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A MORE COMPLETE TINTERVAL ARITIMETIC

Abstraqg

So far, all published schemes for Interval Arithmetic
(see refercences) have prohibited division by any interval-
number containing zexo. This prohibition is inconvenient
and unnecessary; we proposc to avoid it by adjoining what we

call extericr intervals to the usual interior intervals of

‘Interval Arithmetic, thereby obtaining a number system which

resembles the extended real numbers closed at <« .,

1. Notation

Lower case italics a,b,e,... are used for real
numbers, lower .casa Greek ao,B:7,... for extended real
nunbers, upper case A,B,C,... f£or interval-numbers.

The real numbers are identified in the usual way with

the points on a straight line. The set § of extended real

"numbere is obtained from the reals by adding the symbol <« ,

just as the projective line is obtained by adding a point at
® ;p clogse the ordinmary straight linet Arithmgtic
operations upog extended reai numbers have the usual
identification with geometrical operations upon points in
the projective line (cf. Coxeter (1949) ch.ll) subject to
certain resexvations concerning the indefinite forms 0/0,
wkw , o/m and 0 whose values we shall later define to be
the interval-number § consisting of the whola projective

line. Although this assignment may occasionally waste
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information, it cannot be misleading¥.

Interval-numbers are by definition non-empty subsets of

the extended real numbers corresponding to intervals on the

projective line. We distinguish exterior intervals, which

contain ® in their interior, from interior intervals, which

do not; a further distinction concerns finite interior

\

e an

* However, implementing ordinary arithmetic with extended
L]

real numbers correctly on a computer with finite word-length

_is

a complicated business. I know of no such implementation

in hardware that is not misleading, despite occasional

mistaken advertisements to the contrary. For exanple,

consider Control Data's 6000 series of computers; when they

- execute the FORIRAN sequence

X = 2.0%%1069

Y = 4.0%X )

7 =3 = 2.0% (X4%) e e 2
7= ,[((y-x) - k) . X] - X

F = .08

they produce correctly X = 2'°¢% , .y = o and

indeterminate, but misleadingly T = o with overflow and

g =
U= 0.0 with overfiow. Sce CDC's reference manual (1967)
pp.3-15 Lo 3-20. _ "
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intervals which neither contain nor touch the point at' = .
We shall write [o,B] for closed intervals which include.
both end-points o and B ; we shall write Jc¢,8[ for
open intervals which include neither end-point; we shall also
allow intervals ']u,B] and [a,B[ which include that end-
point next to one bracLeL but not the other. Only closed
finite interior 1ntervals are discussed in Moore's booh
(1966) . Our scheme too can be restricted formally to just
the closed intervals, thereby simpiifying its iﬁplemenﬁation
on some computers (see §5.7 ); although such a restriction
may occasionall& waste information when an end-point is
included that we might havé preferred to exclude, the

restriction need never be mislcading.

_Hexe is how the symbol strings [oa,B) « Ja.Bl ¢ [o/BI

and Ja,fl shall be interpreted as interval numbers for all

extended real o and f . Represent the projective line
as a circle so oriented that, as the real number x increases

from @ to b > a , the point &z moves counter clockwise.

When o # B , the string [o.,B] represents the closed

interval described by moving on the circle from o to B
counter clockwise; reversing the first oxr the sccond bracket
merely causcs the adjacent o Or B respectively to be
deleted from the interval. When -a = B éertain almost

arbitrary conventions are invoked;
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lo,al . = all extended reals ;

lo,a[ = the empty set.
Here are some examples.

xe[-1,1] é=> -1l g2 £ 1 | ‘ ' g
I

Ee[l,~1] <=> E=® or E s -1 or &

W

1
Eefly~kl == E=w» or £<~1l wor £ =1
gell;® [ <=> & 2 1

xe]e,l ] <=> gz <1 .' ;
Eel[l,1 [ <=> E # 1.

xe[o,» [ . for all real =x . -

Finally, just as the n-tuple (51;52;...;£n) is
identified with a point in. an n-dimensional extended real |
space, so shall (X1;X2;-..;Xn) be identified with thz
region(s) in that space where each ccordinate Eiexi . When.
every X, is an interior intexval,, that region is just a

(possibly infinite) parallelepiped.

Now one.purpose of Interval Arithmetic can be explained.
Ideally, a numerical computation free of error can be regarded
as a mapping W from a space of data-points (a;B5Ys...)

into a space of results (Esniti.s«) -+ Rounding errexs and
other uncertainties distort this mapping, thereby generating
mfsinformation to the‘extent that the differences between
computed results and ideal results are unlknown. Interval
Arithunetic purports to eliminate misinformation, at the cost

of extra couputation and some loss of information, by providing
\
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rigorously justifiable estimates for the results. An Interval
Arithuetic computation can be regarded as a mapping Moy, ]
from regions (4;B;l';...) in data-space to regions (E;H;Z;...)
in result space, so related to p that yu maps each point
(a;B;Y;...) in (A;B;F;...j into a point JEsHIL:eved
contained in (Z;H;%;...) . Given u , there are several
easy routines for deriving a related ¥ , and ofteﬁ enough
the‘most naively derived M approxzimates u adequately for
practical purposes. However, the problem of precision in
conventional arithmetic has its analogue in Interval
Arithmetic - to obtain ffom ' an M whose resuli-regions

are not too much bigger than necessary.

2. Arithmetic

Although our main objective is to extend the rules of
rational arithmetic from real variabhles to extended real”
variables and then to interval-variables, it turns out to be
more convenient first to doal'with“an'inteihédiatc system
consisting of the extended reals in  and itself; here
Q is an interval-number consisting of all the cxtended
reals. In this intermediate system, the arithmetic operators
+ , = , + and / arc defined to act upon the symbols

f2 and « in the following natural ways:’

(i) Any arithmetiiec operation with § as an operand

reprodiuces £ .
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(1i) 0/0 = o = o~ Z wfw = 0eo = 0 = Q . |
(iii) 4o = —w E fre T wrf = wig E x+; = wfe B IO T &
for all extended reals & # 0 and 2z # « .
‘iv) gfe 20 Sor all & F %,

The foregoing definitions yield a closed system in which
the commutative and associative laws remain as valid as for

real variables, but there are two important failures.

(a=E)/(B-E) # o/B then (a*E)/(B*E) =8

Cancellation: 1If

if (o-£) - (B-E) # a-B ‘then (a=f) - (B-E) =
pistribution: TIE o°E + B<E # (o+B)+E then a+f + B&E =0 ;
if o/ + BJE # (atB)/E then o/f + B/E = .

These failures implj that the value assigned to a rational
expression involving extended rcal variablcs may change if the
distributive or cancellation law is invoked before the
expression is evaluated. Fortunately, the value cannot vary
arbitrarily; it turns out that a rational exvression cannot
have more than two values in our system, and cannot have two

values unless one of them is © . The other is just that

value which would be assigned to the expression if it wers

regarded as a rational function of real variables, with the

symbol <« dcnoting a linit for a variable, or a pole of the

function. Unfortunately, information can be lost in our

system whenevexr an expression must be assigned the value Q
no matter how it is reordered despite that it deserves a
Fox

better valuo. exarple,

P ey,

Q

.




-y (z+y)/ (222 + y*y)

yields the value & no matter how it is reordered when

£ =y =0 , even though its limit as 2 >+ 0 and y =+ 0 is

0 , as can be seen by rearranging it to read

m{l ~2/7(3 + (x/y)z)] a
/
i - (This expression could be evaluated morc precisely -if we

introduced the square function into our system thus;

i

N2 = [0,»] , and otherwise &% = E<E i,

i doing so foreshadows the intexrval arithiietic “o comes)

The distinction between rational expressions

f(Ey3;E25...35.) in n extended real variables and rational

n

functions f(zy;xz;...;x ) in- =z recal variables is an

n

important distinction which should not be allowed to escape
iﬁto.the ambiguities of our notation. The expressions must
be evaluated by rules, familiar - to coupiler-writers, which

do not allow parentheses to be removed by the distributive
laws nor, in,practical implementations, the associative laws.
The functions are representable in infinitely many ways by
different expressions, all equivalent by the laws of rational
algebra for all arguments except possibly on a subset of
dimension less than n . Two different expressions
representing the same function can differ only vhere one of
intermaediate exbtended

the expressions evaluates to £ in our

\ system. Howover, asg excuplificd above, a function may be
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continuous in the topology of the projective line (in which

w is an allowed limit-point) at some argﬁmént without there
being any way to express that function as an cxp;gssion whose
evaluation in our system yields thé correct limiting value
instead of just § . This limitation can be partly
circumvented by a furthcr extension of the system to include

all interval-numbers.

Having specified how the arithmetic operators + ' =
and / shall act upon degenerate_intervals o = [a,a] and
upon § , we are ready to define interval arithmetic for
more general intervals. Our definition is like Moore's (1966,
p.8); if * 1is one of tne operators + , - , * OX l we

define

U axf over oed and PebB

m

A%B

to obtain the interval-valucé sum, difference, product or
guotient of two interval-pumbers 4 and B . Unlike Moore's

definition, ours covers all interval-numbers A4 and B .

Here arc some examples: _ .

i0,1] + [1,2] = [1,3) , [3,8.4] - Jo,0.1[ = 12.9,3.10 .
(=1)={=1,2] = [=1,-1]~[-1,2)

it

J=4,=1]=[-6,51 = 1-20;241 ; -=[=1:2]

= [~2,1]
[-1,11/1-3,-1/2] = [-2,2) , (~3,-1/2)/1-1,1] = [1/2,-1/2]
1%,2] = [3,2] = -3 2,1 = [2,1] = Jeyw] =0
10,11/10,1) = 10, [0,11/00,1] = & ,

AL 4 24015100 = 241 4 12,210 = 3/]3,~1) = Pl 731 4

[-1,20/([=2,1[ + 2)'= [-1,1[/[1,3[ = [~1,1]

s e S PP S o e 4 = Skainiaela ssang SEEAR Rr— 5.




1
{
1
|

E
E:

f
§

3
memmM"

.: I

Evidently the commutative and associative laws remain
applicable to interval expressions, but not the cancellation

or distributive laws. Instead we have

Sub-distributivity: A< (B+C) ¢ A*B + A-C

(B+C)/A ¢ B/A + C/A .

Sub-cancellation: (A<B)/(C*B) 2 A/C 3

(A-B)-(C-B) =2 A-C s

In gencral, most rules by which parentheses may be
manipulated without changing the value of a real expression
are inapplicable to interval expressions, to which a host of

weaker rules are applicable instead. Fox example,

z+ (B+C) = x+*B + x+C for all real =« ;
A« (B+C) = A*B + A*C if B*C ¢ JO,=[ ;
(A~x) - (C-z) = A-C for all real o .

Furthermore, there are theorcms sbout interval .arithmetic

that are not needed for real arithmetic; an example is

Inelusion-monotonicity: If A ¢ X and B ¢ Y then

A%xB ¢ X#Y for any operation #* in the set f{+ , - ,

Whereas the real numbers are totally ordered (x <y or. =z =

or @& * § ) , the intexval-numbers are at best partly ordcred;

we can write /4 > B only when some real o« exists such that

A ¢ oz, and B e Je,a[ and A=2B whenevexr A ¢ [x,«]

. /)

Y
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f X0,
and B ¢ ]w,x] *. This ordering cannot apply to exterior
intervals, nor to o .

The foregoing differxences between real arithmetic and

s our interval arithmetic are.common to all other proposed

schemes for interval arithmetic. In fact, everything that
~can be done with other brandsi of interval arithmetié can be
done with ours, and sometimes more simply in our scheme
because it has been designed to admit fewer exceptions.. What
lfollows is intended to support the foregoing claims by
indicating roughly the.extentlto which the scheme described
l... ... by Moore. (1966) is a subset of ours. . But .foxwal proofs ftor
our theorems and othexr claims have been omitted to save
space, thereby increasing the risk that our mistakes may have -

escaped detection.

3. TFunctions

. . ' . N
Consider first the n-th power function _ o for

positive integers n . The familiar definition

% Note that 4 } 4 unless A is degenerate; here the

gymbal. "2" is not the same as " which is used in works
Y

o>
-
—_—

on partially ordered sets to stand for " > or =" .
Cf. Birkhoff (1967) Lattiee theory p.l.

" Ixcept the scheme of Chartres (196G6), who computes a non-—

}
|

void subget rather than a superset of the range of an expression.
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a” = oacter...c0 (n times)

| " could be used for intervals as well as extended reals, but

a more useful definition for intervals is

E A® & i an over all aed .

Now we find that A" ¢ A+A+...*4 , with equality only in
certain special cases like 4 2 0 ; and in an examnple used

earlier we Ffind that evaluating the expression
x{l - 2/(1 + (X/Y)z]]
for X = ¥ =0 yields the desired limiting value 0 when

(x/Y)? is evaluated as G2 = [0,°] instead of just

yielding @ when Q% is degraded to 9+ = Q .

More generally, considcr'any function ¢(£;;£2;...;£n)
defined over some domain in extended real n-space. If that
domain includes the region (X1;Xz;...;Xn) , we shall
represent the range of ¢ over that region by
R¢(X1532;...;Xn) = | ¢(£1;§2;...;€n) over 5iexi . On the

other hand, if ¢ is a-rational function of its arguments,

{
“then it is representable over almost all of its domain by cach
of infinitely many rational expressicns in those arguments;
to each such rational expression ¢(£1;£2;...;En) corresponds .
an interval expression denoted by ¢(X1;Xz;.n.;Xn) and
; .

obtained from ¢ by formelly substituting X{ in place of

&i . Evidenily

n¢(x1;xa;...;xn) E,ﬁ(X;;Xz;;..;X”) o

i o
g SRR Y0 ST LNPRRIL I . o smetymisd sop O s s s AT ST e et [ e s i T oo S e o s
v Ze sermiom 5 e Tt B BT L g b e Tl ehdeatmiants frsemistiast g TS T2 e S A i 3 AL
. .
AL = - aw =
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A persistent technical problem in interval arithmetic

is to find an expression for ¢ which will turn the last

¢ into an = . Sometimes this problem is soluble; for

example consider ¢ (&) = E/(£+2) = 1/(1 + 2/f) and observe
that R ([-2,1[) = &([-1,1[) f£foxr the second expression but
not for the first. (This example is worked out above.) The

same is true for another example,

n

¢(xy;x2) ($1+¢2)/($1'¢2) 3;1 - 2/(1 - {x1/=2) )

which has been treated by Moore (1966, pp.28 and 45;7) in two
other ways for .both of which R¢ # ¢ at some arguments X, .
and X, . Sometimes the exterior interval-nuinbere in-our
system permit us to find expressions ¢ for which R¢ = &
more easily than in other forms of interval arithmetic. But
in general the computation of R¢ Léquires the location of
ﬁdxima and minima, and hence the solution of polynomial

equations when ¢ is rational, as well as the evaluation of

limits or bounds for indefinite foxrms.

Interval afithmetic can bé‘madé eaéiér via the
provision of interval functions like those provided for
ASA-slandard FORTRAN (1964) , ALGEL 60 (1%63), and Triplex
ALGCL (Apostolatos et al. (1968) ). In general, we want

RO(X;Y;...) for fupctions ¢lE;m;...) like
abs () , sign(&) , sin(E) ., sgrt(g) , exp(E) . L
Of course, attention must be paild to infinite values like
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cotan(0) = « , indefinite forms like 6% = ]0,«[; , and
undefined values like sqgrt(-4) ; but in gencral the

definitions of interval-functions like

Rabs (X) , Rsign(X) , Rsin(X) , Rsgrt(X) , Rexp(X) ., XY R

should be obvious. Provided those definitions are understood,
the following theorem can be proved, gencralizing a statement

of Moore (1265, p.ll) "

Theorem: 1f f(xl;xz;...;xn}‘ is an arithmetic expfession in
FORTRAN or an unconditional arithmetic expression in
ALGOL, and if each variable x. appears only'once.in
that expression, then

Rf(Xl;Xz;...;Xn) =-F(X1;Xg;...;Xn)

for all intervals X;,...,Xn contained in f's domain,
.except possibly when @ appeérs during " F's

evaluation. Here F 1is the intefval expression obtainad
from f by replacing each real variable T by the
corresponding interval-number Xi and each real function

by its corresponding interval-function.

Corollary: If also f(xl;xg;...m”) is a monotonically non-

decrcasing function of Ly 1 Eggq 1reer and %, throughout

o

s X5 P e g wvhen X, = X & e =X and we definc

(X135X2; iX,) kK~ k1 S T F

expressions -
glaeysaogeesmy) B f(@158050 0058585 03, )

m

G(X1;X2;...;Xk) PlEyeEals X
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{ .
k then Rg(X;;Xz;...;Xk) = G(X;;Xz;...;Xk) , except possibly

when § appears dﬁring G's evaluation.

Otherwise, if a function g(x) £ f(x;x) is monotonically

increasing although f(xz;y) is not, the bestlway to compute

Eg(x) for X = [a,b] will be via Rg(X) = [g(a) ; gfb)] & GIX) =
- Here are somnme ethplcs to illustrate the theorem and its

corollary. First let

\ flasbse;dix;yi;a) = (az? + by + e)/(d - &)

il

ﬁf([O;ll;[l:2];3;[4,5];[O;l]:IO;l]:[Ofl]) [3/5,2] = F(...)

Then let g(az;bse;d;z) = flazbse;d;z;x;n) (ax? + bx + e)/(d-z) ;
J?g([opl]:[]r2]:3;[4:5];[0.-1]) = [3/5,2] = _G(.l...) too.

For our second example consider four expressions

representing glm) 2 glls=2;132;2¢) , namely

gi(w) = (x?-2x+1)/(2-x) ,  gafx) = (x(z-2)+1)/(2-%) ,
| gals) E (x-1)2/(2=z) . gulz) = 1/((1/(x-1)-1/2)% - 1/4) ;
and let X = [-1,1) , ¥ = [1/2,3/2] . We find
G(X) = [-2,4] 5 G1(X) = [~1,4) = Ga(X) = [0,4)"> Gu(X) = [0,4/3]
= Rg(X)
G1(Y) = [~7/2,9/2] > Go(Y) = [-5/2,3/2] = G3(¥Y) =G (y) = [0,1/2}

Rg(Y) .
(¢4, can be evaluated in our scheme, but not in anyone else's.)
More gencrally, let F(Xl;:..;Xn) be obtained by

substituting Xﬂ fox ¥ in some arithactic expression

ST RO T LIS
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f(x1;...;xn) whose variables %, may appear arbitrarily
often. Somctimes the following theorems help to

_—approximate Rf -

Theorem: If Xi (e Yi foor wach £ 2 1iZeswsai then

Rf(Xl;Xz;...;Xn) c Rf(Y;;Yz;...;Yn) and

F(X15Xp5.0.5%,) < S B SRS PUTRN & 0 B
Theorem: I1f for each € = 1,2,...,n We have X, = Uj xij r

~ where the X, need not be disjoint, then

€

Rf(X1;X2;...;Xn) g UjF(le;ij;..;;an) c F(Xi;XZ;...;Xn).
The difference between Rf and UjF can be made
_arbitvarily small when F  is continuous throughout
(X;;Xz;...;xn) by diminishing the sizcs of the subintexrvals
X{j .;“this can be proved with the aid of notions introduced
in thé next section. Here we have tried to convey some
feeling for the combinatorial approach to £hc computation of

Rf via symbolic rearrangement of expressions before

evaluation. Moore (1966, ch.6) offers several other interesting

jideas in this arca, but the area remains largely terra ineognita.

Further work is nceded also on a problem peculiar to our
scheme-— the occasional intrusion of @ . The appcarance of
this symbol during an expression's evaluation is usually
symptomatic of a loss of information that can be recovered only
by analytical means appropriate to real but not complex

2

variablcs. For example consilder  ¢(gun) = 1/ (E% + n*y

SIS e T o
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i evidently R¢([L,»];[1,~1) = [0,1/2] < @([X,»]:[Ll,=]) = R ‘ ;
, whereas R¢([l,»[;[1,[) = 10,1/2] = ¢([1,=[;[L,~[) . The j
difference between these two evaluations is related to the 3

fact that ¢(&;n) has a limit as £ = « and n > « through

real values, but not when & and n are allowed to pass

through complex values. Resorting to open intervals is not

/ always a cure, but often helps. At first sight one might be

;
i
|
!

tempted to "cure" the problem by distinguishing among +e ,
f - and « ; but this distinction soon leads to further %

distinctions among 0+ , 0- and 0 as in ‘ /

lim exp(l/z) = 4o , lim exp(l/x) = 0+ ,
x>0+ x+0-

from which distinctions follow others and yet other complications, o

even to the point of jeopardizing the last two theorems. For

3y

|

|

simplicity's sake we shall not discuss such a "cure" here %
: | !

i

|

{(but cf. §5.% ) .

4. Metric Notions

To provide a context in which convergence, continuity and
apgroximation can be discussed, we shgll intrqﬁuce metrics OX
I distance funétions d(E;n) .«  The discussion here is very
superficial because we are merely generalizing slightly certain

notions explored in detail by Moore (1966, ch.4).

A metrie d(&;n) is a real valued function satisfying the

usual four rules (Dieﬁdonné (1960, p.27) )

§
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0 <.d(E;L) = d(g3E) < d(E;n) + dln;t)
and if d(&;z) =0 then & =171 . )
rthe familiar choice d(z;y) = |x-y| is sometimes inconvenicnt

-

for the extended reals*; instead we can definé d(E;n) by
means of our identification of @ with a circle. Let the
circle be drawn on a plane or a sphere and let = d(&;n) be the
distance between § and n;.measured perhaps along the
circle, or across the surface, or through space. Distance

functions d(&;n) 1like these, which are continuoué'as E + =

and n =+ « independently, arc appropriate when convergence to

~®» is at issue. One suitable choice is the chordal -metric

d{x;y) = - | 23] L, d(Es;e) = 1//1 + £,
v (122 (1457 )

for which d(1/&;1/r) = d(E;r) ; cf. Carathéodory (1958, §86).

% Although this d can be imposed upon the extended reals by

defining d(z;e) £ 4o and d(w;») = 0 , doing sO regquires that

+o be distinguished from -« and <« (cf. sections 3 and 5.%)

and consegucently accentuates the topological distinction between

o and the reals. Also, the least inconvenient definition fox
the width of an interval turns out to bz w(la,b]) b -a ,
which assigns useful negative widths to exterior intervals but

useless inTinite width to {a:,00) .

¢S TRCNTURE TS S

L e e = P TR AT T A A 7 A IR
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We also nced a measure for the 'width of an interval;

one natural measure 1is

wiZ) = J d(c;r + dr) over Cei .

e g

For example, using the chordal metric we find that

w([x,yl) = arctan y - arctan « 1f « <y
= ¢ - arctan & + arctan y if x >y 7
w(lz,®]) = 1/2 - arctan &« , w([»i®}) =.0

w() = 1 .

And a natural* extension of any chosen d(g;r) to cover

intervals is Hausdorff's (Dieudonné (1960, p.58, ex.3) ) %
d(;2) = max{ sup inf d(E;C) , sup Ainf d(EjL)) §
Eed TLe? S
5 and

which is easily computed using only the end~-points of
%~ and their types, interior or exterior. Since w and d
make no distinction between open and closed intervals ( e.g.

d(8;z) = 0 implies only that & and 2 have the same

" closure), metric considerations are customarily confined to

closed intervals.

Our definitions preserve many familiaxr theorems. For

. exomple:

% There are other natural extensions; sce Eggleston (1958, p.60)

i

or Rudin (1953, p.l19%5). But HNauadorff's coincides with Moore's

(1966, pp.15-16) when dltegsn) & [mwy[ is extended to finite

interior intervals, and preserves Moore's Lenmas 4.1 and 4.2,
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1f A < B then w(4) < w(b) ,
and d(E;A) = d(g;B) for all §&44
and w(B) < w(4) + 2e implies d(A;B) s e

and d(A;B) < e implies w(B) < w(4) + me .

The constant = is appropriate for the chordal metric d i

more generally w should be replaced by

- 2/i;f max{d(o;B)/w(la,Bl) d(u;B)/w([E,u])} .
07 B o

The foregoing definitions provide a terminology with
which to discuss how well one interval-nunber approximates
another, and to introduce an Interval Analysis analogous to
Real Analysis with continuous or integrable functions. An
interval-valued function 7@(21}22;...) of interva]—vaiiables
Zl,zz,... is contiﬁuous at (Xl;Xz;...) in some domain
whenever for every € » 0 there is a § > 0 such that
d(@(ﬁl;Xz;...) - ¢(Y;;i2;.{.)) < s‘. for all (Yl;Iz;...) in
that domain which satisfy d(Xi;Ii) <6 for 1 =1,2;000
In particular, a rational intérvalnexpressiOn ¢ (involving
only the arithmetic operators -+ , = o+ *.u / and n-th
powers for intcgers n # 0 ) Cén fail to be céntinuduSLin a
domain (A Az2;...J) in the chordal metrie d on}y when
appears during the evaluation of @(A1;A25...) Conseqguently,
many of the complications associated in §3 with the extensions
of extended real functions DTy itadswsd LO interval-functions
é(zl;zz;...) can belavoided, at least for the purposes of

exposition, by limiting attention to the restricticns of

- s Tl e e R SENT DT Tt




rational'expressions o
¢(§1;§2;--') = ®(Cyslagensd o

sufficient (but not necessary

20.

to rational functions

rhe continuity of ¢ is then

) to assure the continuity of ¢ -

-

consult the book Interval Analysis by R.E. Moore (1966,

ch.4 and 6-9) for an extensive treatment of the subject.

5. Implementation Problems

These fall into four areas with which we shall deal in

turn;
%
Ll Representation,
i) Approximation,
£44d Diagnostics,

tv) Compilability.

Instecad of solutions to these problems,; W= offof

suggestions and opinions.

t.) Representation: The two binary digits reguired to

g helong to it

jndicate which of an interval-number's endpoint
may be inconvenient to manipulate on some machines, in which

case manipulation can pe confined to the subset of closed

interval numnbers Lg+B] without much loss of information.

overable on most machines which

some of this information is rec

represent punbers with a signwmagnitude format, because these

nachines usually prescrve a distinction between +0 and -0

and between grd =y congequently all polLrs {a,0)

: B g e
SR WA T apranp e
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can be identified with closed interval-numbers [a,f] except

for the following eight reassignments;

wro] = [oge] s [og-w] = layel o [he,B] 5 o081
[~=,B] = [mrB] ’ [Ci,,+0] = [o,0] r [ap—l]l E [U-_rO] r
[+OrB] = [OIB] r ["OrB] = ]OfB] .

Whenever an arithmetic operation involving oné of these eight
produces some other unclosed interval-number, that interval-
number should be closed to cover its end-points; tﬁé conseguent
loss of information will be no worse than is attributable to

roundoff. (See below under Approzimation.) The eight

reassignments sometimes help programmers tO SUPPress Q .

The symbols  and « can be repreéented on most
machines by certain unnorﬁalized floating point zeros Or by
some other improper floating point numbers. Care should be
taken not Lo represent « in a way' which might be confused with

an overflow. (Sec below under <% and 4317 «)

Occasionally one may préfer to represent an interval-
nurnher [a,b] by some pair of numbers other than a and Db i
a plausible choice 1is (atb)/2 hnd (b-aY/2 - {(cf. Nickel (1966), "
Chartres (1966), Dwyer (lédl, alia2) )Y corresponding.to an
approxzimator and 1its uncertatnty respectively. What motivates
such a choice is that the uncertainty is expected to awmount at
most to a tiny fraction of the approximator and therefore can
be represcnted with é 10Qer relative precision without

appreciably degrading the scheme; therefore computer storage can be
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saved by assigning shorter words to uncertainties than to the
more precise approximators. However, to distinguish betwecen
[107%°,10%°] and [0,10%°] both approximator and uncertainty
must be represented equally pfccisely, and there are
applications of Interval Arithmetic where that distinction is
important. These applications concern the estimation of the
range of a function representing, say, some enginecging design
that is intended to perform correctly in a wide range of
environments. The environments are represented by interval-
numbers given as data; the performance will be encompassed
within the interval-numbers produced by the computation. The
widths of the intervals may well be substantial; the ratios
uncertointy/approzimator are of far less concern than that the
intervals be not much widex than necessary. My interestin these
applications is such that I prefer to represent [a,b] via
the pair {a,b} rather than via {(a+b)/2 , (b-a)/2} .

ii) - Approzimotion: Roundoff need not vitiaté the_definitions
‘given in §2 of the arithmetic operators + , — , ¢ and P
provided they arc approximated in a way which is interpretable
as a loss of precision or of information rathex than as a
source of misinformatioh. The appropriate way is via what we

chall call outer approximation.

Just as the real numbers normally representable in a
computer constitute a subset of ti-e rationals, so must the

interval-numbers normally representable in a computer constifuie

t -
o et e T e T L S e e T S T I E e IR LN G i e
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{

- subset; call then the storable interval-nunbers. We shall

call a storable interval-number C' an outer approximation to

¢ whenever C(C' 2 C and d(c';c) is sufficiently small. How

and which metric is d 4 are

ch will not be discussed here., Interval

small is sufficiently small,

important questions whi

Arithmetic is properly implenented on a computeyr wnen, for

every arithmetic operator & dpm 5= * o f } , every

instruction-sequence intended to compute ¢ = A*B produces at

worst an outer approximation ¢! : similar statements should

be applicable to all the elementary. functions 1ike Rexp . Rsin

AB , ... which are provided in that implementation. When

properly jimplemented, Interval Arithmetic will lose information

to the extent that it outex approximations'arc too big, and

to that extent may generate excessive pessimism, but cannct

generate misinformation.

The associative law is an inevitable casualty of

roundoff since, for exanple, 107°°% + (L0%5- 10%°) produces

10~ %% whereas (107 35+ 103°) - 103® produces 0 in ordinary

decimals. Ideally

arithmetic with fewexr than 71
comrautativity, monotonicity ard sign-synmetry should bhe

preserved wherever appropriate; this will be so when every

operator is approximated ideally, the ideal outor approximation

¢' to € being the narrowest storable interval of the same

type (interior, exterior, open, closed) as C which contains

‘c . Current floating point hardware design doos not always

help the iwplementor achieve the ideal. Raroly can he avoid

approwimating 2 ¥ 2 by [3.999:+:88 o 4.000...01) without

-
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programning a host of tedious tests to ensure that
1 + [0,10"3%°] is properly approximated by [1 1.000...01) °
and 1 - [0, 10739 by [0.999...99 , 1] . I think an

ideal implementation is worth whatever it eosts.

Arithmetic expressions which underflow ox overflow can

be approximated with the aid of 0 or respectively.* Foxr-

exémple, if 10-'°° and 0.999...99x10°° are the émallest-
and largzst real numbers normally representable in the machine,
then 1072°° might be approximated by 10 , 107°% [ and

10299 L 10.929...99%10°%° , o [ . Thus would overflow join
division by zero as the only ways to generate in our
scheme. Some different waYs to treat underflow and overflow

usefully have been described by Kahan (1966, pp.26=51j.

ii1) Diagnostiecs: The appearance of during a calculaticn
is usually but not always symptomatic of a nistake. Every
implementation of Interval Arithmetic should permit a program

to test whether § has appeared recently and to respond in
¥ - ¥y anc 3

whatever way the prograwmer has provided. In default of such
a provision, the program's execution should be interrupted, if
not suspended, as soon as §§ appears, and information should

be printed out to help the programmer discover why § appeared.

L)

The programmer's regpoh.c tu that information will be eithe:
to identify and correct a mistake, oxr to recognize a function
whose evaluation regquires furthexr analysis at sone exdtigal

points. Sometimes the simplest way to estimate the range of

* A similar proposal by Hanson (1968) lacks oxterior dntervaleo.....
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a complicated function is to compute several formally
equivalent interval expressions of that function and then

select the narrowest. Therefore the appearance of © is not
always a disasté;.

Similar considerations apply to overflow, underflow and
the appearance of « ; fortunately these events can have
serious consequences only if they later cause an Q to
appear, and that Q will not go unnoticed. The main reason
for interrupting a program's execution (only if the programmer
has asked for such interruptions) in response to such events
is that Lhese events are often followed by &'s whose causes
might otherwise remain obscure.

There are two classes of systems programwners to whom the

implementation of Interval Arithmetic should not be entrusted;

those whose rigid moralities exclude any tolerance for other
men's mistakes, and those who indulgently make provision for -
every possible vice. The author's Tao to Enlightenment tlirough

Hindsight, which uses post-execulion reminders, simple options,

and messages in English or FORTRAN but not Octal, is described

in Kahan (1966).

v) Compilability: Tnterval Arithmetic is more aptly to be

regarded as supplenenting than supplanting oxdinary real

arithmetic. This point of view is supportied by the excellent
results which Hansen (L1968 and references cited therein) has
obtained; he uses Interval Arithmetic to refine orxdinaxy

e ——— i awpm— i o s i L eee e e ———————t e T e T
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arithmetic calculationé and guarantee their validity. K. Nickel,
N. bposlolatos et. al. (1L967) have gone 50 far as to propose
an extension of ALGOL 60 to cover their brand, called Triplex-
ALGOL 60, of Interval Arithmetic. We propose here té outline

a comparable extension of ASA standard FORTRAN.

Interval-nunbers can be represented by pairs gf real
numbers (see i above) just like complex numbers, so édding éw
type INTERVAL need not complicate the ihdexing or input/qutput?
facilities of the compiler. Scanning INTERVAL-arithmetic
statements should be no more compli&ated than scanning DOUBLE

PRECISION or COMPLEX statements since the latter two types

involve subroutines for at least some of their elementary

arithmetic operations {(certainly for COMPLEX multiplication and
division) whereas INTERVAL'arithmctiE uses subrouvtines for all
6pérations. Mixing REAL and INTERVAL arithm;tic is just like
mixing REAL and COMPLEX arithmetic. The relational operators B
BT . § OBes g 2 «BQe § waw (for >, 2 ; = gees) will have
to-call subroutines if they arc alléwed to appéar between
INTERVAL expressions*,., Transfer funcltions analogpus .o REAL,
AIMAG and COMPLEX will be needed to facilitate ordinary

arithmetic with the cnd-points of INTERVAL variables, and other

% I cannot wnderstand why ASA standard FORTRAN (19G64; p.5H98)
forbids .EQ. to appear hotween two COMPLEX expressions, nor
why the assignmont COMDLEXN = RAAL is forbidden (ibid., p.600).

Slips like thesc give FORTRAN a bad reputation,

+ ,.. unless we denand outelx approximation during 1/0 conversion.
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subroutines will be needed for LJINSIDE. , UNION (of two ox

more overlapping intervals), RABS, REXP, RLOG and similar

functions. For each of a few plausible choices d(A;B)

it will be necessary to provide DIST and WIDTH functions

comparable to CABS.

I_l.
rT.
0n

Tnterval Arithmetic will remaln unknown to most of

t_l-
:j'

potential beneficiaries until it is comfortably embedded
some of the widely used algorithmic languages. Intngal
Arithmetic's full potential will remain unknown to all of us
until it is embedded in a language which, like FORMAC (see
"Tobéy et al. {1967)), offers bath symbolic and nunerical
arithmetic capabilities, because the outstanding problems of

oy

Interval Arithmctic are more mathematical (algebra, analvsis

and geometry) than computational.

6. Applications .

Interval‘Arithmetic's most obvious application is to
those numerical problems whose solutions can be implemented in
a computer program with no iterations nor oft-repeated loops.
Examples include the computation of enginccring design |

parameters and performance from cook-book formulae, the Fieting

of simple curves to modest numbers of observations, and the

[ S AR o ~ i sy » - - "
transiornation of geomatrical information £

rom one coordinate

system into another. Thege problems have solutions which may
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be identified wilj, ype computation of several functions

Fe(®13%2500052,)  of 4 modest number n of variables x5 -

J

Th? people who Wiy, o solve such problens may be expert

‘enough in their cjygepn fields, but are usually unacquainted

wlth the tricks oy error analysis, and therefore unable to

o b -5 . . & .
assess the accuragy of their computations even when they want
to. By using Intuyyaq arithmetic to compute almost any naive

expression for F@(Xl;xz;...;xn) they may be sure that no

_ ; Gl R _ . . :
numerical instability can mislead them.’ Narrow intervals F.

are acceptable wiljyout reservation. If the computed intervals
¥, wre too widcﬁ there are two possible explanations. First,
the width may be “ue mérely to an expression for F_, which
is too naive, cortgaponding to what night otherwise be called
"a nwnerically Uns ¢aple caleulation"; the remedy here is
found by consultily a puperical analyst. Secondly, the width

may reflect the fa.ot that some f. are discontinuous or at
. 7

sast i o PR . . : ;
least violently Viirying functions of some wLod such bhehaviour

L&

. . . - .
is symptomatic of .., ill-poced problem.. In other words, if

vilde ;ntcrvalsloccglr thoy signify a need for more analysis; if

no wide intervals {seccuy then we are all, experts and novices

e . o s e & i e o
alike, relieved of- {sdious and superfluous analysis. That is

what machines are e

If the expre..sions for F.® are aptly chosen (apt choices
(3

3 . = L N 1 . ; i 'y ’ ' .
are sSometiies Nov Csiywious, sometimes inpossible then they may

&
be uscd Lo study T consecgquences of varying various input

parameters xj atlegas guitable intervals X. , as wags mentioned

53 J
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in §5.7. When combined with interactive computing facilities,

this application of Interval Arithmetic can significantly

shorten the search for flaws in engineering designs.

Interval Arithmetic is also useful in conjunction with

cquations

ordinary arithmetic for solving a set of n
fifxl;xz;...;xn) = 0 , not so much for finding a solution as
for proving that a solution has been found. We shall illustrate

this point by describing a relativeiy simple technique; better

technigues are described by Hansen (1968) .

for the column vector whose ‘n

, and fm

ft's first partial derivatives. We assumc that

L.(z)

correspond continuous intexrval expressions F(X) and Exfg) .

Let us write f(z)
components are 'fi(xl;mz;...;xn) for the Jacobian
matrix of
f(z) and are represented by real expressions to which
We also assume that some approximation yo is given and known
to be "fairly close" to the true solution gz of fra) = 0 .
First‘is the

The computation proceceds in two phases.

improvement of o by Newton's iteration, ideally

Hpp1 = Hn ~ im(ﬂn)ﬂlti(&n) !
in which interval arithmetic is used only to help decide when
to stop the iteration. The second phase uses interval arithmetic
in an cssential way to bound the error in the last iterate.
‘Because Hewlon's iteration con?argcs 30 rapidly (qnadratical]y)
in the ebsence of pathology, W shall attempt to approximate
as accourately as roundolf perni ta even though that acceuracy ney
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evceed our needs.

Given e compute, as accurately as roundoff permits,
the values of i(in) ; iﬁ(ﬂﬂ) cand .a matrix gn' to
approximate fm(ﬂﬂ)"l ; no interval arithmetic is needed here.
Also let Y  be an n-vector of intervals obtained from y.,
by smearing each element of y, two units in its last place:

I js the narrowcst storable interval-vector containing ¥,

-—

in its interior. Compute E{gﬂ) to obtain a bound for the
variation of i(in) attributable_tb uncertainty due to
roundoff plus small perturbations in YUy cometimes that

bound can be computed more accurately andJ/or efficiently by

-means other than Interval Arithmetic; e.g. -see Kahan and Farkas

(1963), Smith (1967a, Bp.70~90, or 1967b) , or Adams (1967) if

f's components are all polynomials.. The final result's

&

accuracy depends crucially upon how precisely i(in) and

Ri(in) can be estimatgd.

Normally the iteration would proceed to y ., =4, ~

where- fz is the computed approximation to ?Hq} —+« _However,
h--l'r . L i
the iteration ought to he stopped when Yy, iz as close to 2

as y is likely to be. We choose to stop as soon as
septl -

QcF(In) : when this criterion is satisfied there is practically

no way to distinguish Wy from # . ~(Note that that cfiterion

is certainly satisfied when aeX but does not imply ﬁegn
Will the criterion ever be satisfied? In general this is a

difficelt question Lo answer virecisely; the answer turns out

o = SiE,
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to be Yes provided y, lies within a neighbourhood of 2z
wherein fm(g) varies not too widely and is not too ill-

conditioned.

Having stopped at y = ¥, 1 we entexr the second phaée
of the computation to provide a.bound for = -y . WHedo 80
with the aid of what is intended to be a contraction mapping
h(z) when z 1lies in the neighbourhood of 2z and y (cf.

Collatz (1966, p.213) ). Let
“h(z) 22 - G flz)

where G = G is the best available approximation to

fm(i{fl . We shali verify later (next footnote) whether G

is nonsingular; if so, cach of h's fixed points z = h(z)

is a solution of f(z) =0 . Since h is continuous,

any’ interval-vector % which contains Rh(7) must contain at
least one of h's fixed points (ibid. pp.450-6). Our task now

is to exhibit such a Z , and preferably a narxow one.

Let us first apply the mean value theorem to write

it

hiwe) Byl + (I - Qfg)) « @& = g

where I is the nxp identity matrix and Q(x) is the

matrix whose elcecments are

. B )l 4 e -
;4080 = by 9y 553'fk(£ A - w0y

for somne unknown Ok(gjtlo,l[ v &% WW R g

O(z) = Gif (y) and, since G & £,(y)"" + we should expect |

I - Q(xz) to be small of the order of roundoff plus 0O(x - 1)

B S U SO PR Oy ¥ e S it S PV Ll




will also contract the width of each X < Z2 .

% Almost any matrix norm, say
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This expectation can be put to the test over any interval Z

containing y ; use Interval Arithmetic to compute the interval

matrix

S(2) = 1= G+F (2) 2 R(I = Q(2)) .

As long as ||§(z)| < v for some small o < 1 we may be sure*

is a contraction mapping over in fact we

that h(x) xeZ 7

find that Alz) = hi(xa) € S(z)+(zy - x2) o+ SO

oz, - z2| for every = and z "in 2 .

[R(z1) = R(z2) || <
provided ¢ is small enough (depending upon the norm used) the

interval-arithmetic analogue of h(xz) . namely

Hex) =y~ (GeE(y) = S(rX =y o

Unfortunately,

“'without assuming more than

H(X) cannot be proved to 1ie 35 &4

has been assumed so far.

”{Sij}HEENaX- zj lsijl , will

i
serve -adequately unless the equations. [(z)= 0" are liil

equilibrated", which possibility will not be considered here.

Every real matrix AcF (z) satisfies |t - c-all <0 <1 Aif

whence it soon follows that

sl so<1
le=t - al ¢ ollg ] s ollal /(- o) and

Therefore G is

s gl /(1 - o

e - a7t s olal

and so fixed points 2 really do satisfy

h's

nonsingular,

L(z) =0

ST A s e T
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After recalling that y = Hn€£ z {n and that
0eF(Y) > F(y) ., let us choose Zp = Yy - g*g(_) and compucte .
Zy = H(Zo) . Evidently y - G+I'(y) ¢ ZonZy because

0eS(hyl* (Be = g} = = BlLoJ BE(Y) » 8O %, has some points

ltn

in common with Z, . Moreover, 2, can extend beyond Zyp

S(Lalel2y — y) , which should be much smaller than

only when
(2o - y) . is wider than the gap between Zg =y ='G*F(Y) and
y - G-F(y) . Provided Fly) is sufficiently small, no such

extension will occur, and we shall have Zp 2 Zy .+ SO 2cly

1 and

|~

However, if %, $ Z, then we can replace 2 by %o U

test again whether Z; = H(Zo) & 20 i this usually works.

Oonce we find some Z 2 H(Z) . we have proved that
z = h(z) for some zeRR(Z) ¢ H(z) . Unfortunately there is
no guarantee that such a Z can be found. For example, if
f(x) = cos (exp(-1/z%)) = 1 but w(F(z)) 5. 107 for all o
corresponding to calculations with ten decimals, then no
mechanical way exists to decide whethcr f(x) vanishes oxr not

in [-1/4 , 1/4) . Most of the complications-jn the

(g

discussion above arc causcd by not knowing whether f(xi has
a zero ncar y ox not. Hansen (1968) assumes fthat an
interval is known which contains a zero of f .+ and conseqguently

his arguments are simpler than ouxs.

Here is an example to illustrate what usually happens.

The example is taken from Moore (1966, p.68).

2?4 fEe™ * l}l 241 2
! £,r2:) # *
(L2 .'L i

11!

()




Computation is done in four-decimal floating

with yo = B ¥ . We f£ind f(ye) = gl
. 0.7 0

E
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point starting

[-.0204 , =-.0196] (.3571 .5
g. ¢ E(X_o) = i ! >0 = ®
' A =210t ,  2HA0T) |+BBTL =B
i _ L7073 _(1-4 , 4]
i = g =~ GCa-ffyel = 7 0. e P(Y,) = 10 4 .
L7071 [~2 ; 2]
Y = Hi1 o« Flul) = 107" ¢r G = r
. 0 . 3536 -.5
[.7068 , .7074]
Zo = r
[.7068 , .7074}!
/
(~10 , 4] [-4 , 4]
5(Zo) = L = GF (Zy) = 107" .
(- 4 , 4] [-10; 4]
Lot _ {16 ; ¥0%2) [-42 , 42))
a1 = H(Zy) =y + 10 % 4+ 1078 c 2o
[0 , «7072) [-42 , -42] |
[«7091 4o 7072
Theretfore 2z exists and lies in
: [.7071 , .7072]1)
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7. Application to a Differential Equatigﬁ

We seek to calculate the solution y(t) of .

y = g?y(t) = flt;y(t)) o+ y(to) = yo

given numerical values for t, and y, and an expression
f(t;y) amcnable to symbolic partial differentiation. A
problem of long standing has been to compute rigorous bounds
for the error in the approximation to y(t,) when i, is
substantially greater than ¢, . -The outstanding contribution
made by Moore (1965a and b, 1966) té the resolution of this
problem with the aid of Interval Arithmetic is pcxhaps‘thc

most potent reason for the current interest in both Interval

Arithinetic and computable error bounds.

Here we shall attack the puthlem via a classical
diffcrential inequality (see Birkhoff and Rota (1959, £§11) or
Szarski (1965, p.7) )i

if a(to) 2 yo and 2(t) = Fltse(t)) for t 2z to

then z(t¢t) 2 y(t) too.
our mwethod, chosen for simplicity, is quite different from
Moore's.

Given z¢ 2 yo . wWe attempt to choosc storable numbers

® “s co o

Z0 ¢ P20 and 2o such that
2(E) 2 mg 4+ (6 = Lo)ho + (£ = o) ?%e/2 + (t-ta)? 50/6

satisfios z(t) 2 f(t;z(t)) over to £t £ tpth Loxr some

B> 0 . Success will yield an uppexr bound z(t) = yp(t) for




t e [to,toth] . BAn independent lower hound is to be computed
in a similar way. Then to+h is renamed ©to and we continue
the advance towards ¢1 . If* we xreach ©1 , we shall have

rigorous upper and lower bounds for y(ti) .

? " T.et us use abbreviations T = ¢t - tp and

g(t) = f(t;z(¢)) . Despite that g depends upon values

o AT, T

'S ) ’
zo r 20 and =z which are not yet known, ¢ is a symbolically

differentiable expression;

- - . - 0 .
g - ft+ fy ~ r (fy"‘ '5'_1; f(t,sy)[yzz(t) ' etc. )

a0 ' P : " *2 .-.

g = j"ﬁt + zf.!’y 2 A fyy a +fy & r

...: -i_ _{_‘i * + .2 . .3 ) i : .:3.

g% Fope ¥y 27 gy & F Fyyy * 3Lyl 202

. sen
+ f” & .

We note that numerical values will be computable for go = é (to)

a singularity which might intervene bafore t, is rcached, but
this risk is common to all numerical methods and will not be

considered here.

!

EOE é’(to) ané the I[unclLion E.(t) as soon as values have

been assigned to éu P Eo and E} respectively, but

é& = f(f;70) 1is known now.

Next let us examine s(t) = 2(t) - f(t;a(t)) ; we £ind
that
s(t) = 2(to+ T) = glto+ T)
'-:-.(ép—go) + T(.Hbg"‘éc) + .Tz(zo—g{))/z - Tvsg(?’:o +Te}/6

. ® there is some risk that the differential eguation may posscss
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for somec unknown 0(t) ¢ 10,1[ . Ouxr task is soﬁto choose
R>0 , %0 . 3o and = that Eafltgsteth]l ¥ O o Im
which case we shall have =a(t) = y(t) in [to,tothl . And
if Rs 1is not too big, z(t) should not be too much bigger
than yft) + x 8 .

The first step is to choose a tolerance e > 0 ouf
intention is to keep Rs ¢ [0,2e] , so e should be chosen

small to produce a tight upper bound =z . On the othex

hand, the smaller is e , the smaller raust Ak be kept to

keep Rs ¢ [0,2e¢] , and hence the greater must be the time

[47]

required for the computation to reach ¢ = %3 . If e 1
to0 gmall, roundoff alone may force h =0 ; thercfore e
should always substantially exceed the uncertainty in f(t;z)
contributed by roundoff alone. Certainly e nust exceed
w(F(Te;20)) .+ where F 1is the interval-arithmetic

expression fcr f and T and 2, are the narrowvest interval -
nunbers containing respectively o and zo in their
interiors. Increased values of e will permit increasecd

_ 1fs o, ¢
values of h ronghly proportional to e while e is still

“ gmall. There is no simple way to choose e optimally in

general, but an adequate choice is hardly ever difificult, and
given that hmjn is the minimal acceptable value for h we
may sct e = w( F([to,tot+h] i %s) ) as a last resort.

iy

"he choice of e can affect the preciaton and the cost

of our bounds, but not their validity.
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Having chosen e , compute in turn

L e a »

[ ]
20 ¥ go te 4+ Zo F Jo and 20 % g6

-

the approximations here are due solely to roundoff during
ordinary arithmetic evaluations of the formulas ahove for
g é and b. . The symbols zo . éu ' é} ' %} stand for
nuibers represented precisely in storage, and they define

our upper bound z(t) precisely. Certainly z(t) 2 pft) in

some t- interval [tg,to+h] because s(t) 2 0 in that

i e e e ol A St i iz bl e S =N e b Al A Bk i i)
el T it i bl i ~

t-interval provided h is small enough. Our next step is to

find out in how wide an interval [¢o.to+h] the condition

0 < s(t) < 2e remains valid, though we do so by usirg Intexrval

Arithmetic to ovexr-estimate Rs([to,toth]l)

Use interval-aritimatic expressions for g and its

derivatives to compute the interval-nuibers

Gop = G(tu) ’ éo E C-.:('tc) and 0 = .(;'(tg)

from the foraulae given above. The widths of these interval-

numbers should be of the oxdexr of roundoff becaunse there 1s no

other recason for their uncertainty, and of course we should

find that the intervalmnumbers

° 0 ¢ oo se

L)
29 - Go —e + 2o = Go 1 B0 — Go

are all very tiny. We shall also neced an interval-expression

for G(to+ll}) where H 1s an interval-nunber of the form
o= [0,h) . Such an expression is provided by the foriaul a

i g . though not unigualy; sonetines adequately large steps  h

S —




e S A R LAt e e B el B i i MRS e T S 2 i

39.

can be taken only after an expression for E' has been
rearrangad to yield a G(to+H) which is not orders of

magnitude wider than Rg(tg+ﬂ) . Finally assemble

S(totH) = ([H-'&’(tm-ﬂ)m + (5o = Go)/2)H + (20 - éo)]-H +

% fag - @) 4
of which we may be sure that Rs(totH) < S(totH) .

For any H = [0,h] 2 0 there are now three possibilities:
.i) S(to+tH) ¢ [0,2¢] and wigl/ 8 is not very tiﬁy; such an
H pfovides an acceptable ste? from ¢, to toth .
ii) S(to+H) é [0,2&) bhut w(s)/e << 1 ; such an H is tco
narrow, and might pfofitably be replaced by, say.
(0.7 efw(s))Ms < m .

$11) S5k} ¢ [6,2e] ; such an H is too wide and should

be cut. down to, say, [O.?e/w(s)]ﬂ3 « H

Provided e > w(Gy) «» # = [0,0] is too naxrow; # = [0 goeles
is too wide except in trivial cases. By virtue of &'s

inclusion-monotonicity and continuity ncar I = [0,0] N Teinte!

. acceptable H nwust exist. A plausible first guess at M is

whatever step was used toO reach ty ; another plaugible guess
is n %‘[e/g(tg)[da . The precise manner by which an
accepltable H is found cannot be a vital issuc first becausc
I  does not have Lo be chosen accurately (just not too widel)
and sccond becausa any unacceptablolquoss can bz improved via
ii) and .iii) above. fThe way k L8 found may affcet the cost
of our compited hounds, but not Lheir precision nor validity.
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How precise are the bounds? We consider a hypothetical ”
example drawn from Moore (1966, p.126), who drew it from

Henrici (1962, p.85-6). Suppose f(t;y) = ~l6ty .

i

ty = +.75 , ‘yo > 0 . We choose a tolerance

g
2

to = - ’

e(t;y) = 16 € y with some ¢ like 1077 for an IBM 7094,
on vhich each arithunctic operation is accurate.to agout
decimal digits. Because ]t] < 1 for this problem, that
tolerance e substantially exceeds the uncertainty:
introduced into f by roundoff. We assume too that =z, is

stored to double-precision, and that z(toth) is computed by

first calculating h(Zzo, + h(%¢ + W&e/3)/2) in single

" precision with forced upward rounding of each aritbhnetic

operation, and secondly adding that result to =zp in double
precision with an upwaxd rounding. Wherever 7¢ - has been
vsed above to compute 2o 2o and %% , the value of 2o

rounded to single precision may be used instead. Wherever

zg appealrs duvring the interval-arithmetic calculation of

S(to+ll) it should ba replaced by the narrowest single-
precision interval-pumber Zo containing =z, . Without this
appeal to one doubie—precise addition, the computed values of
s(t) would drift up excessively by one andt 2n the last-place
afver each t-step h , and scveral'thousqnd steps could be’
taken. (Actualiy, a few hundred steps are safficient.)

The couwputed values of z(t) can now be approximated

adeguately by solving the differential incquality

£3
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0 < & - f{t;a) € 2e , =a(te) = 20 "

in closed form with f(tsz) = =16tz and e = 106 € & and

zg = (1+8)yo for some positive & < 2x107% . We

146 < a(t)/y(t) s (L+8)exp(16 € (t-to)) &

which shows that z(%) approximates y(t) to within a few
hundred units in y's last (8th) place. Since '

yl(t) = cexp(-8t?) for some constant e > 0 , we observe
that the width of the interval separatipg y from .z will
decrease as ¢ increases toward ti = dy I8 - THiS
observation contrasts strongly with the results produced by
Moore's first method (1965a, and 1966, ch.10-12) because the
- widths of his interval-estimates for y cannot decrease

(ibid. p.132).

The method described above is capable of generalization;
we could use other functions =z(¢) than cubic polynomials,
other tolerances e than stepwise constants. But the cruciél
genzralizaltion to systems of differential equations is a step

hevond the scope of these notes. Sone idea of the rbéle played
Y . :

by geometry in such a generalization can be inferred from the
work of Moore (1965h, and 1966, ch.l3), Guderley and Valentine
(1967), and Kahan (1966, 1967). These notes will conclude

with some indication of what goes wrong with o naive approach.
5 e | b3

Lel us consider two differential cquations

o
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eI NG

¥y, = fi(yl;yz) . and suppose nothing more is known about

yi(OJ than that yi(OJ € Yi(Oj [ai’bi} » It seens P
natural to approximate each yi(t) by an interval- valued
function Ei(t) = [mi(t) ' zi(t)] . Provided y; € Yi for

all t > 0 we find thet, for example,
min  fi(yiinz) < yy § max  fy(yiina) .
Nz & Xp Nz € Xz

These inequalities resemble the classical dififerential inequality

mentioned above, and lead to a natural generalization:

It y.(0) < lz,(0) + z,(0)] and

zy £ R filxwy; lxa,z2l) o .
Bl 2 R fi(eyy les,azl)

£ 2 R Follyy,mizme) ¢ and i
Zp 2 R Fallma,milses) ¥
for all + > 0 ; then yi(t) c [mi(t) . zi(t)]- too. I
This theorem suggests that “the best" bounds for y., will be -
i
obtained from the maximal solutions ¥ and minimal solutions 2y
2 of the differential ineguelities; the only things wrong b
with the suggestion are the woxds "the best". it
- S 2
For exanple, suppose fi(yljyg) = <) Wy * i
. _ Bs
. - ; i o i i}
Then the desired, the maximal, and the mininal solutions satisfiy ﬂ
. £ Y v o ‘:.3
Ui T tyz o &1 = i 3 By S8y w b
Yo & Y ’ &Top = L ' A2 T A . g
The y-cquations represent uniform rigid rotation of the %
(yy3y2)-plane. If at £ = 0 the point (yi1;y2) 1lies in somoe ?
B
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rectangle (Y1:;Y2) , then for all ¢ > 0 the point (y15y2)
will lie in the image of that rectangle under rotation; the .
dimensions of the rectangle do not change, only its position

and orientation. The theorem says that the rotating

. yectangle lies in another rectangle ([x1,21) 3 [Zz2,32])

for all t ; this laxger rectangle's position changes too,
but its sides stay parallel to the coordinate axes and
lengthen like multiples of exp(t) as t increases {unless -
the rectangle started as a point). In fact, we verify
immediately that |

w,(t) = z.(t) - w (L) = W, (0) cosh(t) f w3_i(0) sinh(%) .

These results are substantially the samc as obtained by

Moore (1965a, and 1966, p.l28) from his first method.. The

bounds produced by his second method (L965b, and 1966, ch.12)
grow less quickly, but still exponentially too fast. Only
Kahan (1967) claims to produce bhounds which do nol grow
exponentially too fast, and then only when the bounds are

gsmall enough that uncertainties;a;g:Eropgggﬁgd.iﬁwa vay ..
adegquately approximated by Lho linearized variational equations

g 9
Sig =g ay; fe gL
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