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ABSTRACT

If P(xl,...,x ) =_(pl(xl,...,xn),...

o (xl,o..,xn)) = 0

Ipn_l

1s a system of n-1 polynomial equations in n unknowns, it is explained

how to find, with probability 1, all solutions to P(xl,...,xn) = 0
n
subject to Z xi = 1. The method is a simple extension of existing
k=1

homotopy techniques for finding all solutions to polynomial systems
with n equations in n unknowns, and can be applied to more general

n
constraints than T xi = 1, including non-polynomial expressions.

The method E;i also be thought of as a hybrid symbolic-numerical
method for solving n by n systems of polynomial equations and
mixed polynomial-analytic equations. This point of view is most useful
when the Jacobi matrix of the system is lower triangular, but may
always be applied to reduce considerably the total number of paths
required to obtain all solutions. The method can be implemented
with existing continuation method software.

The method is described, applications are given, and practical

considerations are discussed.

The method 1s related to Rheinboldt's study of differential

equations on manifolds.
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1. Introduction and Motivation.

Suppose z « T and suppose P(z) = (pl(z),pz(z),...,pn_l(z)):
¢ > En_l 1s a polynomial in the sense that pk(z) 1s a poly-
nomial 1in Z o l<k<n-1, l<m<n, for z = (21'22'°"'zn)' Define

a manifoldzby:

(1.1) 27 = {zeC": f(z)=0},

where f: T - T is analytic (cf. eg.[3] or [5)), and where we

assume f(zl,...,zn)=0 can be solved for zi for some 1: l<1i<n.

(Without loss of generality we will assume i=n). The problem

we will consider will be to find all zeC™ with:
(1.2) P(z) = 0 and z 7.

Several applications originally led us to problem (1.2).
n
In these, f£(z) = L z; -1, and solutions of P(z)=0 on the
m=1
(n—l)-—sphereén L are deslired. For example, in the numerical

treatment of bifurcation problems, the tangents to arcs inter-
secting at a bifurcation point can be represented as solutions

to P(z)=0, z & gn

y Where each P 1s a homogeneous quadratic,
and the order of the bifurcation point is n-1 (cf. eg. [13).

A second application where f£(z) defines gn-l is in the

numerical computation of the Brouwer degree of maps (see (g,

[9]1, or [15]). 1In particular, suppose F = (fl,...,fn):€p+mn.

n-1
whereiﬁn = {xeRn, ]]xl]il}, and F(x) # 0 for xed . Choose

an arbitrary m and fix s {-1,1}. Then the Brouwer degree of




n :
at 0 relative to & , written d(F,@P,O), can be shown to eqgqual
.....l ‘
the number of xeSP with sgn(fm(x))=s and fk(x)=0 for k#m,
cérresponding to a "positive" orientation, minus the number

of such x corresponding to a negative orientation (cf. [1],

(81, [91, [151, etc.). Thus, if f. is a polynomial in the

i Il
components of x for k#m, the Brouwer degree d4d(F,4 ,0) may be
computed by finding all solutions to a problem of the form (1.2),

where 77= 3n-l

More generally, suppose we wish to solve the system:

(1.3) F(z) = (pl(Z), .-~,p£(Z), f£+l(z),-.-,f (z)) = 0,

where pk 1s a polynomial for 1<k< (2<n) , where fk 1s analytic

for 4+1<k<n, and where the equation fk(z)=fk(zl,...,zk) can

be solved symbolically for z (The solution z. is allowed

k' k

to have several branches). We further require that_fk(z)=0
andlzk]+wimplies Izi|+w for some i<k. (This certainly is

true 1f fk 1s a polynomial, and in many other cases). Then the
techniques in this paper may be used to: (1) find all solutions,

in the case the f's are generally analytic; and (2) reduce the

numpber of homotopy paths required to solve (1.3) in the case

the f's are polynomials. We give details below.

2. The Methods.

The general method upon which our technigques are based

]|

1s treated fully in [6] and elsewhere, so we give only a brief

summary here.




In the general method, we find all solutions to a poly-

nomial system P(z)=0, P: ¢n+ En, by following the homotopy

paths:
(2.1) H(z,t) = tP(z) + (1-t)Q(z)
from t=0 to t=1. Here, P(z) = (pl(Z), pz(z),...,p (z)) 1is
n
such that the degree of P, 1S n, for 1<k<n;
Q(z) = (g, (z),...,9 (z2))is chosen so that q, (z) = znk+l -1.
1 n kK k

(See [6]; other choices of Q are possible, but the degree
of qk and the dependence of q, on z, are important) .
It has been shown (f[4], [6], {71, etc.) that, with

probability 1 over the space of coefficients of P, all

n
np = II nk roots of P(z) are obtained at t=1 by following paths
k=1 n
of H from roots of Q at t=0. However, there are ng = I (n_ +1)>>np

k=1 &
roots of Q, so numerous paths beginning at t=0 never reach

t=1l. (In fact, ||z]||>> as t+1; see [6]).
The convergence proof in [6] is based on the fact that

the roots of Q are bounded, the fact that, if qk#o then:

P, (z) 1
(2.2) K =1- ;
qk(Z) t
the fact thatHz|l+oo implies zk0+m for some ko, and the fact

that qk (z) 1s of degree nk0+l in z In our modified method,

o
0 0
these conditions will still hold; when implemented to its

fullest, though (for systems with triangular Jacobi matrices)

n n
it will only require ns = (n.+1)0I n. = np + II n, paths be
L Tg=p K k=2 K n_1

followed, and in no case will require more than i = n (n. +1)

I1
n k=1 k




MM

paths. (This 1s a factor of£2>savings when P 1s a system of

quadratics).

Suppose now the system 1s as in (1.3). We then define

the homotopy:

(2.3)  H(z,t) = (h (z,£),h (2,£),...,0h (z,t))
1 2 n

where hk(z,t) = t pk(z) + (1-t) qk(z) wlth d;, as above for

1<k<%, and hk(z)=fk for 2+1<k<n. Because of the assumptions

on fk, we may find all roots of ﬁ(z,O) by selecting roots of
q, ’ 1<k<%, and then using a forward substitution process.
Furthermore, if ||z||+®, (2.2) remains valid for some k<Z%.
Since the other portions of the proof of convergence in [6]

depended only on regularity and analyticity, we may conclude

o
that all roots of F may be found by following paths of H =0

from t=0 to t=1.

3. Summary, Conclusions, and Practical Considerations

We have polnted out a simple technique for improving

the efficiency of a general method for finding all roots

to a system of polynomial equations. Besides making the
method more efficient, the technique fits naturally with

certaln applications, and also extends the method to cases

not previously covered.
The general method has been shown to be reliable in

eg. [12]). Furthermore, good

i1}

practice i1n many cases (cf.

software for it is readily available ( [113], [14], etc.).




The only modifications necessary to implement the improvements
o

are: (1) programming of the appropriate function H; and

(2) the initial computing of roots of complex numbers required to get

4y
the coordinates Zy 1 k>%, of roots of H(z,0). It is hard to

imagine that these modifications will cause problems.

It i1s unclear without further investigation precisely
how favorably the technigque will compare with other technigues
for handling the applications mentioned in section 1.

Finally, we mention that Rheinboldt has also used the
ldea of including the constraints as part of the function
in order to solve equations defined on manifolds ( cf. [131).
There, however, more general differential equations, as opposed

€O algebraic systems, are being solved, and more involved

considerations come into play.
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