Numerical Analysis Comprehensive Examination

Tuesday, August 11, 2009, 9:00AM to 1:00PM, MDD 208

This exam is closed book, but calculators are permitted (and will be useful). Please use your own paper, and put you name on each sheet.

1. Suppose f has a continuous fourth derivative. Show that

$$\left|\frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - f''(x)\right| = \mathcal{O}(h^2).$$

- 2. Assume that x^* and y^* are approximations to x and y with relative errors r_x and r_y , respectively, and that $|r_x|, |r_y| < R$. Assume further that $x \neq y$. How small must R be in order to ensure that $x^* \neq y^*$?
- 3. Consider the function $g(x) = e^{-x}$.
 - (a) Show that g(x) has an unique fixed point $z \in (-\infty, \infty)$.
 - (b) Prove that g is a contraction on $[\ln 1.1, \ln 3]$.
 - (c) Prove that $g: [\ln 1.1, \ln 3] \rightarrow [\ln 1.1, \ln 3]$.
 - (d) Prove that $x_{k+1} = g(x_k)$ converges to the unique fixed point $z \in (-\infty, \infty)$ for any $x_0 \in (-\infty, \infty)$.
- 4. Suppose we iterate $x^{(k+1)} = Gx^{(k)} + k$, where $k \in \mathbb{R}^2$ and

$$G = \left(\begin{array}{cc} 1 & -\frac{1}{3} \\ 1 & -\frac{1}{6} \end{array}\right)$$

- (a) Would you expect this iteration to converge? Justify your answer.
- (b) Suppose $x^* = Gx^* + k$, that is, suppose x^* is a fixed point of the iteration. If your answer to part (a) is "yes," find a c < 1 and a norm $\|\cdot\|$ such that

$$||x^{(k+1)} - x^*|| \le c ||x^{(k)} - x^*||.$$

Give details of your calculations that justify your choice of norm and convergence factor c.

5. Suppose

	1	1	2	3	
A =		4	5	6	
	$\left(\right)$	7	8	9	Ϊ

has approximate singular value decomposition $A = U\Sigma V^T$, given by MATLAB as

U =		
-0.2148	0.8872	0.4082
-0.5206	0.2496	-0.8165
-0.8263	-0.3879	0.4082
S =		

	16.8481	0	0
	0	1.0684	0
	0	0	0.0000
V	=		
	-0.4797	-0.7767	-0.4082
	-0.5724	-0.0757	0.8165
	-0.6651	0.6253	-0.4082

Write the set of all least squares solutions to $Ax = (-1, 0, 1)^T$ in the form $x \approx x^{(0)} + ty$ where $x^{(0)}$ is the least squares solution of minimum norm, $t \in \mathbb{R}$ is arbitrary, and $y \in \mathbb{R}^3$. (That is, say what $x^{(0)}$ and y are.)

6. Find the least squares approximation of

$$f(x) = \begin{cases} \frac{e^{x-1}}{x}, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

by a linear polynomial p(x) = ax + b, with respect to the norm

$$||f - p||^2 = \int_{-1}^{1} |f(x) - p(x)|^2 dx.$$

- 7. What would you expect the rate of convergence of the power method to be for the matrix G of Problem 4? Explain carefully.
- 8. Derive a 2-point Gauss formula that integrates

$$\int_{-\pi}^{\pi} f(x) \sin(x) dx$$

exactly when f is a polynomial of degree 3 or less.

- 9. Derive the region of absolute stability in the complex plane for Euler's method. Show all of your work.
- 10. Consider the system

$$\begin{array}{rcl} x_1^2 - x_2^2 &=& 0,\\ 2x_1 x_2 &=& 1. \end{array}$$

- (a) Perform three iterations of Newton's method on this system, using starting vector $x^{(0)} = (1/2, 1/2)^T$.
- (b) Compute the norm of the Fréchet derivative for the system at $x^{(0)}$. Based on this, predict the initial reduction of error between $x^{(0)}$ and $x^{(1)}$.