A Linear Algebra Approach to Boundary Multiwavelets

Fritz Keinert Iowa State University

Overview

Wavelets

- Multiwavelets
- The Boundary Problem
- The Linear Algebra Approach
 - Madych Method
 - More General Method

Refinable Functions

A *refinable function* satisfies a recursion relation

$$\varphi(x) = \sqrt{2} \sum h_k \varphi(2x - k)$$

It is orthogonal if

$$\langle \varphi(x), \varphi(x-k) \rangle = \delta_{0k}$$

 $\sum h_k h_{k-2l} = \delta_{0l}$

Refinable Functions

Example: Hat Function (not orthogonal)

$$\varphi(x) = \frac{1}{2}\varphi(2x+1) + \varphi(2x) + \frac{1}{2}\varphi(2x-1)$$

Hat function recursion relation

Refinable Functions

Scaling Function

Approximation to f at resolution 2⁻ⁿ

$$\varphi_{nk}(x) = 2^{n/2} \varphi(2^n x - k)$$
$$V_n = \operatorname{span}(\varphi_{nk})$$
$$P_n f(x) = \sum \langle f, \varphi_{nk} \rangle \varphi_{nk}(x)$$

φ is called the scaling function
 Example: Approximation to sin x at resolution 2⁻² by Haar scaling function φ(x) = χ_[0,1](x)

P₂f

Wavelet Function

Fine detail in *f* at resolution 2⁻ⁿ $Q_n f(x) = P_{n+1} f(x) - P_n f(x)$ $Q_n f(x) = \sum \langle f, \psi_{nk} \rangle \psi_{nk}(x)$ $W_n = \operatorname{span}(\psi_{nk})$

ψ is called the *wavelet function* DWT (Discrete Wavelet Transform) V₁

$$P_n f = P_N f + \sum_{k=N}^{n-1} Q_k f.$$

Boundary Multiwavelets - Salt Lake City, May 8, 2007

W^

V

8/25

Refinable Function Vector

Refinable function vector, matrix recursion relation

$$\varphi(x) = \sqrt{2} \sum H_k \varphi(2x - k)$$
$$\varphi(x) = \begin{pmatrix} \varphi_1(x) \\ \varphi_2(x) \\ \vdots \\ \varphi_r(x) \end{pmatrix}$$

H_k is $r \ge r$ matrix.

Multiwavelets

Example: DGHM multiwavelet

Multiwavelets

Why are multiwavelets interesting?

- High approximation order / high smoothness combined with short support
- They can be both symmetric and orthogonal

Disadvantages:

- More complicate theory
- Need for pre/postprocessing

Discrete Multiwavelet Transform

Start with

$$P_n s(x) = \sum_k \langle s, \phi_{n,k} \rangle \phi_{n,k}(x) = \sum_k \mathbf{s}_{n,k}^* \phi_{n,k}(x).$$

DMWT – Direct formulation

$$\mathbf{s}_{n-1,j} = \sum_{k} H_{k-2j} \mathbf{s}_{n,k},$$
$$\mathbf{d}_{n-1,j} = \sum_{k} G_{k-2j} \mathbf{s}_{n,k}.$$

$$\mathbf{s}_{n,k} = \sum_{j} H_{k-2j}^* \mathbf{s}_{n-1,j} + \sum_{j} G_{k-2j}^* \mathbf{d}_{n-1,j}$$

Discrete Multiwavelet Transform

DWT – Matrix formulation

$$(\mathbf{sd})_{n-1,j} = \begin{pmatrix} \mathbf{s}_{n-1,j} \\ \mathbf{d}_{n-1,j} \end{pmatrix}, \quad T_k = \begin{pmatrix} H_{2k} & H_{2k+1} \\ G_{2k} & G_{2k+1} \end{pmatrix}.$$

$$\begin{pmatrix} \vdots \\ (\mathbf{sd})_{n-1,-1} \\ (\mathbf{sd})_{n-1,0} \\ (\mathbf{sd})_{n-1,1} \\ \vdots \end{pmatrix} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots \\ \cdots & T_{-1} & T_0 & T_1 & \cdots \\ & \cdots & T_{-1} & T_0 & T_1 & \cdots \\ & & \cdots & T_{-1} & T_0 & T_1 & \cdots \\ & & & \cdots & \cdots & \cdots \end{pmatrix} \begin{pmatrix} \vdots \\ \mathbf{s}_{n,-1} \\ \mathbf{s}_{n,0} \\ \mathbf{s}_{n,1} \\ \vdots \end{pmatrix}$$

 $(\mathbf{sd})_{n-1} = T \mathbf{s}_n.$

T is an infinite banded block Toeplitz matrix, $T T^* = I$.

The Boundary Problem

- The DMWT is naturally defined on all of R. What to do on finite interval?
 - Data Extension
 - symmetric
 - periodic
 - zero / constant / linear / ...
 - Boundary Functions
 - Linear Algebra
- One way or the other, we want to end up with

$$(\mathbf{sd})_{n-1} = T_n \mathbf{s}_n$$

for some finite matrix T_n with structure similar to T.

Boundary Functions

We assume we have many interior functions $\varphi(x-k)$, plus some left and right boundary functions (same number at every level).

Boundary Functions

Boundary Multiwavelets – Salt Lake City, May 8, 2007

16/25

Linear Algebra

For now, assume we have only two block matrices T_0 , T_1

$$T_{0} = \begin{pmatrix} H_{0} & H_{1} \\ G_{0} & G_{1} \end{pmatrix} \qquad T_{1} = \begin{pmatrix} H_{2} & H_{3} \\ G_{2} & G_{3} \end{pmatrix}$$

Orthogonality:

$$T_0 T_0^* + T_1 T_1^* = I$$
$$T_0 T_1^* = 0$$

Linear Algebra

Boundary Multiwavelets – Salt Lake City, May 8, 2007

18/25

Start with periodic case
 Use pre/postmultiplication with orthogonal

matrices to convert to desired form

Illustrate with 3x3 case:

$$Q_{L}\begin{pmatrix} T_{0} & T_{1} & 0\\ 0 & T_{0} & T_{1}\\ T_{1} & 0 & T_{0} \end{pmatrix} Q_{R} = \begin{pmatrix} L_{0} & L_{1} & 0 & 0\\ 0 & T_{0} & T_{1} & 0\\ 0 & 0 & R_{0} & R_{1} \end{pmatrix}$$

To relate this better to what is coming next, we use SVD matrices. That is equivalent to what Madych did, even though he did not explain it this way.

$$\begin{pmatrix} U^* & 0 & 0 \\ 0 & U^* & 0 \\ 0 & 0 & U^* \end{pmatrix} \begin{pmatrix} T_0 & T_1 & 0 \\ 0 & T_0 & T_1 \\ T_1 & 0 & T_0 \end{pmatrix} \begin{pmatrix} V & 0 & 0 \\ 0 & V & 0 \\ 0 & 0 & V \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & I & 0 & 0 & 0 \\ 0 & 0 & 0 & I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & I & 0 \\ 0 & I & 0 & 0 & 0 & I \end{pmatrix}$$

Use permutation matrix on the right:

Only requires multiplication from right

- This approach only works if $\rho_0 = \rho_1 = r$.
 - For r = 1, this is automatic (which is the only case Madych considered)
 - If $\rho_0 = \rho_1 = r$, this still works for multiwavelets
 - In general, this condition is not satisfied
 - Counterexample: DGHM multiwavelet

Different Approach

Instead, do different rearrangement

Longer Wavelets

What if there are more than two T_j ?

$$\begin{pmatrix} T_0 & T_1 & T_2 \\ 0 & T_0 & T_1 \\ 0 & 0 & T_0 \end{pmatrix} \begin{bmatrix} T_3 & 0 & 0 \\ T_2 & T_3 & 0 \\ T_1 & T_2 & T_3 \end{bmatrix}$$
 new block T₀ new block T₁

Future Directions

- Show rank of block $T_i = n\rho_i$
- Show uniqueness of splitting
- Reduce necessary size of end-point blocks
- Show Toeplitz structure can be preserved
- Work out some examples
- Combine with pre/postprocessing