a) maximize C(V) :E: (vn_l+k + vgnl+k3 fk(M)

k = l

gig—1
'W-l

_. 113'
1...:

j = 1

M M M 3 5 H

f
v! 2 O for 1

(4.3b) v 2 0 for 1 j W
,

m Mn-l-fj

l v2n_l+j S O for 1 S 3 E w

W

Kr“ (4.3C} ’UJ‘ 2 ~ E ’U.n_l+k “1513-: +/‘ 'Ugn..i+k bksjr (fig-1”“
k = 1 k = 1

for 1 S j S n—l,

Y“‘ %

2::
n

(U5; 2 "'

E 1}.n-l+k akej:
‘9" Ugnhl+k 55¢ng ('ujl‘"

k = 1 k = 1

for 1 S j S nml.

Preconditioners for Interval m Kearfott 18

[I 73: 7?;

{4.38) ‘Uj' Z".

"l
E Wumi$k bkaj: 4"; U2,n_1+k akajl (53~r“

n 1Q, ‘

"Uj 2 " ; Un_i+k bk’j: +E 'U2n__l+k ak,j; (uj:~

k=1 1:31

for 1 S 3 S n~1.

and

1% ’

(4-3g) E Vn-1+k bksi + g “an-1+k “kzi
= 1-

“A

k = 1 k z 1

Similarly, the linear programming problem corresponding
to (4.2) can be posed as

(4.4a)— maximize C(V) as in (4.3a), subject to (4.3b), (4.30).
(4.4f) (4.36), (4.3f), and

H i H

{mm W n

(4-48) 2 vna1+k ak,i
+ S vznnl+k bk,£

k = 1 k = l

A thorough analysis of these methods will occur

elsewhere.

Preconditioners for Interval m Kearfott 19

5. Some Examples of the C-Preconditioner.

In this section, we compare the prreconditioner defined
in (3.4) with the preconditioner defined as the inverse of the

midpoint matrix of A; we will refer to the latter as the inverse

preconditioner. We denote the C—preconditioner by Ye and the

inverse preconditioner by Y}; we denote the corresponding
interval matrices G by GS and GI and the corresponding widths

w(lP,Q]/[c,d]) in the i—th variable by wig and mi]. To clearly
see the possibilities, we use the following six simple cases.

When giving widths, we assume 0 E [p.q] so that Lemma 2.1

holds. (The validity of this assumption depends on the values of

F, which we leave unspecified here.)

Problem ?. A nonsinguiar point matrix; equai widths in all

variables.

[1.1] [2,2] {1,2}
A =

; X =

[3,3] {4,4} [1,2]

The results of applying the inverse preconditioner and (3.4) to

problem 1 were identical; we obtained

*2 1

Y6 = Y1 Z
. Cc : GI : I, and w? : wf : 0

1.5 =-o.5
t t

for i = 1,2.

to within roundoff error.

Progiem 2. A matrix for which the inverse preeondiiioner leads
{:0 xi

= R.

[1.3] [2,4] {1,2}
A =

; X =

{3,51 [4.62 [1,21

The inverse preconditioner gives

—2.5 1.5 F [—3,5] [—4,4]
Y1, : ; 8} z 1

2 “1 L {—3.3} [M2,4]

Since 0 E Gfiaj for all i and j, wll = mg; = m. For the solution
of (3.4), we obtain

Preconditioners for Interval « Kearfott 20

0 .333
’

[1,1.67] {1.33,2] 1
Y0 2 ; 66 2

g.0 .25 [.75.1.25] [1,1.5] A

Thus. wig = 2, but wgc : 1.25. Therefore“ depending on F(M}. a

Gauss‘Seidel step with 68 may be worthwhile, whereas a step with
the inverse preconditioner has no chance of reducing the widths.

Probéem 3. A matrix for which the inverse preconditioner gives
large widths. one of which is finite.

[i.8,2.2] {2,4} [1,2]
A ; X =

[3.8,4.2] [4,6] [1,2]

The inverse preconditioner gives

~2.5 1.5 [.2,1.3] [~4,4]
Y1 z - CI 2

2.0 ~1.0 [—.6,.6] {-2.4]

ml: = 20 and wzz = m. For the @reconditioner based on (3,4) we

obtain

0 .263 1 [1,1,11] [1.05.1.58]
V8 ~

. Ge N
J _

, ..

0 25 j [.95.1.05] [1,1.53

Thus, wig = 1.58 < 20 and was 2 1.05 < w: hence. depending on

F(M), a Gauss-Seidel step with 66 will be more worthwhile in

reducing the width of the either coordinate than a Gauss~Seidel

step with G}.

Probiem 4. A simpie three—dimensionai problem for which Y1 gives
reasoeabie results.

[9,11] [2,4] [2,4]
'

[1,2]

A = [3.8,4.2] [19,211 {4.6} ; X: [1,2]

{3.8.4.2} [4,6] [29.31] {1,2}

The inverse preconditioner gives

Preconditioners for Interval w Kearfott 21

.109 *.014 —.009

YI : —.019 .055 —.007 ; and

«.011 ».007 .036 J

[.386,1.11] {~.132,.132] [—.132,,132}

0’ : [n.031,.031] [.919,1.08] [«.081,.081}

[“.020,.020] [—5054,.054] [.946,1.05]

We thus have wig : .298, wgz : .122, and mg} : .079. The

preconditioner based on (3.4) gives

.123 —.016 *.010

Y5 z —.021 .060 ~.008 ; and

-.012 v.008 .038

[1.00,1.26] [w.149,.149] {«.149,.149] 1

cc : [—.034,.034] [1.00,1.18] [~.088,.088]

{n.021,.021] [—.057,.057] [1.00,1.11]

Thus, wlc : .298 : wll, wag : ‘122 : mg}, and wgc : .079 : wgz.
Hence. depending on F(M), we would expect a Gauss~Seidel step
with Go to accomplish about the same width reduction a3 a Gauss—
Seidel step with GI.

Probiem 5. The same as problem 4 excep the widths of the

compenents of X are not all equal.

[9,11] [2,4] [2,4} {1,2]

A = [3.8.4.2] [19,21] [4.6] ; X = [~10,10}

{3.8,4.2} [4,6] [29,31] [.Ol,.02]

We get the same Y1 and GI fag the inverse preconditioner as in

problem 4, but the widths wi’ are different, and are listed

below. For the C‘preconditioner, we obtain

Preconditionere for Interval w Kearfott 22

.119 “.018 0

Y9 : ~.021 .060 «.008 z and

0 v.009 .036 j

[l.,1.25] {~.137,.137] [.131,.406]

66‘ R [~.G34,.034} [1..l.18] {v.088,.088]

[.l,.118] [*.046..046] [1,1.09]

Thus. wlc : .279 < wlf : .299, mg” 2 .0429 2 mg}. and

wag : 1.03 < 1.17 LV wgf. Hence, depending on F(M), we would

expect a Gauss«Seidel step with EC to be better in the first and
third coordinates than a Gauss—Seidel step with C}. This problem
illustrates that the C~preconditioner can take advantage of width

Problem 6. Initiai X and Jacobian matrix for Problem 4 from [6]
{Brown’s almost linear function).

[2,2] [1,1] [1.1] [1,1] {1,1}

[1,1] [2,2] [1,1] [1,1] [1,1]

A = [1,1] [1,1] {2,2} [1,1] [1,1] ;

[l 1] {1.11 [1,1] [2,2] {1.1}

[~i6,l6j [—16.16] [—16.16] [-16,16] {~16,163

and X = ([—2,23, [~2,2], [M2,2}, [~2,2}, {-2,2])T.

The problem from which this example came is difficult for
interval Newton methods which are not able to separate the highly
nonlinear behavior of the last function component from the

linearity of the remaning owl function components. The matrices
Y1 and 01 in this example are not even defined. since the

midpoint matrix is singular. For the C—preconditioner. we obtain

OJPreconditioners for Interval — Kearfott 2

—2 8 —.2 —2 0

Y9: «2 ~.2 8 —2 0

—2 ~2 “.2 s 0

0 0 0 0 :1_,

[1,13 [0.03 {0,03 {0,01 [.2,.2}

{0,03 [1,1] [0,0] {0,0} {.2,.2]

06: [0,0] [0,0] [1,1] [0,0] [.2,.2] ;

[0,0] [0,0] [0,0] {1,1] [.8..2}

[2,23 [1,1] [1.13 [1,13 [191] l

and mic : wgg : W3C : w40 : .8, while wc : 20. We note that we

can expect to make progress in the ith coordinate in the Gauss~

Seidel process if wéc < 1. This example thus shows that the C»

preconditioner is of great potential value for such problems.

Preconditioners for Interval ~ Kearfott 24

6. Numerical Results from an Actual Interval Newton / Bisection
Code.

Here. we report results obtained by incorporating the C~

preconditioner and the two S~preconditioners mentioned above into
a generalized bisection / interval Newton code. The code is
similar to that described in [6], with a few differences, to be

described in [7]. These differences include: (i) use of

simulated directed roundings for true interval arithmetic; (ii)
use of the Gauss/Seidel method instead of the Krawczyk method;

(iii) use of interval arithmetic to evaluate F(M); (iv) use of
'volume change' to determine when to stop iteration of the Gaussm

Seidel method; and (V) use of a special technique to Choose
coordinate directions in which to bisect. which is based on

"maximal smear" in F’(X)(X~M), where F'(X) denotes the interval
extension of the Jacobian matrix. Items (i) and (iii) are

necessary for total reliability, while items (ii), (iv), and (v)
are related to efficiency.

We used the IMSL routine DDLPRS to solve the linear

programming problems associated with the new preconditioners.

We will compare the code which includes the new

preconditioners to the code which includes only the inverse

preconditioner.

The problem set is that in [6}. We do not include

problems 5, 6, 7, 8? and 13, since these are linear and hence
trivial for interval Newton methods.

The preconditioners are applied row by row. For each
row, we perform the following steps.

Algorithm 6.1. (Applied to the iwth row, 1 E i E n) The

following steps are done first for the C~preconditioner,
then for the first S—preconditioner, then for the second

S~preconditioner

1. If M E X. then recompute F(M).

h) Attempt to compute the preconditioner.

3. If successful (that is. if (3.4). (4.3), or (4.4),
respectively, has a solution), then compute ki and gigs using it.

4. if not successful, but the inverse preconditioner is

defined, then compute kg and Ci s using the inverse

preconditioner.
'

[‘JU"!Preconditioners for Interval ~ Kearfott

U] Otherwise. use kg = F(M) and 6 2 F‘(X).

6. Apply (2-1)-

In Table 1, we attempt to compare the amount of work for
the method with just the inverse preconditioner to the amount of
work for the method which includes Algorithm 6.1. The first

column gives the problem number from [6], while the second column

gives the number of variables. The column labeled NFUN gives the
number of evaluations of F(X) (i.e. the number of interval
function evaluations), the column labeled NSCALF gives the number
of evaluations of F(M) (i.e. the number of scalar function

evaluations), and the column labeled NJAC gives the number of

evaluations of the interval Jacobian matrix F’(X}.

The total work is estimated to be

2(6.1) WORK " NFUN + NSCALF + n * NJAC.

We ran the code on an lBM 3090 after having compiled it

with the VS—Fortran compiler. The column labelled "Tot. CPU"

gives the total amount of CPU time, excluding input and output.
The column labelled "CPU in LP" is the total amount of CPU time

spent solving (3.4), (4.3), and (4.4) via DDLPRS, while the
column labelled "CPU TOT/LP” gives the percentage of total CPU

time spent solving these problems. We observe solving (3.4).
(4.3), and (4.4) is the predominant computation when the C" and

S—preconditioners are used. Future algorithms may include more

sophisticated techniques for weighing this expense against
possibly fewer function and Jacobian evaluations. We may also be
able to implement a linear programming solver which is

specifically more efficient for (3.4}, (4.3), and (4 4).

The last column represents the ratio of estimated total
work per unit of CPU time. If the numbers in this column, for a

given method, are constant over all problems, then the estimated
total work is a good estimate. We see that this is only very

roughly so.

The method with the new preconditioners performed better
on all problems except problem 11. It performed impressively
better on problems 3 and 4.

The last few rows of the table compare the code with just
the inverse preconditioner with the code which employs Algorithm
6.1. The two rows labelled "TOT." give the totals for each
column, while the row labelled "Ratio" gives the ratios of these
totals. We see that, with regard to numbers of Jacobian
evaluations and estimated total work. the code with the linear

Preconditioners for Interval “ Kearfott 26

programming preconditioners was approximately six times better

than the code using just the inverse preconditioner. In fact.
with regard to these measures, the code with the new

preconditioners performed better on all problems except problem
11, and performed impressively better on problems 3 and 4.

We do not presently know precisely why the new

preconditioners performed worse on problem 11. However. this

problem is special in that it has independent subsystems of

equations and variables. Iteration of an interval Newton method
on this problem typically results in widths in certain coordinate

directions which are almost zero. while widths in other

coordinate directions are still large. We suspect that the

problems on this problem are due to effects of the machine

arithmetic. They may possibly be ameliorated via a technique for

analyzing subsystems such as that in [19]. Also, a more

sophisticated way of determining when to stop the interval Newton

method may help.

Problem 10 is difficult perhaps because of the large
differences in scales of the variables and equations. The new

preconditioners implicitly take account of these differences by
including (X—M) in the computations.

Problem 3 is a variant of Powell's singular function,
which is doubly singular at the solution. Hence, near the

solution, We could expect the inverse preconditioner to lead to

very large widths. (See [8].) The new preconditioners are based

on minimizing widths.

Problem 4 is Brown's almost linear function. As

explained in Section 5, the new preconditioners result in linear

combinations which do not include the excessively wide entries in

the last row of the Jacobian matrix.

Since we apply all three new preconditioners, and

possibly also apply rows of the inverse preconditioner. we need

to present more data to illustrate where the gains in efficiency
are. We do this in Table 2. The column labeled NROTOT gives the
total number of rows to which Gauss/Seidel was applied to each

preconditioner. (This is the total number of times Algorithm 6.1

was applied to each preconditioner.) The column labeled %C gives
the percentage of these times that the C—preconditioner gave a

reduction in width, the column labeled %Si gives the percentage
of the time that the first S~preconditioner gave a reduction in

width, and the column labeled %82 gives the percentage of the
time that the second Sepreconditioner gave a reduction in width.
The column labeled %GEC gives the percentage of the time that the

C—preconditioner could not be computed, but the inverse

Preconditioners for Interval w Kearfott 27

preconditioner gave a reduction in width. The column labeled

%GES gives the percentage of the time that one of the S—

preconditioners could not be computed, but the inverse

preconditioner gave a reduction in width.

The results in Table 2 seem to indicate that the

increased performance with regard to numbers of Jacobian

evaluations is due to the preconditioners. as opposed to the fact

that we iterate three times in each coordinate before going on to

the next. The worth of the two S~preconditioners may be

underestimated because they were applied after the C~

preconditioner was. We note that there are very few cases when

the inverse preconditioner is successful but the new

preconditioners are not.

Our final table in this section gives the number of

"splits" which resulted from each type of preconditioner, i.e.

the number of times xi consisted of two disjoint intervals. The

S—preconditioners are meant to cause such splitsa which are

desirable when the initial X contains more than one root. (Such
is the case with problems 1, 4, 9, 11, and 12.) The first column

gives the problem number in [6], the column labeled "C" gives the

number of splits due to the C-preconditioner, the column labeled

"Si" gives the number of splits due to the first S~

preconditioner¢ and the column labeled "SB" gives the number of

splits due to the second S~preconditioner. Splits could also

occur when one of the preconditioners is not successfully
computed and a row of the inverse preconditioner is used. The

labeled IPC gives the number of splits when the inverse

preconditioner was used instead of the C~preconditioner; the

column labeled IP31 gives the number of splits when the inverse

preconditioner was used instead of the first S—preconditioner,
and the column labeled IP62 gives the number of splits when the

inverse preconditioner was used instead of the second S—

preconditioner.

The table indicates that these preconditioners do indeed

result in splits. and that this mechanism probably_adds
significantly to the efficiency. However even if xi contains two

semi~infinite components. xi+ may only contain one component, and

it may happen that w(mi+) = w(x§). Even so. we have reason to

believe that the S—preconditioners are effective. The process

appears to be a major one in problem 3. for which there is a

single singular root. and in problem 12. where there are 12

separate roots. it is not as effective as it should be in

problem 11: possible reasons are cited above.

Since the constraints defining the C~preconditioner
preclude any splits when it is used, the second column of Table 3

Preconditioners for Interval ~ Kearfott 28

merely corroborates the fact that the prreconditioner is being
computed properly, (There were, however, possibly some splits
from the inverse preconditioner when the C-preconditioner was not

defined.)

Preconditioners for Interval - Kearfott 29

7. Summary, Conclusions, and Future York

We have described examples of two types of

preconditioners for the interval Gauss—Seidel method. These

preconditioners are meant to optimize quantities specifically
associated with the interval Gauss~Seidel method. In certain

cases, they significantly decrease the total number of required
Jasobian evaluations over preconditioners based on the inverse of
the midpoint matrix of the interval Jacobian matrix. at the

expense of solving large numbers of small linear programming
problems. This includes cases where there is a singularity
near the root or where there is a component function which is

more highly nonlinear than the others.

Computation of a row of one of these preconditioners
requires solution of a linear programming problem with 3n—1
variables. where n is the order of the system. These linear

programming problems have a special structure which can perhaps
be exploited. Additional study will enable us to develop
criteria for deciding when to use each of the preconditioners.

Finally, we note that we may compute a sparse

preconditioner simply by posing the linear programming problems
in low—dimensional subspaces. Also. we may force 8 to have a

number of properties by imposing additional constraints. These

prospects are exciting, and will be investigated.

Preconditioners for Interval ~ Kearfott 80

5.

10.

11.

12.

l3.

l4.

(Interval preconditioners ——

Kearfott)

Bibliography

Alefeld, G.. and Herzberger, J. Introduction to Interval

Computations, Academic Press. New York, etc.. 1983.

Hansen. E. R. 0n solving systems of equations using
interval arithmetic. Moth. Comp. 22 (1968), 374—384.

Hansen. E. R., and Greenberg, R. I. An Interval Newton

Method, Appl. Math. Comput. 12 (1983), 89*98.

Hansen, E. R., and Sengupta. S. Bounding solutions of

systems of equations using interval analysis, BIT 2?

(1981), 203-211

Kearfott, R. B. Abstract generalized bisection and a

cost bound, Math. Comput. 49, 179 (July, 1987), 187~202.

Kearfott R. B. Some tests of generalized bisection,
ACM Trans. Math. Software 13, 8 (Sept,, 1987), 197~220.

Kearfott, R. B.. and Novoa, M.

bisection. manuscript.

A program for generalized

Kearfott, R. B. On handling singular systems with
interval Newton methods. in the proceedings of the
Twelfth IMACS World Congress on Scientific Computation,
1988.

Moore. R. E. A test for existence of solutions to

nonlinear systems, SIAM J. Numer. Anal. 14, 4 (Sept.
1977), 611*615.

Moore. R. E., and Jones, S. T. Safe starting regions for
iterative methods. SIAM J. Numer. Anal. #4, 6 (Dec.
1977), 1051—1065.

Moore, R. E. Methods and Applications of Interval
Analysis, SIAM. Philadelphia, 1979.

Neumaier, A. Interval iteration for zeros of systems of

equations, BIT 25, i (1985). 256—273.

Nickel, K. On the Newton method in interval analysis.
Technical Summary Report no. 1136. Mathematics Research
Center. University of Wisconsin at Madison. 1971.

Ojika, T. Structure analysis for large scale nonlinear

equations, Memoirs of Osaka Kyoiku Unioersity, 89?. III

(Bibliography)

15.

16.

17.

18.

19.

(Interval preconditioners me

32. l (1983}, 63-72.

Schwandt, H. An interval arithmetic approach for the
construction of an almost globally convergent method for
the solution of the nonlinear Poisson equation. SIAM J.
Sci. Siatist. Comput. 5, 2 (June, 1984), 427w452.

Schwandt. H. The solution of nonlinear elliptic
Dirichlet problems on rectangles by almost globally
convergent interval methods, SIAM J. Sci. Sieiist.
Comput. 6, 3 (July, 1985), 617~638.

Shearer. J. M., and Wolfe. M. A.

existence, uniqueness.
Some computable

and convergence tests for
nonlinear systems, SIAM J. Numer. Anal. 22, 6 (Dec.g
1985), 1200*1207.

Thiel, S. Intervalliterationsverfahren far
discretisierte elliptische Differentialgleichungen,
preprint, Freiburger IntervalluBeréchteu86/8, Institut
fur Angewandte Mathematik der Universitat Freiburg, 1—72.

Xiaojun, C., and Deren, W. 0n the optimal propertiee of
the Krawczyk~type interval operator, preprinta
Freiburger IntervaiivBerichte 87/5,“Institut fur
Angewandte Mathematik der Universitat Freiburg. 1~15.

Kearfott) (Bibliography)

n meth.

1 2 Old

New Pre.

2 2 Old

New Pre.

3 4 Old

New Pre.

4 5 Old

New Pre.

9 2 Old

New Pre.

10 4 Old

New Pre.

11 8 Old

New Pre.

12 3 Old

New Pre.

14 2 Old

New Pre.

15 2 Old

New Pre.

16 4 Old

New Pre.

17 5 Old

New Pre.

TOT. Old

New Pre.

Ratio:

Old/New:

Table 1. Comparison of the efficiencies

NFUN NSCALF

22

14

68

23

1963

258

8628

60

31

25

145

62

457

668

732

416

31

25

l—‘N

MN
108

29

12189

1583

7.70

21

42

50

52

1276

619

6420

98

12

7

116

156

276

1286

589

874

28

47

(ADM

WM
79

45

8871

3238

2.74

NJAC

21

13

50

23

1301

200

6440

55

28

25

116

56

366

521

590

375

28

25

HM

MN
80

27

9024

1323

6.82

est.

total

work

85

82

218

121

8443

1677

47248

433

115

122

725

442

3661

6122

3091

2415

115

122

moo
12

19

587

209

64308

11770

5.46

of the composite method to the method
with just the inverse preconditioner.

11.

251.

125

63.

OD

154.

1600.

23

11

.09

97

.02

.31

.41

.96

.44

.93

.21

.15

.05

.69

.00

.72

.01

.20

.56

.59

19

10

.10

CPU

in

LP

247.

63.

32

1090.

79.

30

1549.

.45

.89

95

08

.28

.33

33

28

.62

.71

.18

.06

16

CPU

TOT/

LP

97%

89%

99%

99%

91%

98%

96%

94%

91%

100%

98%

98%

97%

work/

CPU

2833.

54.

1557

121

751

377

4791

394

514.

13

387

593.

28

2346.

178.

3200.

1348

15

376.

417

56.

33

90

.14

.18

.83

.68

.71

.77

.67

.41

18

.41

.82

.41

28

.70

94

06

00

.50

.31

.85

28

.83

.06

.36

70

10

11

12

14

15

16

17

Tot..

n NRTOT

2 25

2 42

4 739

5 234

2 13

4 210

8 4115

3 1071

2 33

2 2

4 8

5 121

6492

Table 2.

efficiencies of the inverse,

%C

72%

62%

46%

56%

77%

43%

40%

71%

64%

100%

100%

41%

47%

68%100%

38%

39%

18%

38%

25%

0%

34%

18%

50%

0%

26%

12%

31%

17%

12%

23%

8%

0%

27%

21%

0%

0%

11%

8%

%Sl %S2 %GEC%GES

8% 24%

0% 7%

0% 9%

0% 6%

8% 15%

2% 15%

2% 0%

1% 5%

6% 30%

0% 0%

0% 0%

0% 0%

2% 3%

Comparison of the relative

0-! and

S—preconditioners in the composite
method.

10

11

12

14

15

16

1?

Tot.

Table 3.

Si 82

2 2

3 l

134 56

2 O

2 2

14 6

O O

37 24

5 5

O O

O 0

O l

199 96

Number of

IPC IPSl IP32

2 O O

O 2 2

O 4 33

O O l

l O O

O 2 4

79 O O

12 9 8

0 0 O

O O O

O O O

O O O

94 17 48

"splits"
produced by each type of

preconditioner.

Figure 1a . In this case, [pg] I [ed] :=- 0, se

ewerI element 01 m;
—- [p,q]i[c,d]is less

Figure-1 h. In this case, [p,q] f [c,d] { 9, so

every element of mi
- [p,q]/[c,d] is greater

than mi .

Figure 2. Illnstratienof two semi— infinite

intervals obtained when [pg] ::~ 0 and

[c,d] contains zem.

Mxmi’ =,w(ii',.-)

Freet maylie

here.

Figure 3c. In this case, Strategy 3 (mini —

_

mizing w [it‘d) seems most appropriate.

'

3, Rant may lie

k————‘lhere.

Figure 3b. In this case, Strategy 2 [mini-
mizing Hi] seems must appropriate.

