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A MOhE COMPLETE INTERVAL ARITHMETIC

Abstract

So far, all published schemes for Interval Arithmetic

(see references) have prohibited division by any interval—

number containing zero. This prohibition is inconvenient

and unnecessary; we propose to avoid it by adjoining what we

call exterior intervals to the usual interior intervals of

'Interval Arithmetic,‘thereby obtaining a number system which

resembles the extended real numbers closed at w
.

1. Notation

Lower case italics a,b,c,.., are used for real

numbers, lower case Greek a,B;y,.§. for extended real

numbers, upper case AIBIC,... for interval-numbers.

The real numbers are identified in the usual way with

the_points on a straight line. The set 9 of extended real

'numbers is obtained from the reals by adding the symbol @ ,

just as the projective line is obtained by adding a point at

w to close the ordinary straight line: Arithmetic

operations uponextended real numbers have the usual

identification with geometrical Operations upon points in

the projective line (cf. Coxeter (1949) ch.ll) subject to

certain reservations concerning the indefinite forms 0/0,

wim , w/m and m'0 whose values we shall later define to be

the interval—number 9 consisting of the whole projective

line. Although this assignment may occasionally waste



information, it cannot be misleading*.

Interval~numbcr3 are by definition non—empty subsets of

the extended real numbers corresponding to intervals on the

projective line. We distinguish exterior intervals, which

contain w in their interior, from interior intervals, which

do not; a further distinction concerns finite interior

* However, implementing ordinary arithmetic with extended
‘

real numbers correctly on a computer with finite word—length

,is a complicated business. I know of no such implementation

in hardware that is not misleading, despite occasional

mistaken advertisements to the contrary. For example,‘

consider Control Data's 6000 series of computers; when they

-execute the FORQWAN sequence

HX _2.0**1069

y .= {Lo-xx .
’

z = Y _— 2.0:».(Xil-x7

{((Y-X)— X) ~- X]— X

1.0/T

il

'

T

U

they produce correctly X = 21°69 , .Y —_m and

IIZ indeterminate, but misleadingly T = w with overflow and

U = 0.0 with overflow. See CDC's reference manual (1967)

pp.3~15 to 3—20.
_

.
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intervals which neither contain nor touch the point at' w .

We shall write [a,B] for closed intervals which include.

both end—points u and B ; we shall write ]c,S[ for

open intervals which include neither end-point; we shall also

allow intervals ilu,B] and [d,8[ which include that end—-

point next to one bracket but not the other. Only closed

finite interior intervals are discussed in Moore‘s hook

(1966). Our scheme too can be restricted formally to just

the closed intervals, thereby simplifying its implementation

on some computers (see §5.i ); although such a restriction

may occasionallywaste information when an end—point is

included that we might have preferred to exclude, the

restriction need never be misleading.

_Here is how the symbol strings [a,B] , ldlfil I [a,B[

,and 1a,B[ shall be interpreted as interval_numbers for all

extended real u and B . Represent the projective line

as a circle so oriented that, as the real number x increases

from a to b’> a , the point x moves counter clockwise.

.When a # B , the string [d,B] represents the closed

interval described by moving on the circle from a to 6

counter clockwise; reversing the first or the second bracket

merely causes the adjacent a or B respectively to be

deleted from the interval. When 'a = B certain almost

arbitrary conventions are invoked;

[d,d] E a ;

[u,d[ E all extended rcals except a ;

{
|



HI]a,a] Q E all extended reals ;

IH]a,u[ the empty set.

Here are some examples.

xe[—l,l] <=> —l S x S l

rem—1] <=>_ g=oo or gs-l or g N l

ge[1,—1[ <=z» g =‘m or g < ~l or 5 2 l

xe[l,°° [ <=>_ 52 1

ace]oo,1 ] <=> a: s 1 .I r

€6[l,l I <=> E #.l.

xe[w,w [ , for all real .x .

Finally, just as the n—tuple (51;€2;...;£n) is

identified with a point_in an nmdimensional extended real '

space, so shall (X1;X2;...;Xn) be identified with the

region(s) in that space where each coordinate Eiexi . When-

I every Xi is an interior interval, that region is just a

(possibly infinite) parallelepiped.

Now one.purpose of Interval Arithmetic can be Explained.

Ideally, a numerical computation free of error can be regarded

as a mapping B from a space of data~points (a;6;y;...)

into a space of results (C;n;£;...) . Rounding errors and
L

,

1 other uncertainties distort this mapping, thereby generating

1 misinformation to the extent that the differences between

~ computed results and ideal results are unknown. Interval

i Arithmetic purports to eliminate misinformation, at the cost

of extra computation and some loss of iniormatjon, by providing
\

I
Li“ u;ire» §mfin

will.“
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rigorously justifiable estimates for the results. An InterVal

Arithmetic computation can be regarded as a mapping a ,

i

from regions (A;B;F;,;.) in data~space to regions (E;H;Z;...)

in result space, so related to E that E. maps each point

(ob-Mm...) in (with...) intoapoint (em-5;...)

contained in (E;H;Z;...) . Given R , there are‘several

easy routines for deriving a related fl , and often enough

the most naively derived a approximates E adequately for

practical purposes. However, the problem of precision in

conventional arithmetic has its analogue in Interval

Arithmetic — to obtain from 3' an M whose result-regions

are not too much bigger than necessary.

2. Erithmetic

Although our main objective is to extend the rules of

rational arithmetic from real variables to extended real'

variables and then to interval—variables, it turns out to be

more convenient first to doal'with an intermediate system

consisting oi the extended reals in 9 and fl itself; here

9 is an interval—number consisting of all the extended

reals. In this intermediate system, the arithmetic operators

+ ,
—

,
- and / are defined to act upon the symbols

9 and w in the following natural ways:'

(i) Any arithmetic operation with H as an operand

reproduces fl .



(ii) 0/0 E w+w s w—w s w/m s Ouw s w-o s Q .

m ex\ o m 8

(iii) +m E —w : g-w E wvg 2 w+x E x+w E m/x

for all extended reals g # 0 and x # m
.

(iv) x/w E 0 for all x ¢ w, .

The foregoing definitions yield a closed system in which

the commutative and associative'laws remain as valid as for

real variables, but there are two important failures.

Cancellation: If (a-E)/(B*§) # d/B then (a-£)/(8-g) = Q ;

if (a—c)
- (s—a) ¢ u~s ‘then (a—g)

é (B—E) = a

9 -Distribution: If a'g + 8-5 ¢_(alB)-§ then a-E + 8-5

H

if O/é + 3/g # (a+s)/£ then u/: + 8/: o .

These failures imply that the value assigned to a rational

expression involving extended real variables may change if the

distributive or cancellation law is invoked before the

expression is evaluated. Fortunately, the value cannot vary

arbitrarily; it turns out that a rational expression cannot

have more than two values in our system, and cannot have two

values unless one of them is Q . The other is just that

'value which would be assigned to the expression if it were

regarded as a rational function of real variables, with the

symbol w denoting a limit for a variable, or a pole of the

function. Unfortunately, information can be lost in our

system whenever an expression must be assigned the value Q

no matter how it is recrdered despite_that it deserves a

better value. For example,

a {

_l_lllhmflll_, ,
,,' ";,, ,l , ,ll,



x4x-y)%x+y)/(x'w + y-y)

yields the value 9 no matter how it is reordered when

x e y
= 0 , even though its limit as x + 0 and y + O is

'0 , as can be seen by rearranging it to read

”[1— 2/0. + (x/y)2]] .

J

(This expression could be evaluated more precisely-if we

introduced the square function into our system thus;

1

92 E [0,w] , and otherwise £2 E E-E ;

doing so foreshadows the interval arithmetic to come.)

The distinction between'rational expressions

f(€1;€2;...;§n) in n entended real variables and rational

functions f(x1;x2;...;mn) in- n real variables is an

important distinction which should not be allowed to escape

into the ambiguities of our notation. The expressions must

be evaluated by rules, familiar to compiler—writers, which

do not allow parentheses to be removed by the distributive

laws nor, in practical implementations, the associative laws.

The functions are representable in infinitely many ways by

different expressions, all equivalent by the laws of rational

algebra for all arguments except possibly on a subset of

dimension less than n . Two different expressions

representing the same function can differ only where one of

the expressions evaluates to Q in our intermediate ex

system. However, as exemplified above, a function may be
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continuous in the topology of the projective line (in which

m is an allowed limit—point) at some argumentwithout there

being any way to express that function as an expression whose

evaluation in our system yields the correct limiting Value

instead of just 9 . This limitation can be partly

circumvented by a further extension of the system to include

all interval—numbers.

Having specified how the arithmetic operators + ,
—

,
-

and / shall act upon degenerate intervals a = [a,a] and

upon 9 , we are ready to define interval arithmetic for

more general intervals“ Our definition is like Moorets (1966,

p.8); if * is one of tne operators + ,
—

,
v or / , we

define

HIA*B U a*8 over acA and flan

to obtain the interval-valued sum; difference, product or

quotient of two interval—numbers A and B . Unlike Moore's

definition, ours covers all intervalwnumbers A and B .

Here are some examples:

10,1] + [1,2] = [1,3] , [37,3.i] — 10,0.1[ =7]2.9,3.1[ ,

]—4,—l’]~[--6,5[
= _]~20,24[ , —-[~1,21 = <—1)-[—1,21 = [awn-[1,2]

= [~2,1] ,
‘

{~1,1]/[—3,—1/2] = [72,21 , [--3,--1/2]/[~1,1]-— [1/2,—1/2] ,

.[1,21 — [1,21 = [~l,ll , [2,1] — {2,11 =1<-~,«-1 = 9 ,

30,11/10ll] 3 10,m[ I [0,11/IOIl] = Q .

1/(1 + 2/[—1,1[> = 1/(1 + 12,—21) = 1/13,“.1] = l:-l,.1/;,[ ,

["1,l[/([—l,l[ + Z)”: [—lrl[/Il,3[ =‘-= ["lllI
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Evidently the commutative and associative laws remain

applicable to interval expressions, but not the cancellation

or distributive laws. Instead we have

Sub—distributivity: A-(B+C) : A'B + A'C ,

(B+C)/A g B/A + C/A .

Sub—cancellation: (A-B)/(C'B) 2 A/C ,

(A”B)-(C—B) Q A-C .

In general, most rules by which parentheses may be

manipulated without changing the value of a real expression

are inapplicable to interval expressions, to which a host of

weaker rules are applicable instead. For example,

IIx-(B+C) _x-B + x-C for all real x ;

A-(B+C)=.Av13 + A’C if 13-0 9 10,m[ ;

(A~m) ~ (wa) = A—C for all real x .

Furthermore, there are theorems about interval.arithmetic

that are not needed for real arithmetic; an example is

Inclusion—monotonicity: If A g X and B g I then

AwB g XwY for any operation * in the set {+ ,
~

I I /}

Whereas the real numbers are totally ordered (m < y or. m = y

or x > y ) , the intervalnnumbers are at best partly ordered;

we can write A > B only when some real x exists such that

A g ]x,w[ anfl D g 1w,w[ , and A23 whenever A g Ix,W[
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and B e 1w,x] *. This ordering cannot apply to exterior

intervals, nor to w
.

The foregoing differences between real arithmetic and

our interval arithmetic are~common to all other proposed

schemes for interval arithmetic. In fact, everything that

roam be done with other brandsfof interval arithmetic can be

done with ours,_and sometimes more simply in our scheme

because it has been designed to admit fewer exceptions.. What

follows is intended to support the foregoing Claims by

indicating roughly the extent to which the scheme described

_by Moore.(1966) is a subset of ours. But formal proofs {or

our theorems and other claims have been omitted to save

space, thereby increasing the risk that our mistakes may have'

escaped detection.

3. Functions

Consider first the n—th_p9wer_§uncti£nl__dnfor

positive integers n . The familiar definition

* Note that A i A unless A is degenerate; here the

symbol "a" is not the same as which is used in works

on partially ordered sets to stand for
"

’> or =_" .

Ci. Birkhoff (1967) Lattice theory p.1.

1' Except the scheme of Chartres (lSGG), who computes a non~

void subset rather than a superset of the range of an expression.
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an E u'a'...-a (n times)

icould be used for intervals as well as extended reals, but

a more useful definition for intervals is

n _
n

A : U a over all aeA .

Now we find that An s A-A'...-A , with equality only in-

certain special cases like A 2 0 ; and in an example used

earlier we find that evaluating the expression

X'[l— 2/[1 + (x/y)2)]
for X =_Y =_0 yields the desired limiting value 0 when

(X/Y)2 is evaluated as $2 =_[0,m] instead of just

yielding 9 when 92 is degraded to 9‘9 =.Q .

More generally, consider any function ¢(E,;€2;...;En)

defined over some domain in extended real n—space. If that

domain includes the region (X1;X2;...;Xn) , we shall

% renresent the range of ¢ over that region by

R¢(X1;X2;...;Xn)
E U ¢(€1;;2;...;€n)

over Eiexi . On the

other hand, if ¢ is aliational function of its arguments,

_then it is representable over almost all of its domain by each

of infinitely many rational expressions in these arguments;

to each such rational expression ¢(€1;£2;...;£n) corresponds

an interval expression denoted by ¢(X1;Xz;.3.;Xn) and

obtained from ¢ by formally substituting Xi in place of

E. . Evidently
‘Lv

H¢(X1;Xg;..-;Xn) E 0(X1;X2;L..;X ) .
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A persistent technical problem in interval arithmetic

is to find an expression for ¢ which will turn the last

g into an =
. Sometimes this problem is soluble; for

example consider ¢(§) E £/(£+2) = 1/(1 + 2/£) and ohserva

that R¢([-l,l[) = ¢([-l,l[) for the second expression but
.

not for the first. (This example is worked out above.) The

same is true for another example, ”a '

¢fx1;m2) (xx+¢2)/(m1-xz) =.l
- 2/<l - (xx/x2) ) r

'

which has been treated by Moore (1966, pp.28 and 45—7) in two

other ways for.both of which R¢ % ¢ at some arguments X1

and X2 . Sometimes the exterior interval—numbers in our

system permit us to find expressions ¢ for which R¢'= ¢

more easily than in other forms of interval arithmetic. But

in general the computation of Ho requires the location of

maxima and minima, and hence the solution of polynomial

equations when ¢ is rational, as well as the evaluation of

limits or bounds for indefinite forms.

fl

Interval arithmetic can be made easier via the

provision of interval functions like those provided for E

ASA—standard FORTRAN (1964) , ALGOL 60 (1963), and Triplex

ALGOL (Apostolatos et a1. (1968) ). In general, we want
.

R¢(X;Y;...) for {unctions ¢(£;n;...) like

ab5(€) . siqn(E) I sin(€) r sqrt(€) , exv(£) I in

1

I
i
l

, ..

‘

Of course, attention must be paid to infinite values like

V
I

{

w ‘ a .,.~-~A,,_'.'.'._...;;'_.k..--.
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cotan(0) E m
, indefinite forms like 00 E ]ofm[{ I and

undefined values like sqrt(—4) ; but in general the

definitions of interval-functions like

Rabs(X) , Rsign(X) , Rsin(X) , qurt(X) , Rexp(X) , KY ,

should be obvious. Provided those definitions are understood,

the following theorem can be proved, generalizing a statement

of Moore (1966, p.11) .

Theorem: If f(x1;x2;...;xn) is an arithmetic expression in

FORTRAN or an unconditional arithmetic expression in

ALGOL, and if each variable xi appears only once in

that expression, then

Rf(X1;Xz;...;Xn) =-F(X1;X2;...;Xn)

for all intervals X'1,...,Xncontained in f’s domain,

except possibly when 9 appears during ['5

evaluation. Here F is the interval expression obtained

from f by replacing each real variable xi by the

corresponding interval—number Xi and each real function

b its corres>ondin interval—function.Y I
.

CaroZZarz: If also f(w1‘x2-...x } is a monotonicall" non-
J l J J

71
..

decreasing function of x and mu throughoutk
’ xk+1 ""’

(X1;X2;...;Xn) when Xk a-Xk+J
=

... Z'Xn , and we define

expressions

HI9 (x1;;':2;- - ~;xk) f(m1;;’r:2;-- - ;xk;xk;._- - wk) ,

EHC(X1;Xz;...;X F(X1;X2;...;Xk;Xk;...;Xk) ,k)
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V then Rg(X;;X2;...;Xk)= G(X¥;X2;...;Xk), except possibly

when 9 appears during G's evaluation.

-

Otherwise, if a function g(m) E f(x;x) Iis monotonically

increasing although f(m;y) is not, the best way to compute

Rg(X) for X = [a,b] will be via Rg(X) = [9(a) ; g(b}] : C(X) .

-Here are some examples to illustrate the theorem and its

corollary. First let

f(a;b;c;d;x;y;z) E (ax2 + by + c)/(d — z) ;

Rf([0:l];[112];3i[4,5];[0:l]i[0,1]:[0:1]) ,[3/512] = F(...) .

Then let g(a;b;c;d;x) E f(a;b;c;d;x;x;m) =I(aa:2 + bx + c)/(d—m) ;

139([01117[112]737_[415]7[011])
= [3/5r2] ='G(...} 1:00.

For our second example consider four expressions

:epresenting g(x) E g(l;-2;l;2;x) , namely

HI (x(x—2)+l)/(2—x) ,

1/(<l/(x—1)—1/2)Z — 1/4) ;

910)) E (my-2$+l)/(2"x) I 92””

ill"

fgach) E (w—I.)2/(2~x) , gum)

and let X E [—1,l] , 'Y [1/2,3/2] . We find

02(X) = [~214],3 01(X) F ["lr4] D GgYX) = [0,41‘3 Gu(X) = [0/4/31

= Rg (X) ,

'
Gl(l) =_[~7/2,9/2] 2 62(1) = [—5/2,3/2] 3 63(1) = G (Y) = [0,1/2]

‘ .

f = R5] (y) .

: (Gu can be evaluated in our scheme, but not in anyone else's.)

’
More generally, let F(X1;:..;Xn) be obtained by

f
Hubstituting Xi for mi

in some arithmetic expression

E
r

““““

: ‘z. 4
‘

57] l.

u

"""

.__;:
—

-—~
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f(x1;...;xn) whose variables xi may appear arbitrarily

often. Sometimes the following theorems help to

,approximate Rf .

gTheorem: If Xi g Xi for each i = l,2,...,n then

Rf(X1;X2;...;Xn} 9 Rf(Y1;Y2;...;Yn) and

F(X1;¥2;- --;Xn) g F(Y1;Y2;--.;Yn)

Theorem: If for each i = ly2,...,n we have Xi
= UjXij ,

where the Xij
need not be disjoint, then

Rf(X1;X2;...;Xn) S UjF(X1j;X2j;..;;an)g F(Xi;X2;...;Xn).

The difference between Rf and UjF can be made

_arbitrarily small when HE is continuous throughout

(X1;X2;...;Xn) by diminishing the sizes of the subintervals

X;. I; this can be proved with the aid of notions introduced

$9

in the next section. Here we have tried to convey some

feeling for the combinatorial approach to the computation of

Rf via symbolic rearrangement of expressions before

evaluation. Moore (1966, ch.6) offers several other interesting

ideas in this area, but the area remains largely terra incognita.

Further work is needed also on a problem peculiar to our

scheme — the occasional intrusion of Q The appearance of

this symbol during an expression's evaluation is usually

symptomatic of a loss of information that can be recovered only

by analytical means appropriate to real but not complex

variables. Lor example consider ¢(€3fi) E 1/(52 + ”2) ;

v

.Wrmm
recurs-
.A

_,
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evidently R¢([llm];[llm]) 5 [011/2] E ¢([lIW];[l,®]) = 9 I

whereas R¢([l,m[;[llm[} = 10,1/2] = ¢([llm[;[l,mi} - The

difference between these two evaluations is related to the

fact that ¢(€;n) has a limit as E + m and n + m through

real values, but not when E and n are allowed'to pass

‘

through complex values. Resorting to open intervals is not

always a cure, but often helps. At first sight one might be

tempted to "cure" the problem by distinguishing among
+Do ,

—w and w ; but this distinction soon leads to further

distinctions among 0+ , 0- and O as in

lim exp(l/x) =_+w , lim exp(l/x) = 0+ ,‘
x40+ x+0e

from which distinctions follow others and yet other complications,

even to the point of jeopardizing the last two theorems. For

simplicity's sake we shall not discuss such a "cure“ here

(but Cf. §5.i ).

4. Metric Notions

To provide a context in which convergence, continuity and

approximation can be discussed,_we shell introfiuce metrics or

distance functions d(€;n) . VThe discussion here is very

snperricial because we are merely generalizing slightly certain

notions explored in detail by Moore (1966, ch.4).

A metric d(£;n) is a real valued function satisfying the

usual four rules (Diendonné (1960, p.27) )

i
E

l
1

l
r



g," 17 .

0 S-d(£;€) = dfCJE) S d(€;n) + d(n;€}

'

and if d(E;c) = 0 then g ='; . :

The familiar choice d(x;y) E Im-y] is sometimes inconvenient

for the extended reals*; instead we can define d(£;n) by
’

means of our identification of Q with a circle. Let the

circle be drawn on a plane or a sphere and let d(£;n) be the

distance between g and n: measured perhaps along the

circle, or across the surface, or through space. Distance

functions d(£;n) like these, which are continuousfas E + w

and n + w independently, are appropriate when convergence to

_w is at issue. One suitable choice is the chordal metric

dean-y) 2 $335+ ,
, d(.£;°°) E 1/«1 + :4"

/(1+x2) (1+y2)
I

for which d(l/£;l/c) = d(£;c) ; cf. Carathéodory (1958, §86).

.* Although this d can be imposed upon the extended reals by

defining d(e;m) E +w and d(w;w) : 0 , doing so requires that

+w be distinguished from em and w (cf. sections 3 and 5.i)

and consequently accentuates the.topological.dis:inction between

m and the reals. Also, the least inconvenient definition for

the width of an interval turns out to be w([a,b]) E b — a ,

which assigns useful negative widths to exterior intervals but

useless infinite width to [w,w] .

‘

‘

l

i

x

l

t
j
i;
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We also need a measure for the'width of an interval;

one natural measure is

w(Z) E I d(;;c + dc) over geZ .

v

For example, using the chordal metric we find that

w([x,y]) = arctan y
— arctan x if x s y ,

= fl
— arctan x + arctan y if x > y y

= n/2 — arctan x , w([w;m]) 5.0 ,w([x,“])

w(9) =_n .

And a natural* extension of any Chosen d(g;;) to cover

~c
intervals is Hausdorff's (Dieudonné (1960, pL58, ex.3) )

d(E;Z) E max{ sup inf d(§;§) , sup inf d(£;é}} ,

€55 ng
‘

_

n62 £55

andI!)
which is easily computed using only the end~points of

Z -and their types, interior or exterior. Since w and d

make no distinction between open and closed intervals ( e,g.

d(E;Z) = 0 implies only that E and Z have the same

closure), metric considerations are customarily confined to

closed intervals.

Our definitions preserve many familiar theorems. For

.example:

* There are other natural extensions; see Eggleston (1958, p.60)

or Rudin (1953, p.195). But Hausdorff's coincides with Moore 5

(1966, pp.15w16) when d($;y} E [mnyl is extended to finite

interior intervals, and preserves Moore's Lemmas 4.1 and 4.2.
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If A g B then w(A) s w(b) ,

and d(£;A) 2 d(€;B) for all giA ,

and w(B) s w(A) + 2e implies d(A;B) s e ,

and d(A;B) s 2 implies w(B) s w(A) + we .

The constant n is appropriate for the chordal metric d ;‘

more generally u should be replaced by

2/1?
max{d(on;8)/w([ot,81) , dogw/mtaum .

,a B
H

The foregoing definitions provide a terminology with

which to discuss how well one interval—number approximates

another, and to introduce an Interval Analysis analogous to

Real Analysis with continuous or integrable functions. An

interval-valued function ©(Z1}22;...) of interval—variables

Z1,Zz,... is continuousat (X1;X2;...) in some domain

whenever for every 5 > 0 there is a 6 > 0 such that

d(¢(x1;X2;...) ; ¢(Y;;l2;...)) < 6.. for all Yl;l2;...) in

that domain which satisfy d(Xi;yi) < 5 for i = 1,2,... .

In particular, a rational intervalmexpression ¢ (involving

only the arithmetic operators + ,
~

,
-

, / and n—th

poWers for integers n % 0 ') can fail to'be continuous~in a

domain (A13A2;...) in the chordal metric d only when 9

appears during the evaluation of @(A1;A2;...) . Consequently,

many of the complications associated in §3 with the extensions

of extended real functions ¢(cl;c2;...) to interval—functions

§(21;Zz;...) can be avoided, at least for the purposes of

exposition, by limiting attention to the restrictions of

ii
h
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rational'expressions ® to rational functions

¢(C1;C2;--.)
E @(c1;;z;...) . The continuity of ¢ is then

sufficient (but not necessary) to assure the Continuity of w

Consult the book Interval Analzsis by R.E. Moore (1966,

ch.4 and 6-9) for an extensive treatment of the subject.

5. Implementation Problems

These fall into four areas with which we shall deal in

turn;
'1

i) Representation,

ii) Approximation,

iii) Diagnostics,

’v) Compilability.

Instead of solutions to these problems, we offer

suggestions and opinions.

i) Representation: The two binary digits required to

hich of an interval—number's endpoints belong to

indicate w

it

may be inconvenient to manipulate on some machines, in which

case manipulation can be confined to the subset of closed

interval numbers [a,B] Without much loss of information.

Some oi this information is recoverable on most machines which

represent numbers with a signwmagnitude format, because these

inetion between +0 and —0

(i. '7{ ’1’}
machines usually Preserve a dist

Consequently, all pairs
~03

and between is and
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can be identified with closed intervalwnumbers [q,fi] except

for the following eight reassignments;

]U)’B] I

[01,0] r

”I[wot , [+°°,Bl[GI‘H’] 5 [Ohm] I [Oh—‘1’]

Ill[0,,0[ I [04—0]

10,8]

HI[-WIB] E [mIB] I [a:+0]

H![+018] 5 [0:8] I [”OrB]

Whenever an arithmetic operation involving one of these eight

produces some other unclosed interval—number, that interval—

number should be closed to cover its end—points; the consequent

loss of information will be no worse than is attributable t

roundoff. (See below under Approximation.) The eight

reassignments sometimes help programmersto suppress Q .

The symbols 9 and w ~can be represented on most

machines by certain unnormalized floating point Zeros or by

some other improper floating point numbers. Care should be

taken not to represent w in a way'Which might be confused with

an overflow. (See below under ii and iii J

Occasionally one may prefer to represent an interval-

numher [a,bJ by some pair of numbers other than a and b ;

a plansible choice is (a+b)/2 and 4b‘07/2 ~(ef. Nickel (1966),

Chartres (1966), Dwyer (1941, ch.2) ), corresponding to an

approximator and its uncertafinty respectively. What motivates

such a choice is that the uncertainty is expected to amount at

most to a tiny fraction of the approximator and therefore can

be represented with a loner relative precision without

appreciably degrading the scheme; therefore computer storage can be
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saved by assigning shorter words to uncertainties than to the

more precise approximators. However, to distinguish between

[10’3°,103°1 and [0,103°] both approximator ana uncertainty

must be represented equally precisely, and there are

applications of Interval Arithmetic where that distinction is

important. These applications concern the estimation of the

range of a function representing, say, some engineeringdesign

that is intended to perform correctly in a wide range of

environments. The environments are represented by interval-

numbers given as data; the performance will be encompassed

within the interval~numbers produced by the computation. The

widths of the intervals may well be substantial; the ratios

uncertainty/approximator are of far less concern than that the

intervals be not much wider than necessary. My intere§:in these

applications is such that I prefer to represent [a,b] via

the pair {a,b} rather than via {(a+b)/2 , (b—a)/2} .

ii) ~Approximation: Roundoff need not vitiate the_de£initions

Vgiven in §2 of the arithmetic operators + ,
—

,
- and /

provided they are approximated in a way which is interpretable

as a loss of precision or of information rather than as a

source of misinformation. The appropriate way is via what we

shall call outer approximation.

Just an the real numbers normally representable in a

computer constitute a subset of the rationals, so must the

intervalwnumhcrs normally representable in a computer constitute

.-..J.... m..- ... -, ..N4:..»_...-.....‘..l _,,....4,»......v.. , r
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a subset; call them the storable intervalvnumhers. We shall

call a storable interval—number C' an outer approximation to

0 whenever C’ 3 C and d(0’;C) is sufficiently small. How

small is sufficiently small, and which metric is d ,
are

important questions which will not be discussed here., Interval

Arithmetic is properly implemented on a computer when, for

every arithmetic operator
* in {+ ,

—

,
-

, / } , every

instruction—sequence
intended to compute C = A*B produces at

worst an outer approximation 0' ; similar statements should

be applicable to all the elementary functions like Rexp ,
Rsin ,

AB ,
... which are provided in that implementation. when

properly implemented, Interval Arithmetic will lose information

to the extent that its outer approximations are too big, and

to that extent may generate excessive pessimism, but cannot

_generate misinformation.

The associative law is an inevitable casualty of

roundoff since, for example, .10—35+ (1035— 1035) produces

10"35 whereas (10”35+ 1035) m 1035 produces 0 in ordinary

arithmetic with fewer than 71 decimals. Ideally

commutativity, monetonicity ard sign—symmetry’shouldbé“

preserved wherever appropria e; this will be so when every

operator is approximated ideally, the ideal outer approximation

0’ to C being the narrowest storable interval of the same

type (interior, exterior, open, closed) as C which contains

'0 . Current floating point hardware design does not always

help the implementor achieve the ideal. Rarely can he avoid

[3.999..;99 ,
4.000..L0l] without

approximating 2 + 2 by
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programming a host of tedious tests to ensure that

1 + [0,10“39] is properly approximated by [l , laOOO...Ol]
‘

and 1 — [0 , 10-39] by [o.999...99 , 1] . I think an

ideal implementation is worth whatever it costs.

Arithmetic expressions which underflow or overflow can

be approximated with the aid of O or m respectively.* For-

example, if 10—‘°° and 0.099...99x1099 are the smallestr

and largest real'numbers normally representable in the machine,

then 10”200 might be approximated by ]O , 10—’°°[ and

102°° by ]0.999...9BXl099 ,
m [ . Thus would overflow join

division by zero as the only ways to'generate w in our

scheme. Some different ways to treat underflow and overflow

usefully have been described by Kahan (1966, pp.26~ol).

'i) Diagnostics: The appearance of 9 during a calculation
we

is usually but not always symptomatic of a mistake. Every

implementation of Interval Arithmetic should permit a program

to test whether 9 has appeared recently and to respond in~

whatever way the programmer has provided. In default of such

a provision, the program‘s execution should be interrupted, if

not suspended, as soon as Q appears, and information should

be printed out to help the programmer discover why 9 appeared.

The programmer's response to that information will be either’

to identify and correct a mistake, or to recognize a function

whose eva nation requires further analysis at some critical

points. Sometimes the simplest way to estimate the range of

* A similar prgpo (1368)mlat

l
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a complicated function is to computeseveral formally

equivalent interval expressions of that function and then

select the narrowest. Therefore the appearance of Q is not

always a disaster.

Similar considerations apply to overflow, underflow and

the appearance or w ; fortunately these events can have

serious consequences only if they later cause an 9 to

_appear, and that Q will not go unnoticed. The main reason

for interrupting a program's execution (only if the programmer

has asked for such interruptions) in response to such events

is that these events are often followed by Q's whose causes

might otherwise remain obscure.

There are two classes of systems programmers to whom the

implementation of Interval Arithmetic should not be entrusted;

those whose rigid moralities exclude any tolerance for other

men's mistakes, and those who indulgently make provision for.

every possible vice. The author's Tao to Enlightenment through

Hindsight, which uses postwexecution reminders, simple options,

'and messages in English or FORTRAN but not Octal, is described

in Kahan (1966) .

iv) Compilability: Interval Arithmetic is more aptly to be

regarded as supplementing than supplanting ordinary real

' Jul].(:]1'l‘.
arithmetic. This point of View is supported by the e

results which Hansen (1968 and references cited therein) has

obtained; he uses Interval Arithmetic to refine ordinary
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arithmetic calculations and guarantee their-validity. K. Nickel,

N. Apostolatos et. al. (1967) have gone so far as to propose

an extension of ALGOL 60 to cover their brand, called Triplex—

ALGOL 60, of Interval Arithmetic. We propose here to outline

a comparable extension of ASA standard FORTRAN.

Interval—numbers can be represented by pairs of real

numbers (see i above) just like complex numbers, so adding a:

type INTERVAL need not complicate the indexing or input/output+

facilities of the compiler. Scanning INTERVAL—arithmetic

statements should be no more complicatedthan scanning DOUBLE

PRECISION or COMPLEX statements since the latter two tvpes

involve subroutines for at least some of their elementary

arithmetic operations (certainly for COMPLEX multiplication and

division) whereas INTERVAL arithmetic uses subroutines for all

operations. Mixing REAL and INTERVAL arithmetic is just like

mixing REAL and COMPLEX arithmetic. The relational operators
'

.3

.GT. , .GE. , .EQ. , ... (for >, 2 ,
= ,...) will have

tO’call subroutines if they are allowed to appear between

INTERVALexpressions*. Transfer functions analogous to REAL,

AINAG and CGMPLEX will be needed to facilitate ordinary

arithmetic with the endnpoints of INTERVAL variables, and other

* I cannot understand why ASA standard FORTRAN (1964, p.598)

forbids .EQ. to appear between two CGMPLEX expressions, nor

why the assignment COMPLEX = REAL is forniddcn (ibid., p.600).

Slips like these give FORTRAN a bad reputation.

T 1.. unless we demand outer approximation during 1/0 Conversion.
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subroutines will be needea for .INSIDE. , UNION (of two or

more overlapping intervals), RABS, REXE, RLOG and similar

functions. For each of a few plausible choices d(A;B} I

it will be necessary to provide DIST and WIDTH functions

comparable to CABS.

p. r? U)

Interval Arithmetic will remain unknown to most of

F'-5'

potential beneficiaries until it is comfortably embedded

some of the widely used algorithmic languages. Interval

Arithmetic's full potential will remain unknown to all of us

until it is embedded in a language which, like FGRMAC (see

Tobeyet al. (1967)), offers both symbolic and numerical

arithmetic capabilities, because the outstanfiing problems of

Interval Arithmetic are more mathematical (algebra, analvsis

and geometry) than computational.

Interval Arithmetic's most obvious application is to

(V
'

\i-
'

\-,
-

' I .

those numerical problems whose solutions can be implemented in

a computer program with no iteratioxs nor oft~reveatcd loops.

Examples incluae the eomyutation of engineering design

,.Q .

.\
.. ,

_ ,

. “

ant PC _ormance from cook—book £oimnlao, the fittingpa 3.‘all“;

of Simple curves to modest numbers of observations, and the

:rjcal information from one coordinatetransiormatiou 0’

system into Those problems have solutions which mav
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be identified WiLh the computation of several functions

fi(x1;x2;...;xn) of modest number n of variables x;
.

‘

I.

The people who Wish to

L‘.‘

solve such problems may be expert

.enough in their Chosen fields, but are usually unacquainted

‘Wlth the trleS of error analysis, and therefore unable to

assess the
accurafiy of their computations even when they want

to. BY “Sing Interval Arithmetic to compute almost any naive

expression for
F€(X1;X2;...;Xn) they may be sure that no

.
,

' '
- *1. .

.
~

’

.numerical 1n5Labixity can mislead them. Narrow intervals Pi
are acceptable Wlkhout reservation.’ If the computed intervals

Fi are too wide, there are two possible explanations. First,

the Width may be Que merely to an expression for Fi which

is F9°.9aiver corxhsponding to what might otherwise be called

"a numerically u““table calculation"; the remedy here is

Iound by consultimg a numerical analyst. Secondly, the width

may reflect the fflct that some fi are discontinuous or at

least Violently V‘Vrying functions of some xi ; such behaviour
L

is symptomatic of
-e illwposed problem. In other words, if

wide intervals occulr they signify a need for more analysis; if

no wide intervals
‘occur then we are all, experts and novices

alike, relieved 03' tedious and superfluous analysis. That is

what machines are LEOI

’ If the CXPrngsions for F.’ are aptly chosen (apt choices
1

are sometimes not
“bvicus, some imes imp733ihld than they may

be Ufifid #0 SLUJY L“:e csnsaquences of varying various input

suitable intervals X, , as was mentimnoc
(

parameters xj
ac
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in §5.£. When combined with interactive computing facilities,

this application of Interval Arithmetic can signiticantly

shorten the search for flaws in engineering designs.

Interval Arithmetic is also useful in conjunction with

ordinary arithmetic for solving a set of n equations

fi(w1;x2;...;xn)
= O , not so much for finding a solution as

for proving that'a solution has been found. We shall illustrate

this point by describing a relatively simple technique; better

techniques are described by Hansen (1968).

Let us write £(gj for the column vector whose 'n

components are fi(x1;xz;...;xn) , and im for the Jacobian

matrix of f's first partial derivatives. We assume that

[{g) and £m(£} are represented by real expressions to which

correspond continuous interval expressions £(g) and §$(£) .

We also assume that some apprOximation #0 is given and known

to be "fairly close" to the true solution E. of fffl)
= g .

The computation proceeds in-two phases. First is the
h

improvement of HO by Newton's iteration, ideally

~1
= ““1 "u

in+1 an £m(in) [(mn) ’

in which interval arithmetic is used only to help decide when

to stop the itexation. The second phase uses interval arithmetic

in an essential way to bound the error in the last iterate.

zidly (quadratically)'Because Newton's iteration converges so

in the absence of pathology, we shall attempt to approximate a

as accurately as roundeLi permits twat accuracy may
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exceed our needs.

-Given in compute, as a0curately as roundoff permits,

the values of £(yn) , [$(yfl)
and a matrix gn- to

approximate [m(yfl)"l ; no interval arithmetic is needed here.

Also let {fl be an n-vector of intervals obtained from in

by smearing each element of yfi
two units in its last place:

i is the narrowest storable interval—vector containing y”

in its interior. Compute 5(ln) to obtain a bound for the

variation of £(1n) attributable to uncertainty due to

roundoff plus small perturbations in yfl
. Sometimes that

bound can be computed more accurately and/ or efficiently by

“means other than Interval Arithmetic; erg; see Kahan and Farkas

(1963), Smith (1967a, pp.70—90, or 1967b), or Adams (1967) if

i's components are all polynomials.- The final result's

accuracy depends crucially upon how precisely :(Mn) and

R£(£n) can be estimated.

Normally the iteration would proceed to u V

E q
— G .fn

wherer in is the computed approximation to fkflfl) _. ,However,

the iteration ought to be stopped when an
is as close to i

as ln+1
is likely to be. We Choose to stop as soon as

gcgfzfl) ; when this criterion is satisfied there is practically

no way to distinguish an
from §_ . '(Note that that criterion

is certainly satisfied when Eclfl , but does not imply £51” .)

Will the criterion ever be satisfied? In general this is a

difficvlt question to answer precisely; the answer turns out
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to be Yes provided 10 lies within a neighbourhood of a

wherein £x(£) varies not too widely and is not too ill—

conditioned.

Having stopped at 1 E
in , we enter the second phase

of the computation to provide a bound for E
-

u .Z'We do 5

with the aid of what is intended to be a contraction mapping

fl(£) when g lies in the neighbourhood of a and 1 (cf.

.Collatz (1966, p.213) ). Let

Ill‘

M92) :2
"

E‘fli)

where g E 9n is the best available approximation to

... i- .... .4 .._.....V...Wl.l,._. avian. ‘ . ”Justina...“
. .h i... L

O

fy(g{_l . We shall verify later (next footnote) whether g

is nonsingular; if so, each of E's fixed points 5
= fi(£)

is a solution of £(i)
= g . Since fl is continuous,

any‘inteival—vector g which contains Rfl(§) must contain

least one of flfs fixed points (ibid. pp.450—6). Our task

is to exhibit such a a , and preferably a narrow one.

Let us first apply the mean value theorem to write

Hh(m) .7101) + (l
—- guy) . (g:

— i)

where E. is the an identity matrix and g(£) is the

matrix whose elements are

qij \

l

- 0
.

(31-) 'L )7' gilt an . fk ('7‘,-
J

for some unknown Ok(§}u]0,l[

Q(£) +

g‘£1{1) and, since 9 %

E
~ 9(m) to be small of the 01

at

now
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This expectation can be put to the test over any interval g

containing 1 ; use Interval Arithmetic to compute the interval

matrix

EU .5 ,1.
—

gram 3 R<i — gen -

As long as “§(§)H s u for some small a < l we may be sure*

that fl(£) is a contraction mapping over §;§_ ; in fact we

find that fl(§})
~

fl(§2) 6 §(§)‘(§1
'

£2) 1 SO

li7i(£1)'fl(£2)|l S Oils: ”£2“ for every £1 and E2 ‘in E -

Provided o is small enough (depending upon the norm used) the

interval-arithmetic analogue of fl(£) , namely

My 5 y.
' [9&fo ‘ gay-(r

" 1)) ,

will also contract the width of each i g E . Unfortunately,

§(£) cannot be proved to lie in E 'without assuming more than v

has been assumed so far.

i zj lsijl , will

serve-adequately unless the equations, L(m)= 0' arci"ill

equilibrated", which possibility will not be considered here.

Every real matrix Acflx(§) satisfies 1]; — g‘é“ s G < 1 if

“§(§)” s o < l , whence it soon follOWS that

VAHE”
- {All.<, 0119”“ 0 HA“ /<l -- 0) and

IAHg — 5—1”s a “571” 0 [Q /(l
- 0) ,'

Therefore G is

nonsingular, and so E‘s fixed points i really do satisfy

my
: 0
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After recalling that l E lnéz
: {n and that

EQL) , let us choose £0 E 1/.
-

§*£(_Y_) and compute ,

965(1) 2

£1 E fl(§p) . Evidently g‘- E'E(i)€ £0021 because

9‘§(§0)'(§0
' a) = '

§(£o)‘§'£(z) , so 11 has some points

in common with £3 . Moreover, £1 can extend beyond go

only when S(§o)-(§o
— H) , which should be much smaller than

(£9
— i) , i wider than the gap between £0 ='l —'§-F(Y) and

(I)

l
-

§'§{EJ . Provided E(l) is sufficiently small, no such

extension will occur, and we shall have £0 3 g; ,~
so gag;

However, if £0 i g} then we can replace go by £0 u £1 and

test again whether £1 E fl(flo} g go ; this usually works.

Once we find some g]: fl(§) , we have proved that

i
= fl(fl} for some EcRfl{§) g H(Z} . Unfortunately there is

no guarantee that such a g‘ can be found. For example, if

f(x) : cos(exp(-l/x2)) — 1 but mum); 210-” for all :1: ,

corresponding to calculations with ten decimals, then no

mechanical way exists to decide whether f(x) vanishes or not

in [—1/4 , 1/4} . Most or the comnlications~in the

discussion above are caused by not knowing whether i(g) has

a zero near i or not. Hansen (1968) assumes that an

interval is known which contains a zero of i , and consequently

his arguments are simpler than ours.

Here is an example to illustrate what usually happens..

The example is taken from Moore (1966, p.68).

$12 + (w;2 --

1)]
211;; 2:177

. 14g) .

$1
’

$2 J l Ml



Cbmputation is done in four-decimal floating point starting

[-0 ,

[.3571

with 10
=

0'7
. We find f(io) =

- 0.7

[—.0204 , ~.Ol96]

fl 4 2(io) = ,

. [—2x10‘“ , 2x10'“]

7 .

.7071

11
=

in
"

Eo‘£(io)
=

1'

.7071

[-2 , 0]

1
=

211 r 5(1) = 10‘“
O

[.7068 , .7074]

£0
=

I

[.7068 , .7074}.
I

. [~10

§(§0)
: l

“

ETEm(§p)
= 10m“

. [— 4

'

_

[o , .7072}
21 = g(§o)

=

a + 10
“

[0 , .7072]

Thefeiore i exists and lies in [

I E =

I 4]

7-10-87
[-7071

[.7071

.3571

[—4 I 4]

[—10, 4]]
[~42 , 42]

[—42 , 42]

,,.7072]

, .7072]

.5

-.5

.

].
].

34.

] .

41'

Z 0
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7. Application to a Dififerential Equation

We seek to calculate the solution y(t) of.

g; %y(t) = fmym) , Mo) =

W '

given numerical values for to and yo and an expression

fft;y) amenable to symbolic partial differentiation. 'A

problem of long standing has been to compute rigorous bounds

for the error in the approximation to y(t1) when t; is

substantially greater than to . The outstanding contribution

made by Moore (1965a and b, 1966) to the resolution of this

problem with the aid of Interval Arithmetic is perhaps the

most potent reason for the current interest in both Interval

Arithmetic and computable error bounds.

Here we shall attack the preblmm Via a classical

differential inequality (see Birkhoff and Rota (l959, §ll) or

Szarski (1965, p.7) )i

if z(to) 2 yo and ;(t) 2 f(;;z(t)) for t 2 to

then 2(t) Z y(t) too.

our method, chosen for simplicity, is quite different from

Moore's.

Given 20 2 yo , we attempt to choose storable numbers

n u on.

30 , go and 20 such that

3(t) : 20 + (t ~ ta)éo + (t — t0)2;}/2 + (t—lo)3 2}/6

satisfies é(t) 2 f(t;3(t)) over to S t s Lo+h tor some

h > 0 . Suceess will yield an upper bound 5(t) 2 y(t) for
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t E [to,to+h] - An independent lower bound is to be computed

in a similar way. Then to+h is renamed to and we continue

the advance towards t1 . If* we reach t1 , we shall have

rigorous upper and lower bounds for y(t1) .

Let us use abbreviations T E t — to and

g(t) E_f(t;z(t)) . Despite that 9 depends upon velues

0-_ _‘

on

>

_
'

‘

20 r zo ano 20 which are not yet known, 9 1s a symbolically

differentiable expression;

'
m 3

ngt’i‘fyz : (f: gyf(t;y)Iy-=z(t) , etc.)

"._ ,
V ,' .

'2 ,

9—fttfr2ftyd4 ryyz ff“.

.-.= __
I“

.

+ V
'2

_

-3_
‘ 2 '3- _

g 'fttt.'3Jttyz 3ftyyz ifyyyz Tuftyifyy?)
4

'+
f” .5} .

.

We note that numerical values will be computable for go é (to) III!

a .. _ _

goE g (to) and the LUUCLlOH g (t) as soon as values have

been assigned to 20 , so and 30 respectively, but

é; E f(§;zo) is known new.

I”
Next let us examine s(t) é{t) — f(t;2(t)) ; we find

that

3(1)): 8(to+ T} " 9(toi T)

= (20" go) + T(/o"‘ 99) + T 2(Zuowgo)/2 -| TséYtQ +Te)/6

.* There is some risk that the differential equation may p05

a singularity which might intervene before t; is reached, but

this risk is common to all numerical methods and will not be

considered here.
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for some unknown 0(t) c ]O,l[ . Our task is softo choose

71 > O , Ea , 35.0 and .é.o that RS([1/o Ito—1h] Z 0 , in

which case we shall have z{t) 2 y(t) in [to,to+h] . 'And

if Rs is not too big, z(t} should not be too much bigger

than y(t) .

The first step is to choose a tolerance e > O ; our

intention is to keep R3 9 [0,29] , so 9 should be chosen

small to produce a tight upper bound 3 . On the other

hand, the smaller is e , the smaller must h be kept to

keep Rs 9 [0,26] , and hence the greater must be the time

required for the computation to reach t = t1 . If e is

too small, roundoff alone may force h = O ; therefore a

should always substantially exceed the uncertainty in f(t;z)

contributed by roundoff alone. Certainly a must exceed

w(F(To;Zo)) , where F is the interval—arithmetic

expression ior f and To and Z0 are the narrowest interval~

numbers containing respectively to and 20 in their

interiors. Increased Values of a will permit increased.

i 1h -.

values of h roughly proportional to a while a is still

'small. There is no simple way to choose a optimally in

general, but an adequate choice is hardly ever difficult, and

given that kmin is the minimal acceptable value for h we

may set 6 = w( F{[to,to+hj ; Zn) ) as a last resort.

The choice of a can affect the precision and the cost

of our bounds; but not their validiflb
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Having chosen a , compute in turn

-
o n.

1

go % 90 + e , 20 f g and Bo % o

the approximations here are due solely to roundoff during

ordinary arithmetic evaluations of the formulas above for

g , Q and! y . The symbols 20 , £0 , zo , E} stand for

numbers represented precisely in storage, and they define

our upper bound 2(t) precisely. Certainly z(t) 2 y(t) in

some t~ interval [to,to+h] because 3(t) 2 0 in that

t—interval provided h is small enough. Our next step is to

find out in how wide an interval [to,to+h] the condition

0 s s(t) 5 2e remains valid, though we do so by using Interval

Arithmetic to over-estimate Rs([tu,to+h]) .

Use interval-arithmetic'eXpressions for g and its

derivatives to compute the interval~numbers

Go 2 G(to) , co .5 M759) and u ; Zia-o)

from the formulao_given above. The widths of these interval—

J.

numbers should he of the order of roundoff because t e is no

other reason for their uncertainty, and of course we should

find that the intervalmnumbers

.
u

20
* Go

“

G I Go
— Go r 30

” Co

are all very tiny. We shall also need an interval—expression

'

fior IéYto+H) where H is an interval—number of the form

H = [0,h] . Such an expression is provided by the formula

.0

sometimes adequately large st
g . though not uniquely; »3 h
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can be taken only after an expression for E. has been

rearranged to yield a EYto+H) which is not orders of

magnitude wider than Ry(to+fl) . Finally assemble

IHspawn [(H.'&“(to+;1)/6+ (2‘0 — é'o)/2)-H + (£70 — 60)}H+ _

+ (50 — G0) 'I

of which we may be sure that Rs(to+H) g S(to+H) .

For any H E [0,h] 2 0 there are now three possibilities:

'i) S(to+fl) 5 [0,22] and w(S)/e is not very tiny; such an

B providesan acceptable step from to to to+h .

ii) S(to+H) a [0,201 but d(5)/c << 1 ; such an H is too

narrow, and might profitably be replaced by, say,

(0.7 e/w(S)]1i3- 11 .

iii) S{$olfl) i [0,2e} ; such an H is too wide and should

be cat down to, say, (0.7e/w(s))1/3 - H

Provided c > w(Go) , H = [0,0] is too narrow; H = [0,w[fi

is too wide except in trivial cases. By virtue of 5's

inclusionumonotonicity and continuity near H i [0,0] , some

' acceptable H_ must exist. A plausible first guess at H is

whatever step was used to reach to ; another plausible guess

is h % lc/§(£o)[#3 . The precise manner by which an

acceptable H is found cannot be a vital issue first because

H does not have to be chosen accurately (just not too wide!)

and second because any unacceptable guess can be improved via

ii) and iii) above. The may H is found may affect the 0031

yof our computed hounds, but not their precision HOP Udlidiflp

]

i
u

t
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How precise are the bounds?‘ We consider a hypothetical"

example drawn from Moore (1966, p.126), who drew it from

Henrici (1962, p.85—6). Suppose f{t;y) E -16ty ,

\l , t, E +.75 , 'yo > 0 . We Choose a tolerance
to E —. 5

e(t;y) % 16 e y with some a like 10“7 for an IBM 7094,

on which each arithmetic operation is accurate to ahout

decimal digits. Because It} < l for this problem, that

tolerance e substantially exceeds the uncertainty

introduced into f by roundoff. We assume too that so is

stored to double-precision, and that z(to+h) is computed by

first calculating h(20 + h(50 + hE}/3)/2) in single

'precision with forced upward rounding of each arithmetic

operation, and secondly adding that result to so in double

precision with an upward rounding. Wherever 2c _has been

used above to compute 20 , 30 and E3 , the value of 20

rounded to single precision may be used instead. Wherever

30 appears during the intorval:arithmetio calculation of

S(to4fl) it should be replaced by the narrowest single~

precision interval—number Z0 containing an . Without this

appeal to one double—preciseaddition, the computed values of

3(t) would drift up excessively by one unit in the last place

after each instep h , and several thousand stops could be

taken. (Actually, a iew hundred steps are sufficient.)

The computed values of 3(t) can now be approximated

alcauatcly by solving the differential inequality

:1

ii
"1
3
\1‘
:
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,

0 s 3 N f(t;z) S 20 , 2(to) = so ,'

in closed form with f(t;z) = ~16tg and c 16 e z and

20
= (l+5)yo for some positive 5 < 2X10”a . We find

1+5 5 z(t[/y(t) s (l+6)exp(16 e (t»to)) ,

which shows that z(t) approximates y(t) to within a few

hundred units in y's last (8th) place. Since
A

y(t) = c-exp(—8t2) for some constant c > 0 , we observe

.that the width of the interval separating y from 2 will

decrease as t increases toward t1 = +.75 . This

observation contrasts strongly with the results produced by

Moore's firsu method (1965a, and 1966, ch.lO-l2) because the

~ widths of his_interval~estimatcs for y cannot decrease

(ibid. p.132).

The method described above is capable of generalization;

we could use other functions 2(t) than cuhic polynomials,

other tolerances 2 than stepwise constants. But the crucial

generalization to systems of differential equations is a Stcg

beyond the scope of these notes. Some idea of the role played

by geometry in such a generalization can be inferred from the

work of Moore (1965b, and 1966, ch.13), Gudcrley and Valentine

(1967), and Kahan (19662 1967). These notes will conclude

with some indication of what goes wrong with a naive approach.

Let us consider two differential equations
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9i =

fi(y1;yz) , and suppose nothing more is known about

yi(0) than that yi(0) e Yi(0) E [ai’bi] . It seems

natural to approximate each yi(t) by an interval— valued

function Yi(t) E [mi(t) , zi(t)] . PrOVided yi e Yi for

all t > 0 we find that, for example,

min f1(y15n2) s Q; s max f1(y1;nz) .

I

U2 6 #2 n2 6 Y2

These inequalities resemble the classical differential inequality

mentioned above, and lead to a natural generalization:

If yi(Q) c [xi(0) r zi(0)} and

k1 s R f1(m1; [x2,zzl) .7. ~

k1 2 R f1(z:; [32,22]) I

52 S R fz([$1,313;§2) ’l and

52 Z R f2([$1;31l5¢2)
I

'

for all t > 0 , then yi{t) c [mi(t) , zi(t)] too.

This theorem suggests that “the best" bounds for
yi

will be

and nfinimal solutionsobtained fxom the maximal solutions xi

2i
of the differential inequalities; the only things wrong

with the suggestion are the words "the best“.

For example, suppose fi(yl;y2) E (wl)$y3~i .

Then the desired, the maximal, and the minimal solutions satisfy

H1
=

”H2 r $1 m.”82 : 21 =.~m2 I

l
~~ 'n >- \ 1’ -«

,

H2
"

y) 1 E2 ~ &1 I #2
"

31 -

The y~eguations represent uniform rigid rotation of the

(u 'u )kalane. If at t = 0 the point (p :72) lies in some
41.1.,7- }. ‘

.. JI,J

7’

‘fl
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i
'1

I
x
i
,

i
x
,

‘

rectangle (X1;Y2) , then for all t > O the point (y1;yz)

will lie in the image of that rectangle under rotation; the ,

dimensions of the rectangle do not change, only its position

and orientation. The theorem says that the rotating

‘rectangle lies in another rectangle ([x1,zl] ; [x2,z2])

for all t ; this larger rectangle's position changes too,

but its sides stay parallel to the coordinate axes and

lengthen like multiples of exp(t) as t increases (unless-V

the rectangle started as a point). In fact, we Verify

immediately that

wi(t)
:

zi(t)
—

wi(t)
: wi(0) cosh(t} f ”3-i(0) sinh(t) .

These results are substantially the same as obtained by

Moore (1965a, and 1966, p.128) from his first method.; The

bounds produced by his second method (1965b, and 1966, ch.13)

grow less quickly, but still exponentially too fast. Only

Kahan (1967) claims to produce bounds which do not grow

exponentially too fast, and then only when the bounds are

small enough that uncertaintiesyareLgropagated.inwa way f4_

adequately approximated by the linearized variational equations 1

.
_ g ‘_

i

5%
‘ Xj 3y, f4; ayj ,

'

J L,
E

‘
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