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Outline:

• Inverse and ill-posed problems

• Tikhonov regularization

• Regularization by truncated iteration

• Multigrid methods

• Application to image restoration



Inverse problems

• Inverse problems arise when one seeks to determine

the cause of an observed effect.

– Helioseismology: Determine the structure of the

sun by measurements from earth or space.

– Medical imaging, e.g., electrocardiographic

imaging, computerized tomography.

– Image restoration: Determine the unavailable

exact image from an available contaminated

version.

• Inverse problems often are ill-posed.



Ill-posed problems

A problem is said to be ill-posed if it has at least one of

the properties:

• the problem does not have a solution,

• the problem does not have a unique solution,

• the solution does not depend continuously on the

data.



Linear discrete ill-posed problems

Ax = b

arise from the discretization of linear ill-posed problems

(Fredholm integral equations of the first kind) or,

naturally, in discrete form (image restoration).

• The matrix A is of ill-determined rank, possibly

singular. System may be inconsistent.

• The right-hand side b represents available data that

generally is contaminated by an error.



Available contaminated, possibly inconsistents, linear

system

Ax = b (1)

Unavailable associated consistent linear system with

error-free right-hand side

Ax = b̂ (2)

Let x̂ denote the desired solution of (2), e.g., the

minimal-norm solution.

Task: Determine an approximate solution of (1) that is a

good approximation of x̂.



Define the error

e = b̂ − b noise

and let

δ = ‖e‖

How much damage can a little noise really do?

How much noise requires the use of special techniques?



Example: Fredholm integral equation of the 1st kind
∫ π

0

exp(−st)x(t)dt = 2
sinh(s)

s
, 0 ≤ s ≤

π

2
.

Determine solution x(t) = sin(t).

Discretize integral by Galerkin method using piecewise

constant functions. Code baart from Regularization

Tools.



This gives a linear system of equations

Ax = b̂, A ∈ R200×200, b̂ ∈ R200.

A is numerically singular.

Let the “noise” vector e in b have normally distributed

entries with mean zero and

δ = ‖e‖ = 10−3‖b‖

b = b̂ + e

i.e., 0.1% relative noise
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Tikhonov regularization



Solve the Tikhonov minimization problem

min
x

{‖Ax − b‖2 + µ‖Lx‖2},

where

• A ∈ Rm×n;

• L ∈ Rp×n, p ≤ n, is the regularization operator.

Common choices: L = I or a finite difference

operator;

• µ > 0 is the regularization parameter to be

determined.



Normal equations associated with Tikhonov minimization

problem:

(ATA + µLT L)x = AT b.

Have unique solution iff

N (A) ∩N (L) = {0}.



Important to determine a suitable value of µ:

L = I: Solution

xµ := (AT A + µI)−1AT b.

lim
µ↘0

xµ = A†b, lim
µ→∞

xµ = 0.



Regularization by truncated iteration



CGNR: CG applied to A∗Ax = A∗b

Define the Krylov subspace

Kk(A
∗A,A∗b) = span{A∗b, (A∗A)A∗b,

. . . , (A∗A)k−2A∗b, (A∗A)k−1A∗b}.

Then xk ∈ Kk(A
∗A,A∗b) and

‖Axk − b‖ = min
x∈Kk(A∗A,A∗b)

‖Ax − b‖

Therefore discrepancy dj = b − Axj satisfies

‖b‖ ≥ ‖d1‖ ≥ . . . ≥ ‖dk‖.



Stopping Criterion

Discrepancy principle

Let α > 1 be fixed, ‖e‖ = ‖b̂ − b‖ = δ. The iterate xk

satisfies the discrepancy principle if

‖Axk − b‖ ≤ αδ

Stopping rule

Terminate the iterations as soon as iterate xk satisfies

‖Axk − b‖ ≤ αδ

‖Axk−1 − b‖ > αδ

Denote the termination index by kδ.



An iterative method is a regularization method if

lim
δ↘0

sup
‖e‖≤δ

‖xkδ
− x̂‖ = 0

CGNR is a regularization method; see Nemirovskii,

Hanke.



A multilevel method



Consider
∫

Ω

k(s, t)x(s)ds = b(t), t ∈ Ω

Let

S1 ⊂ S2 ⊂ . . . ⊂ Sk ⊂ L2(Ω) nested subspaces

Ri : L2(Ω) → Si restriction operator

bi = Rib, bδ
i = Rib

δ, Ai = RiAR∗
i

Pi : Si−1 → Si prolongation operator



Cascadic multilevel method:

- Solve integral equation in S1, map solution to S2,

- Solve integral equation in S2 for correction, map to S3,

- Solve integral equation in S3 for correction, map to S4 ...

Assume that

‖b − bδ‖ = δ

and

‖bi − bδ
i‖ ≤ cδ, c > 1, i = 1, 2, . . .



Apply CGNR or MR-II in S1. Yields iterates x1,j ,

j = 1, 2, . . . . Terminate iterations as soon as

‖A1x1,j − bδ
1‖ ≤ cδ.

Proceed similarly on higher levels.

Theorem: The multilevel method outlined is a

regularization method.



Example: Baart integral equation discretized by

trapeziodal rule on mesh with 1025 point.

One-Grid CGNR

δ
‖b‖

m(δ)
‖xδ

8,m(δ)
−x̂‖

‖x̂‖

1 · 10−1 2 0.3412

1 · 10−2 3 0.1662

1 · 10−3 3 0.1657

1 · 10−4 4 0.1143



Multilevel CGNR

δ
‖b‖

mi(δ)
‖xδ

8,m8(δ)
−x̂‖

‖x̂‖

1 · 10−1 2, 1, 1, 1, 1, 1, 1, 1 0.2686

1 · 10−2 2, 2, 1, 3, 1, 1, 1, 1 0.1110

1 · 10−3 3, 3, 2, 1, 1, 1, 1, 1 0.1065

1 · 10−4 4, 3, 3, 3, 2, 1, 1, 1 0.0669



Noise level 10−3: CGNR (red curve), ML-CGNR (green

curve), exact solution (blue curve)
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Example: Phillips integral equation discretized by

trapeziodal rule on mesh with 1025 point.

One-Grid CGNR

δ
‖b‖ m(δ)

‖xδ
8,m(δ)

−x̂‖

‖x̂‖

1 · 10−1 3 0.0934

1 · 10−2 4 0.0248

1 · 10−3 4 0.0243

1 · 10−4 11 0.0064



Multilevel CGNR

δ
‖b‖ mi(δ)

‖xδ
8,m8(δ)

−x̂‖

‖x̂‖

1 · 10−1 2, 1, 1, 1, 1, 1, 1, 1 0.0842

1 · 10−2 5, 5, 3, 2, 1, 1, 1, 1 0.0343

1 · 10−3 8, 6, 6, 4, 3, 1, 1, 1 0.0243

1 · 10−4 9, 13, 9, 9, 5, 4, 3, 2 0.0076



Application to image restoration



Nonlinear Prolongation Operators

Return to Tikhonov regularization:

min
u

{
∫

Ω

(h ∗ u − f δ)2 + µR(u)dx

}

Associated Euler-Lagrange equations:

∂u

∂t
= −h ∗ (h ∗ u − f δ) + µD(u), u0 = f δ

Example:

R(u) = |∇u|2 =⇒ D(u) = ∆2u

R(u) = |∇u| =⇒ D(u) = div(
∇u

|∇u|
) TV operator



We consider a weighted total variation operator:

D1(u) = |∇u|qε ∇ ·

(

∇u

|∇u|qε

)

, |∇u|qε =
(

|∇u|2 + ε2
)q/2

with 1 ≤ q ≤ 2, and a Perona-Malik operator:

D2(u) = ∇ · (g(|∇u|2)∇u), g(s2) = 1/(1 + s2/ρ2)

with g the diffusivity function.



The prolongation operators are determined by

integration of
∂u

∂t
= Dj(u)

for j = 1 or j = 2.

Example: Restoration 512 × 512-pixel image

contaminated by 10% noise and Gaussian blur.



Original blur- and noise-free image
original image



Blurred and noisy image



Restoration using multigrid with piecewise linear

prolongation



Restoration using multigrid with D1 prolongation

(TV-norm)



Restoration using multigrid with D2 prolongation

(Perona-Malik)



Example:
original image

Contaminate by Gaussian blur and 0.5% noise. Restored

with 1 or 3 level multigrid method. Then apply edge

detector from gimp.



1-level CGNR



3-level multigrid with piecewise linear prolongation



1-level CGNR with D2 applied after convergence



3-level multigrid with D2 applied after convergence



Example: Original 256 × 256 image



Image contaminated by Gaussian blur and 0.5% noise



Restored image using prolongation D2



More iterations ...



Restored image using nonlinear PDE model based on D2


