A Linear Algebra Approach to Boundary Multiwavelets

Fritz Keinert
Iowa State University

Overview

- Wavelets
- Multiwavelets
- The Boundary Problem
- The Linear Algebra Approach
- Madych Method
- More General Method

Refinable Functions

- A refinable function satisfies a recursion relation

$$
\varphi(x)=\sqrt{2} \sum h_{k} \varphi(2 x-k)
$$

It is orthogonal if

$$
\begin{gathered}
\langle\varphi(x), \varphi(x-k)\rangle=\delta_{0 k} \\
\sum h_{k} h_{k-2 l}=\delta_{0 l}
\end{gathered}
$$

Refinable Functions

Example: Hat Function (not orthogonal)

$$
\varphi(x)=\frac{1}{2} \varphi(2 x+1)+\varphi(2 x)+\frac{1}{2} \varphi(2 x-1)
$$

Hat function recursion relation

Refinable Functions

Example: $\operatorname{sinc}(x)$
Not a good choice:
■ not L^{1}
■ not localized

Scaling Function

- Approximation to f at resolution 2^{-n}

$$
\begin{aligned}
& \varphi_{n k}(x)=2^{n / 2} \varphi\left(2^{n} x-k\right) \\
& V_{n}=\operatorname{span}\left(\varphi_{n k}\right) \\
& P_{n} f(x)=\sum\left\langle f, \varphi_{n k}\right\rangle \varphi_{n k}(x)
\end{aligned}
$$

$\square \varphi$ is called the scaling function

- Example: Approximation to $\sin x$ at resolution 2^{-2} by Haar scaling function

$$
\varphi(x)=\chi_{[0,1]}(x)
$$

Wavelet Function

- Fine detail in f at resolution 2^{-n}

$$
\begin{aligned}
& Q_{n} f(x)=P_{n+1} f(x)-P_{n} f(x) \\
& Q_{n} f(x)=\sum\left\langle f, \psi_{n k}\right\rangle \psi_{n k}(x) \\
& W_{n}=\operatorname{span}\left(\psi_{n k}\right)
\end{aligned}
$$

- ψ is called the wavelet function

■ DWT (Discrete Wavelet Transform) V_{-1}

$$
P_{n} f=P_{N} f+\sum_{k=N}^{n-1} Q_{k} f .
$$

Boundary Multiwavelets - Salt Lake City, May 8, 2007

Refinable Function Vector

Refinable function vector, matrix recursion relation

$$
\begin{aligned}
& \varphi(x)=\sqrt{2} \sum H_{k} \varphi(2 x-k) \\
& \varphi(x)=\left(\begin{array}{c}
\varphi_{1}(x) \\
\varphi_{2}(x) \\
\vdots \\
\varphi_{r}(x)
\end{array}\right)
\end{aligned}
$$

H_{k} is $r \times r$ matrix.

Multiwavelets

Example: DGHM multiwavelet

$$
\begin{aligned}
& \phi(x)=\frac{1}{20}\left[\left(\begin{array}{cc}
12 & 16 \sqrt{2} \\
-\sqrt{2} & -6
\end{array}\right) \phi(2 x)+\left(\begin{array}{cc}
12 & 0 \\
9 \sqrt{2} & 20
\end{array}\right) \phi(2 x-1)\right. \\
& \left.+\left(\begin{array}{cc}
0 & 0 \\
9 \sqrt{2} & -6
\end{array}\right) \phi(2 x-2)+\left(\begin{array}{cc}
0 & 0 \\
-\sqrt{2} & 0
\end{array}\right) \phi(2 x-3)\right] .
\end{aligned}
$$

Multiwavelets

Why are multiwavelets interesting?

- High approximation order / high smoothness combined with short support
- They can be both symmetric and orthogonal

Disadvantages:

- More complicate theory

■ Need for pre/postprocessing

Discrete Multiwavelet Transform

■ Start with

$$
P_{n} s(x)=\sum_{k}\left\langle s, \phi_{n, k}\right\rangle \phi_{n, k}(x)=\sum_{k} \mathbf{s}_{n, k}^{*} \phi_{n, k}(x) .
$$

■ DMWT - Direct formulation

$$
\begin{gathered}
\mathbf{s}_{n-1, j}=\sum_{k} H_{k-2 j} \mathbf{s}_{n, k}, \\
\mathbf{d}_{n-1, j}=\sum_{k} G_{k-2 j} \mathbf{s}_{n, k} . \\
\mathbf{s}_{n, k}=\sum_{j} H_{k-2 j}^{*} \mathbf{s}_{n-1, j}+\sum_{j} G_{k-2 j}^{*} \mathbf{d}_{n-1, j}
\end{gathered}
$$

Discrete Multiwavelet Transform

- DWT - Matrix formulation

$$
(\mathbf{s d})_{n-1, j}=\binom{\mathbf{s}_{n-1, j}}{\mathbf{d}_{n-1, j}}, \quad T_{k}=\left(\begin{array}{ll}
H_{2 k} & H_{2 k+1} \\
G_{2 k} & G_{2 k+1}
\end{array}\right) .
$$

$$
\left(\begin{array}{c}
\vdots \\
(\mathbf{s d})_{n-1,-1} \\
(\mathbf{s d})_{n-1,0} \\
(\mathbf{s d})_{n-1,1} \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccccc}
\cdots & \cdots & \cdots & & & & \\
\cdots & T_{-1} & T_{0} & T_{1} & \cdots & & \\
& \cdots & T_{-1} & T_{0} & T_{1} & \cdots & \\
& & \cdots & T_{-1} & T_{0} & T_{1} & \cdots \\
& & & & \cdots & \cdots & \cdots
\end{array}\right)\left(\begin{array}{c}
\vdots \\
\mathbf{s}_{n,-1} \\
\mathbf{s}_{n, 0} \\
\mathbf{s}_{n, 1} \\
\vdots
\end{array}\right)
$$

$$
(\mathbf{s d})_{n-1}=T \mathbf{s}_{n} .
$$

■ T is an infinite banded block Toeplitz matrix, $T T^{*}=I$.

The Boundary Problem

- The DMWT is naturally defined on all of R. What to do on finite interval?
- Data Extension
- Symmetric
- periodic
- zero / constant / linear / ...
- Boundary Functions
- Linear Algebra

■ One way or the other, we want to end up with

$$
(\boldsymbol{s} \boldsymbol{d})_{n-1}=T_{n} \boldsymbol{s}_{n}
$$

for some finite matrix T_{n} with structure similar to T.

Boundary Functions

We assume we have many interior functions $\varphi(x-k)$, plus some left and right boundary functions (same number at every level).

Boundary Functions

Resulting structure of T_{n} :
$L_{0}=$ interaction of left boundary functions with each other
$L_{1}=$ interaction of left boundary functions with inside
2L $\left(\begin{array}{c|cccc|c}L_{0} & L_{1} & & & & \\ \hline & T_{0} & T_{1} & & & \\ & & T_{0} & T_{1} & & \\ & & & \ddots & & \\ & & & T_{0} & T_{1} & \\ \hline & & & & R_{0} & R_{1}\end{array}\right)$

Linear Algebra

■ For now, assume we have only two block matrices T_{0}, T_{1}

$$
T_{0}=\left(\begin{array}{cc}
H_{0} & H_{1} \\
G_{0} & G_{1}
\end{array}\right) \quad T_{1}=\left(\begin{array}{cc}
H_{2} & H_{3} \\
G_{2} & G_{3}
\end{array}\right)
$$

■ Orthogonality:

$$
\begin{aligned}
& T_{0} T_{0}^{*}+T_{1} T_{1}^{*}=I \\
& T_{0} T_{1}^{*}=0
\end{aligned}
$$

Linear Algebra

- Ranks are complementary:

$$
\begin{aligned}
& \rho_{i}=\operatorname{rank}\left(T_{i}\right) \\
& \rho_{0}+\rho_{1}=2 r
\end{aligned}
$$

- T_{0} and T_{1} have a common SVD:

$$
\begin{aligned}
& T_{0}=U\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) V^{*} \\
& T_{1}=U\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right) V^{*}
\end{aligned}
$$

Madych Approach

- Start with periodic case
- Use pre/postmultiplication with orthogonal matrices to convert to desired form

Illustrate with 3×3 case:

$$
Q_{L}\left(\begin{array}{ccc}
T_{0} & T_{1} & 0 \\
0 & T_{0} & T_{1} \\
T_{1} & 0 & T_{0}
\end{array}\right) Q_{R}=\left(\begin{array}{cccc}
L_{0} & L_{1} & 0 & 0 \\
0 & T_{0} & T_{1} & 0 \\
0 & 0 & R_{0} & R_{1}
\end{array}\right)
$$

Madych Approach

To relate this better to what is coming next, we use SVD matrices. That is equivalent to what Madych did, even though he did not explain it this way.

$$
\left(\begin{array}{ccc}
U^{*} & 0 & 0 \\
0 & U^{*} & 0 \\
0 & 0 & U^{*}
\end{array}\right)\left(\begin{array}{ccc}
T_{0} & T_{1} & 0 \\
0 & T_{0} & T_{1} \\
T_{1} & 0 & T_{0}
\end{array}\right)\left(\begin{array}{lll}
V & 0 & 0 \\
0 & V & 0 \\
0 & 0 & V
\end{array}\right)=\left(\begin{array}{cc|cc|cc}
I & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & I \\
\hline 0 & 0 & 0 & 0 & I & 0 \\
0 & I & 0 & 0 & 0 & 0
\end{array}\right)
$$

Madych Approach

■ Use permutation matrix on the right:

Madych Approach

- Only requires multiplication from right
- This approach only works if $\rho_{0}=\rho_{1}=r$.
- For $r=1$, this is automatic (which is the only case Madych considered)
- If $\rho_{0}=\rho_{1}=r$, this still works for multiwavelets
- In general, this condition is not satisfied
- Counterexample: DGHM multiwavelet

Different Approach

Instead, do different rearrangement

Longer Wavelets

What if there are more than two T_{j} ?

$$
\underbrace{\left(\begin{array}{ccc}
T_{0} & T_{1} & T_{2} \\
0 & T_{0} & T_{1} \\
0 & 0 & T_{0} \\
\hline
\end{array}\right.}_{\text {new block } \mathrm{T}_{0}}
$$

Future Directions

- Show rank of block $T_{j}=n \rho_{j}$
- Show uniqueness of splitting

■ Reduce necessary size of end-point blocks
■ Show Toeplitz structure can be preserved
■ Work out some examples
■ Combine with pre/postprocessing

