Numerical Analysis Comprehensive Examination
Tuesday, August 11, 2009, 9:00AM to 1:00PM, MDD 208

This exam is closed book, but calculators are permitted (and will be useful). Please use your own paper, and put you name on each sheet.

1. Suppose f has a continuous fourth derivative. Show that

$$
\left|\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}-f^{\prime \prime}(x)\right|=\mathcal{O}\left(h^{2}\right) .
$$

2. Assume that x^{*} and y^{*} are approximations to x and y with relative errors r_{x} and r_{y}, respectively, and that $\left|r_{x}\right|,\left|r_{y}\right|<R$. Assume further that $x \neq y$. How small must R be in order to ensure that $x^{*} \neq y^{*}$?
3. Consider the function $g(x)=e^{-x}$.
(a) Show that $g(x)$ has an unique fixed point $z \in(-\infty, \infty)$.
(b) Prove that g is a contraction on $[\ln 1.1, \ln 3]$.
(c) Prove that $g:[\ln 1.1, \ln 3] \rightarrow[\ln 1.1, \ln 3]$.
(d) Prove that $x_{k+1}=g\left(x_{k}\right)$ converges to the unique fixed point $z \in(-\infty, \infty)$ for any $x_{0} \in$ $(-\infty, \infty)$.
4. Suppose we iterate $x^{(k+1)}=G x^{(k)}+k$, where $k \in \mathbb{R}^{2}$ and

$$
G=\left(\begin{array}{ll}
1 & -\frac{1}{3} \\
1 & -\frac{1}{6}
\end{array}\right)
$$

(a) Would you expect this iteration to converge? Justify your answer.
(b) Suppose $x^{*}=G x^{*}+k$, that is, suppose x^{*} is a fixed point of the iteration. If your answer to part (a) is "yes," find a $c<1$ and a norm $\|\cdot\|$ such that

$$
\left\|x^{(k+1)}-x^{*}\right\| \leq c\left\|x^{(k)}-x^{*}\right\|
$$

Give details of your calculations that justify your choice of norm and convergence factor c.
5. Suppose

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

has approximate singular value decomposition $A=U \Sigma V^{T}$, given by Matlab as

$$
\begin{aligned}
& \text { U = } \\
& \begin{array}{lll}
-0.2148 & 0.8872 & 0.4082
\end{array} \\
& -0.5206 \quad 0.2496-0.8165 \\
& -0.8263 \quad-0.3879 \quad 0.4082 \\
& \mathrm{~S}=
\end{aligned}
$$

$$
\begin{array}{rrr}
16.8481 & 0 & 0 \\
0 & 1.0684 & 0 \\
0 & 0 & 0.0000 \\
& & \\
-0.4797 & -0.7767 & -0.4082 \\
-0.5724 & -0.0757 & 0.8165 \\
-0.6651 & 0.6253 & -0.4082
\end{array}
$$

Write the set of all least squares solutions to $A x=(-1,0,1)^{T}$ in the form $x \approx x^{(0)}+t y$ where $x^{(0)}$ is the least squares solution of minimum norm, $t \in \mathbb{R}$ is arbitrary, and $y \in \mathbb{R}^{3}$. (That is, say what $x^{(0)}$ and y are.)
6. Find the least squares approximation of

$$
f(x)=\left\{\begin{array}{cc}
\frac{e^{x}-1}{x}, & x \neq 0 \\
1, & x=0
\end{array}\right.
$$

by a linear polynomial $p(x)=a x+b$, with respect to the norm

$$
\|f-p\|^{2}=\int_{-1}^{1}|f(x)-p(x)|^{2} d x
$$

7. What would you expect the rate of convergence of the power method to be for the matrix G of Problem 4? Explain carefully.
8. Derive a 2-point Gauss formula that integrates

$$
\int_{-\pi}^{\pi} f(x) \sin (x) d x
$$

exactly when f is a polynomial of degree 3 or less.
9. Derive the region of absolute stability in the complex plane for Euler's method. Show all of your work.
10. Consider the system

$$
\begin{array}{r}
x_{1}^{2}-x_{2}^{2}=0 \\
2 x_{1} x_{2}=1
\end{array}
$$

(a) Perform three iterations of Newton's method on this system, using starting vector $x^{(0)}=$ $(1 / 2,1 / 2)^{T}$.
(b) Compute the norm of the Fréchet derivative for the system at $x^{(0)}$. Based on this, predict the initial reduction of error between $x^{(0)}$ and $x^{(1)}$.

