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Historical Roots of Numerical 
Integration

Archimedes (~ 225 BC) constructed an infinite sequence 
of triangles about a parabola, starting with one of area A
of the same base and vertex, to obtain the areas 
A,  A + A/4,  A + A/4 + A/16,  A + A/4 + A/16 + A/64, ...
The area of the segment of the parabola is therefore   
(1 + 1/4 + 1/16 + 1/64 + ....)A = (4/3)A.

Archimedes used a similar “method of exhaustion” to find 
the area of a circle, thus yielding the first good 
approximate value of pi.

Other “integrations” by Archimedes: 
Volume and surface area of a sphere.
Volume and area of a cone.
Surface area of an ellipse.
Volume of a segment of a paraboloid of revolution.

Illustration credits:
http://mtl.math.uiuc.edu/modules/module15/Unit%202/archim_ex.html
http://www.math.utah.edu/~alfeld/Archimedes/Archimedes.html



Quadrature (Numerical Integration) 
in the Computer Era

Back in the 1960s and 1970s, Stenger, Schwartz and others observed 
that the trapezoidal rule can be used to formulate an efficient and 
accurate quadrature scheme, when combined with a transformation 
that converts the integrand function into a bell-shaped curve that goes 
to zero rapidly.
One scheme discovered at the time is now known as the “tanh” rule.
A related method is known as the “tanh-sinh” rule, which is now widely 
used in experimental mathematics.

Ref:  
1.  Frank Stenger, “Integration Formulae Based on the Trapezoidal Formula,” Journal of the Institute for 

Mathematics and Applications, vol. 12 (1973), pg. 103-114.
2.  Charles Schwartz, “Numerical Integration of Analytic Functions,” Journal of Computational Physics, vol. 

4 (1969), pg. 19-29.
3.  H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of 

RIMS, Kyoto University, vol. 9 (1974), pg. 721--741.



The PSLQ Integer Relation Algorithm

Let (xn) be a vector of real numbers.  An integer relation algorithm finds 
integers (an) such that 

At the present time, the PSLQ algorithm of mathematician-sculptor 
Helaman Ferguson is the best-known integer relation algorithm.
PSLQ was named one of ten “algorithms of the century” by 
Computing in Science and Engineering.
High-precision arithmetic software is required:  at least d x n digits, 
where d is the size (in digits) of the largest of the integers ak.

Refs:
1.  H. R. P. Ferguson, D. H. Bailey and S. Arno, “Analysis of PSLQ, An Integer Relation Finding 

Algorithm,” Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369.
2.  D. H. Bailey and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and 

Applications,” Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.



LBNL’s Arbitrary Precision Software 
ARPREC and QD

ARPREC:  Arbitrary precision levels.
QD:  double-double (32 digits) and quad-double (64 digits).
Written in C++ for performance and portability.
C++ and Fortran-90 translation modules that permit conventional C++ 
and Fortran-90 programs to utilize the package with only very minor 
changes.
High precision integer, floating and complex datatypes.
Support for datatypes with differing precision levels.
Common transcendental functions (exp, sin, log, erf, etc).
Numerical integration routines.
PSLQ routines.
Special routines for extra-high precision (>1000 digits).

Available at:  http://www.experimentalmath.info



The BBP Formula for Pi

In 1996, a computer program running the PSLQ algorithm 
discovered this formula for pi:

This formula permits one to directly calculate binary or hexadecimal 
(base-16) digits of pi beginning at an arbitrary starting position n, without 
needing to calculate any of the first n-1 digits.

The discovery of this formula has led to several other results, including 
new results on the normality (digit randomness) of pi and log 2.

Ref: 
1.  D. H. Bailey, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various Polylogarithmic
Constants,” Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913.



Some Other Similar BBP-Type 
Identities

Ref:  Various papers by D. H. Bailey, P. B. Borwein, S. Plouffe, D. Broadhurst and R. E. Crandall.



Is There a Base-10 Formula for Pi?

For some constants, both a base-2 and a base-3 formula are known.

Question:  Is there any base-n (n ≠ 2b) BBP-type formula for pi?
Answer:  No.  This is ruled out in a 2004 paper.

This does not rule out some completely different scheme for computing 
non-binary digits of pi beginning at an arbitrary starting point.

Ref:  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and Excluding b-ary Machin-Type BBP 
Formulae,” Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342.



Sample of Recent PSLQ Results:
Euler Sum Identities 
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Ref:  David H. Bailey, Jonathan M. Borwein and Roland Girgensohn, "Experimental Evaluation of Euler 
Sums", Experimental Mathematics, vol. 3, no. 1 (1994), pg. 17-30. 



Sample of Recent PSLQ Results:
Apery-Like Sum Identities

Ref:  D. H. Bailey, J. M. Borwein and D. M. Bradley, “Experimental Determination of Apery-Like Identities for 
Zeta(2n+2),” Experimental Mathematics, vol. 15 (2006), pg. 281-289 .

The following identities were recently found using integer relation methods:



The Euler-Maclaurin Formula of 
Numerical Analysis

[Here h = (b - a)/n and xj = a + j h.  Dm f(x) means m-th derivative of f.]

Note when f(t) and all of its derivatives are zero at a and b (as in a bell-
shaped curve), the error E(h) of a simple trapezoidal approximation to 
the integral goes to zero more rapidly than any power of h.

Ref:  Kendall Atkinson, An Introduction to  Numerical Analysis, John Wiley, 1989, pg. 289.



Trapezoidal Approximation to a 
Bell-Shaped Function



High-Precision Integration and the 
Euler-Maclaurin Formula

Given f(x) defined on (-1,1), employ a function g(t) that goes from -1 to 
1 over the real line, with g’(t) going to zero for large |t|.  Then setting x = 
g(t) yields

Here xj = g(hj) and wj = g’(hj).   If g’(t) goes to zero rapidly enough for 
large t, then even if f(x) has a vertical derivative or blow-up singularity at 
an endpoint, the product  f(g(t)) g’(t)  typically is a nice bell-shaped 
function for which the E-M formula applies.

Such schemes often achieve quadratic convergence – reducing h by 
half produces twice as many correct digits.

Ref:  David H. Bailey, Xiaoye S. Li and Karthik Jeyabalan, “A Comparison of Three High-Precision 
Quadrature Schemes,” Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329.



Four Suitable ‘g’ Functions

“Error function” or “Erf” quadrature uses the first formula.

“Tanh” quadrature uses the second formula.

“Tanh-sinh” quadrature uses one of the last two formulas.



Original and Transformed Integrand 
Functions

Original function on [-1,1]:

Transformed function on real line 
using tanh rule:



Gaussian Quadrature Versus 
Tanh-Sinh Quadrature

Gaussian quadrature:
Most efficient scheme for continuous, well-behaved functions.
In many cases, halving the integration interval doubles the number 
of correct digits in the result.
Performs poorly for functions with blow-up singularities or vertical 
derivatives at endpoints.
The cost of computing abscissas and weights increases as n2 and 
thus becomes impractical for use beyond a few hundred digits. 

Tanh-sinh quadrature:
Accurately evaluates almost all “reasonable” functions, even those 
with singularities or vertical derivatives at endpoints.
In many cases, halving the integration interval doubles the number 
of correct digits in the result.
The cost of computing abscissas and weights increases only as n,
so the scheme is suitable for hundreds or thousands of digits.



Application of High-Precision Tanh-
Sinh Quadrature

This arises from analysis of volumes 
of ideal tetrahedra in hyperbolic 
space.  This “identity” has now been 
verified numerically to 20,000 digits, 
but no proof is known. 

Ref:  D.H. Bailey, J.M. Borwein, V. Kapoor and 
E. Weisstein, “Ten Problems in Experimental 
Mathematics,” Am. Math. Monthly, Jun 2006.



Box Integrals

Spurred by a question posed in Jan 2006 by Luis Goddyn of SFU, we 
examined integrals of the form:

The following evaluations are now known:

where

Ref: D. H. Bailey, J. M. Borwein and R. E. Crandall, “Box Integrals,” Journal of Computational and Applied 
Mathematics, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/boxintegrals.pdf. 



Ising Integrals

We recently applied our methods to study three classes of integrals that 
arise in the Ising theory of mathematical physics:

Ref:  David H. Bailey, Jonathan M. Borwein and Richard E. Crandall, “Integrals of the Ising Class,” Journal 
of Physics A: Mathematical and General, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/ising.pdf.



Computing and Evaluating Cn

where K0 is the modified Bessel function.  

We used this formula to compute 1000-digit numerical values of various 
Cn, from which these results and others were found (and subsequently 
proven):

Richard Crandall showed that the multi-dimensional Cn integrals can be 
transformed to 1-D integrals:



Limiting Value of Cn

The Cn numerical values approach a limit:

What is this limit?  We copied the first 50 digits of this numerical value into 
the online Inverse Symbolic Calculator tool, available at
http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html

The result was:

where gamma denotes Euler’s constant.



Limiting Value of Cn

We can prove this limit, and obtain a high-order expansion by writing

where 

By applying the well-known identity (here Hk is the harmonic number)

and applying various manipulations, we obtain



Other Evaluations



The Ising Integral E5

We were able to reduce E5, which is a 5-D integral, to an extremely 
complicated 3-D integral (see below).

We computed this integral to 250-digit precision, using a parallel high-
precision 3-D quadrature program.  Then we used a PSLQ program to 
discover the evaluation given on the previous page.



Recursions in Ising Integrals

Consider this 2-parameter class of Ising integrals:

After computing 1000-digit numerical values for all n up to 36 and all k up to 
75 (a total of 2660 individual quadrature calculations), we discovered (using 
PSLQ) linear relations in the rows of this array.  For example, when n = 3:

Similar, but more complicated, recursions were found for larger n (next page).

Ref:  David H. Bailey, David Borwein, Jonathan M. Borwein and Richard Crandall, “Hypergeometric Forms for 
Ising-Class Integrals,” Experimental Mathematics, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/meijer/pdf.



Experimental Recursion for n = 24



General Recursion Formulas

We were able to find general recursion formulas for each n up to 36:

New Result: A new manuscript by Jonathan Borwein and Bruno Salvy 
proves that the Cn,k satisfy recursions.  The authors hope to rigorously 
establish all of the experimental results mentioned here.



Spin Integrals

In another application of experimental high-precision integration to 
mathematical physics, we recently investigated some integrals first 
studied by Boos and Korepin:

Here C denotes the contour {x - i/2, x on real line}, and

Ref:  D. H. Bailey, J. M. Borwein, R. E. Crandall, D. Manna, “New Representations for Spin Integrals,”
manuscript, 2007 (work in progress).



Spin Integrals

We were able to transform this expression to the following more 
manageable form over a finite n-dimensional interval:

By evaluating this n-dimensional integral numerically, we have verified 
some analytic evaluations given by Boos and Korepin, and hope to 
extend their results.



Evaluations of P(n)
Derived Analytically, Confirmed Numerically



Evaluation of P(6)

where



Computation Time for P(n)

P(2):  120 digits in 10 seconds.
P(3):  120 digits in 55 minutes on 8 CPUs.
P(4):  60 digits in 27 minutes on 64 CPUs.
P(5):  30 digits in 39 minutes on 256 CPUs.
P(6):  6 digits in 59 hours on 256 CPUs.

We need new, more efficient techniques for evaluating multi-
dimensional integrals!



Conclusions

High-precision numerical integration has emerged as an extremely 
valuable tool in engineering, physics and experimental mathematics.
The theoretical foundation for this work was laid down by Stenger, 
Schwarz and other pioneers in the 1960s and 1970s.
Tanh-sinh quadrature, which derives from this early work, is very robust 
and efficient, especially for integrands with singularities or vertical 
derivatives at endpoints, or for precision levels greater than 1000 digits.

But significant challenges remain:
We need to better understand the behavior of these schemes across a 
wide range of integrand functions.
Efficient, high-precision computation of multi-dimensional integrals, both 
for regular and non-regular integrands, remains a major challenge.
Some completely new approaches to integration should be investigated.
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