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Outline:
e Inverse and ill-posed problems
e Tikhonov regularization
e Regularization by truncated iteration
e Multigrid methods

e Application to image restoration



Inverse problems

e Inverse problems arise when one seeks to determine

the cause of an observed effect.

— Helioseismology: Determine the structure of the
sun by measurements from earth or space.

— Medical imaging, e.g., electrocardiographic
imaging, computerized tomography.

— Image restoration: Determine the unavailable

exact image from an available contaminated

version.

e Inverse problems often are ill-posed.



Il1l-posed problems

A problem is said to be ill-posed if it has at least one of

the properties:
e the problem does not have a solution,
e the problem does not have a unique solution,

e the solution does not depend continuously on the
data.



Linear discrete ill-posed problems

Ar =0

arise from the discretization of linear ill-posed problems
(Fredholm integral equations of the first kind) or,

naturally, in discrete form (image restoration).

e The matrix A is of ill-determined rank, possibly

singular. System may be inconsistent.

e The right-hand side b represents available data that

generally is contaminated by an error.



Available contaminated, possibly inconsistents, linear

system

Ar =0 (1)

Unavailable associated consistent linear system with

error-free right-hand side
Ar =b (2)

Let = denote the desired solution of (2), e.g., the

minimal-norm solution.

Task: Determine an approximate solution of (1) that is a

good approximation of .



Define the error
e=0b-—0 noise

and let
0 = |le]]

How much damage can a little noise really do?

How much noise requires the use of special techniques?



Example: Fredholm integral equation of the 1st kind

sinh(s)

/ exp(—st)x(t)dt = 2 , 0<s< -
0 S 2

Determine solution x(t) = sin(t).

Discretize integral by Galerkin method using piecewise

constant functions. Code baart from Regularization
Tools.



This gives a linear system of equations
Ap — b A € R200x200  p - R200

A is numerically singular.

Let the “noise” vector e in b have normally distributed

entries with mean zero and
0 = |le|| = 107°||b]|
b=>b+c¢

i.e., 0.1% relative noise



right-hand side
0.26 T T T

0.25

0.24

—— no added noise
—— added noise/signal=1e-3

0.23

0.22

0.21

0.2

0.19

0.18

0.17 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200




0.14

0.12

0.1

0.08

0.06

0.04

0.02

exact solution

40 60 80 100 120 140 160 180 200



1.5

0.5

-15

Solution Ax=b: noise level 1073

80 100 120

140

160

180




Tikhonov regularization



Solve the Tikhonov minimization problem
min{|[Az — b[|* + pl| La[|*},

where
o Ac R™™,

o L€ RP*™ p < n, is the regularization operator.
Common choices: L = I or a finite difference

operator;

e /1 > 0 is the regularization parameter to be

determined.



Normal equations associated with Tikhonov minimization

problem:
(ATA+ uL' L)z = Ab.

Have unique solution iff

N(A)NN(L) ={0}.



Important to determine a suitable value of pu:

L = I: Solution

x, = (A"A+ ul)"t A0

lim z,, = Ab, lim z, = 0.
AN p—00



Regularization by truncated iteration



CGNR: CG applied to A*Ax = A*D

Define the Krylov subspace
Cp(A* A, A*b) = span{ A*b, (A" A)A™b,
o (ATAYTEARD, (A* AR AR
Then z € Kx(A*A, A*b) and

|Axy — b|| = min | Ax — 0|
€ (A*A,A*D)

Therefore discrepancy d; = b — Az, satisfies

1oll = fldafl = ... = [ldi]]



Stopping Criterion

Discrepancy principle
Let oo > 1 be fixed, |le]| = ||b — b|| = §. The iterate x;

satisfies the discrepancy principle if
| Az — b|| < @d

Stopping rule
Terminate the iterations as soon as iterate x; satisfies

| Az, — b|| < ad
|Axg_1 — b|| > ad

Denote the termination index by ks.



An iterative method is a regularization method if

lim sup ||z, — || =0
5\0ueng5H s — 2|

CGNR is a regularization method; see Nemirovskii,
Hanke.



A multilevel method



Consider

/ k(s,t)x(s)ds = b(t), t e
Q
Let
S1 CSyC...C S C Ly(Q2) nested subspaces

R; : Ly(Q2) — S, restriction operator
b = Rb, 1) =R, A =RAR

P :S,_1— 5 prolongation operator



Cascadic multilevel method:

- Solve integral equation in 57, map solution to Ss,
- Solve integral equation in S, for correction, map to Ss,

- Solve integral equation in S3 for correction, map to Sy ...

Assume that

Jb—b°) =20

and
1, — || <cb, c¢>1, i=1,2,...



Apply CGNR or MR-IT in S;. Yields iterates z ;,

7 =1,2,... . Terminate iterations as soon as
5
| Ay — || < b

Proceed similarly on higher levels.

Theorem: The multilevel method outlined is a

regularization method.



Example: Baart integral equation discretized by

trapeziodal rule on mesh with 1025 point.

One-Grid CGNR

ﬁ m(5) IIxSmg;H)—ill
1-101 2 0.3412
1-107* 3 0.1662
1-107° 3 0.1657
1-101 4 0.1143




Multilevel CGNR

I mi(0) NE
1-1071 2,1, 1, 1, 1, 1, 1, 1| 0.2686
1-1072 {2, 2,1, 3,1, 1, 1, 1| 0.1110
1-103 3,3, 2 1, 1, 1, 1, 1| 0.1065
1-107% |4, 3, 3,3, 2, 1, 1, 1| 0.0669




Noise level 1073: CGNR (red curve), ML-CGNR (green

curve), exact solution (blue curve)
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Example: Phillips integral equation discretized by

trapeziodal rule on mesh with 1025 point.

One-Grid CGNR
(&) ||a:g,mg;) —2
1071 3 0.0934
. 1072 4 0.0248
1073 4 0.0243
1074 | 11 0.0064

S n

—_




Multilevel CGNR

: mi(6) P!
1-107t {2, 1,1, 1, 1, 1, 1, 1 0.0842
1-1072 |5, 5, 3, 2,1, 1, 1, 1 0.0343
1-1073 |8, 6, 6, 4, 3, 1, 1, 1 0.0243
1-107% 19,13, 9, 9, 5, 4, 3, 2 0.0076




Application to image restoration



Nonlinear Prolongation Operators

Return to Tikhonov regularization:

min {/Q<h xu— ) + ,LLR(u)da:}

U

Associated Euler-Lagrange equations:

%:—h*(h*u—f‘s)—kul)(u), u’ = f°
Example:
R(u) = |[Vul? — D(u) = A*u
R(u) = |Vu| — D(u) = div(’g—uu’) TV operator



We consider a weighted total variation operator:

Vu
Vul?

Di(u) = [Vu[gV - ( ) S |Vulf = (Va4 €))7

with 1 < ¢ < 2, and a Perona-Malik operator:
Dy(u) =V - (g(|Vul)Vu),  g(s*) =1/(1+5°/p%)

with ¢ the diffusivity function.



The prolongation operators are determined by

integration of

ou
E:Dg‘(u)
for 7 =1 or 53 = 2.

Example: Restoration 512 x 512-pixel image

contaminated by 10% noise and Gaussian blur.



Original blur- and noise-free image




Blurred and noisy image




Restoration using multigrid with piecewise linear

prolongation




Restoration using multigrid with [); prolongation
(TV-norm)




Restoration using multigrid with Dy prolongation
(Perona-Malik)




Example:

Contaminate by Gaussian blur and 0.5% noise. Restored
with 1 or 3 level multigrid method. Then apply edge

detector from gimp.



1-level CGNR




3-level multigrid with piecewise linear prolongation




1-level CGNR with D, applied after convergence




3-level multigrid with D, applied after convergence
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Example: Original 256 x 256 image




Image contaminated by Gaussian blur and 0.5% noise




Restored image using prolongation D,




More 1terations ...




Restored image using nonlinear PDE model based on D,




