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Abstract

An orthogonal basis for the null space of a rectangular m by n matrix, with m < n,
is required in various contexts, and numerous well-known techniques, such as QR
factorizations or singular value decompositions, are effective at obtaining numerical
approximations to such a basis. However, validated bounds on the components of
each of these null space basis vectors are sometimes required. In this note, we present
a simple method for reliably computing such bounds, given an approximation to the
null space. We have implemented the method, illustrating its practicality.
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1 Introduction

Consider a matrix A € R™" with m < n, assume A has full rank (that

is, assume that the rank of A is m) and consider an orthonormal basis Z =
[(ZzW, z®2) .. Z("=m)] for the null space of A, that is

AZ =0, AeR™" ZzZeR™m = zTz_-] m<n (1)
One use for such an orthonormal basis is in determining the nature of a critical

point of a constrained optimization problem. See, for example, the sufficient
conditions O1 to O4 on [1, p. 82| for a critical point of a constrained problem to
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correspond to a local minimum; the fourth condition is that Z7 HZ be positive
definite, where H is the second-derivative matrix of the Lagrangian function
with respect to the primal variables and where the rows of Z correspond to
the gradients of the active constraints, evaluated at the critical points. In
validated global optimization (where roundoff is taken into account in such a
way that the computations are mathematically rigorous), it is not sufficient
to use approximations to Z and H, but enclosures that rigorously encompass
roundoff and algorithmic approximation errors are needed.

Here, we give a simple but effective way of obtaining tight but rigorous enclo-
sures for the matrix Z € R"*(»=™) given an approximation to Z.

2 The Method

The method is simply as follows:

(1) Find an approximate basis Z satisfying (1) using a traditional method,
such as a QR factorization or singular value decomposition.

(2) Construct a small box Z around Z.

(3) Simply apply an interval Newton method to the system

AZ =0, Z2'7 =1

to prove existence and uniqueness of the solution to (1) within Z.
(4) Optionally, iterate the interval Newton method to obtain narrow bounds
zZ".

Interval Newton methods are fundamental in validated computing based on
interval arithmetic, and are found in most monographs on interval analysis,

such as [2], [3], [4], or [5].

3 Discussion

The system of equations to which the interval Newton method is applied is a
square system with n(n—m) variables and equations. If we order the variables
in column major format, then the linearized system for the interval Newton



method is of the form F'(Z)V = —F(Z), where V;; = Z; j — Z; ;, that is,
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There are n — m block columns in F'(Z), and each of the n — m row blocks
below the block m(n —m) x n(n —m) diagonal matrix of copies of A contains
n — m rows.

If Z is a point vector, then F'(Z) is singular (and the traditional interval
Newton validation will fail) if A is not of full rank. Conversely, if A is of full
rank and Z satisfies (1), then F’(Z) is nonsingular; this is because the vectors
vectors ZTZ-, 1 < i < n —m must be orthogonal to the row space of A, and
hence are linearly independent of the rows of A.

Although the matrix F'(Z) is of order n(n —m), it has only (n — m)(mn) +
(n —m)?n = n%(n — m) nonzeros, for a fill-in ratio of 1/(n — m).

4 Experimental Results

We implemented the validation using the interval arithmetic support within
GlobSol [6], on a dual 3.2GHz Pentium-4 based machine with 2 gigabytes
of memory, running Microsoft Windows XP, and using the Compaq Visual
Fortran compiler version 6.6, with optimization level 0. We used the LINPACK
[7] routine DSVDC to compute the approximate null space, and the interval



Gauss—Seidel method, with inverse midpoint preconditioner (see, e.g. [2] or
[5]), for the interval Newton method; we did not take advantage of possible
sparsity.

We tested the procedure with various runs of randomly generated matrices. In
these tests, we first specified the number of matrices N to be generated, and
the maximum M, m < M, n < N, that m and n could be. We then used the
Fortran intrinsic uniform pseudo-random number generator to generate m and
n. We then generated the matrices themselves, containing pseudo-uniformly
distributed entries between —1 and 1. The results appear in Table 1. Re-
markably, the code never failed to validate the null space vectors that DSVDC
computed, although a significant amount of time was required for the larger
systems ! . The other quantities in Table 1 are: Dy,i,, the minimum dimension
of the system (2) for the run; Dy,.x, the maximum dimension of the system (2)
for the run; and T}, the total processor time in seconds for the run, rounded
to the nearest second or four digits.

Table 1
Runs with randomly generated matrices (See text.)

N M Dmin Dmax T’tot

10| 25 16 456 32
100 | 25 3 504 262
10 | 50 8 | 1,560 853
100 | 50 8| 2,205 | 14,680

10 | 100 | 388 | 6,090 | 62,940

5 Conclusions

We have proposed a simple method for producing validated bounds on the null
space of a rectangular, full-rank matrix. Numerical experiments demonstrate
that the method is highly reliable. The reported times are implementation-
dependent, and can be considerably improved.

I Besides line-by-line study, we carefully tested the correctness of the code by step-
ping through it in an interactive debugger, using specific test cases. The code is
available from the author
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