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Abstract

An orthogonal basis for the null space of a rectangular m by n matrix, with m < n,
is required in various contexts, and numerous well-known techniques, such as QR
factorizations or singular value decompositions, are effective at obtaining numerical
approximations to such a basis. However, validated bounds on the components of
each of these null space basis vectors are sometimes required. In this note, we present
a simple method for reliably computing such bounds, given an approximation to the
null space. We have implemented the method, illustrating its practicality.
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1 Introduction

Consider a matrix A ∈ Rm×n with m < n, assume A has full rank (that
is, assume that the rank of A is m) and consider an orthonormal basis Z =
[Z(1), Z(2), . . . Z(n−m)] for the null space of A, that is

AZ = 0, A ∈ Rm×n, Z ∈ Rn×(m−n), ZT Z = I, m ≤ n (1)

One use for such an orthonormal basis is in determining the nature of a critical
point of a constrained optimization problem. See, for example, the sufficient
conditions O1 to O4 on [1, p. 82] for a critical point of a constrained problem to
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correspond to a local minimum; the fourth condition is that ZT HZ be positive
definite, where H is the second-derivative matrix of the Lagrangian function
with respect to the primal variables and where the rows of Z correspond to
the gradients of the active constraints, evaluated at the critical points. In
validated global optimization (where roundoff is taken into account in such a
way that the computations are mathematically rigorous), it is not sufficient
to use approximations to Z and H, but enclosures that rigorously encompass
roundoff and algorithmic approximation errors are needed.

Here, we give a simple but effective way of obtaining tight but rigorous enclo-
sures for the matrix Z ∈ Rn×(n−m), given an approximation to Z.

2 The Method

The method is simply as follows:

(1) Find an approximate basis Ž satisfying (1) using a traditional method,
such as a QR factorization or singular value decomposition.

(2) Construct a small box Z around Ž.
(3) Simply apply an interval Newton method to the system

AZ = 0, ZT Z = I

to prove existence and uniqueness of the solution to (1) within Z.
(4) Optionally, iterate the interval Newton method to obtain narrow bounds

Z∗.

Interval Newton methods are fundamental in validated computing based on
interval arithmetic, and are found in most monographs on interval analysis,
such as [2], [3], [4], or [5].

3 Discussion

The system of equations to which the interval Newton method is applied is a
square system with n(n−m) variables and equations. If we order the variables
in column major format, then the linearized system for the interval Newton
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method is of the form F ′(Z)V = −F (Ž), where Vi,j = Zi,j − Ži,j, that is,




A 0 · · · 0

0 A · · · 0
...

. . .
...

0 · · · 0 A

2ZT
:,1 01×n · · · 01×n

01×n ZT
:,1 · · · 01×n

...
...

. . .
...

01×n 01×n · · · ZT
:,1

...
...

...
...

ZT
:,n−m 01×n · · · 01×n

01×n ZT
:,n−m · · · 01×n

...
...

. . .
...

01×n 01×n · · · 2ZT
:,n−m







V1,1

...

Vn,1

V1,2

...

Vn,2

...

V1,n−m

...

Vn,n−m




= −




AŽ:,1

...

AŽ:,n−m

ŽT
:,1Ž:,1 − 1

ŽT
:,1Ž:,2

...

ŽT
:,1Ž:,n−m

...

ŽT
:,n−mŽ:,n−m

ŽT
:,1Ž:,2

...

ŽT
:,n−mŽ:,n−m − 1




. (2)

There are n −m block columns in F ′(Z), and each of the n −m row blocks
below the block m(n−m)×n(n−m) diagonal matrix of copies of A contains
n−m rows.

If Z is a point vector, then F ′(Z) is singular (and the traditional interval
Newton validation will fail) if A is not of full rank. Conversely, if A is of full
rank and Z satisfies (1), then F ′(Z) is nonsingular; this is because the vectors
vectors ZT

:,i, 1 ≤ i ≤ n − m must be orthogonal to the row space of A, and
hence are linearly independent of the rows of A.

Although the matrix F ′(Z) is of order n(n−m), it has only (n−m)(mn) +
(n−m)2n = n2(n−m) nonzeros, for a fill-in ratio of 1/(n−m).

4 Experimental Results

We implemented the validation using the interval arithmetic support within
GlobSol [6], on a dual 3.2GHz Pentium-4 based machine with 2 gigabytes
of memory, running Microsoft Windows XP, and using the Compaq Visual
Fortran compiler version 6.6, with optimization level 0. We used the LINPACK
[7] routine DSVDC to compute the approximate null space, and the interval
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Gauss–Seidel method, with inverse midpoint preconditioner (see, e.g. [2] or
[5]), for the interval Newton method; we did not take advantage of possible
sparsity.

We tested the procedure with various runs of randomly generated matrices. In
these tests, we first specified the number of matrices N to be generated, and
the maximum M , m ≤ M , n ≤ N , that m and n could be. We then used the
Fortran intrinsic uniform pseudo-random number generator to generate m and
n. We then generated the matrices themselves, containing pseudo-uniformly
distributed entries between −1 and 1. The results appear in Table 1. Re-
markably, the code never failed to validate the null space vectors that DSVDC
computed, although a significant amount of time was required for the larger
systems 1 . The other quantities in Table 1 are: Dmin, the minimum dimension
of the system (2) for the run; Dmax, the maximum dimension of the system (2)
for the run; and Ttot, the total processor time in seconds for the run, rounded
to the nearest second or four digits.

Table 1
Runs with randomly generated matrices (See text.)

N M Dmin Dmax Ttot

10 25 16 456 32

100 25 3 504 262

10 50 8 1,560 853

100 50 8 2,205 14,680

10 100 388 6,090 62,940

5 Conclusions

We have proposed a simple method for producing validated bounds on the null
space of a rectangular, full-rank matrix. Numerical experiments demonstrate
that the method is highly reliable. The reported times are implementation-
dependent, and can be considerably improved.

1 Besides line-by-line study, we carefully tested the correctness of the code by step-
ping through it in an interactive debugger, using specific test cases. The code is
available from the author
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