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Abstract
This talk consists of a proof of part of Stenger’s SINC-PACK computer pack-

age (an approx. 400-page tutorial + about 250 Matlab programs) that one can
always achieve separation of variables when solving linear elliptic, parabolic, and
hyperbolic PDE (partial differential equations) via use of Sinc methods.

Some examples illustrating computer solutions via SINC-PACK will never-
theless be given in the talk. In one dimension, SINC-Pack enables the following,
over finite, semi–infinite, infinite intervals or arcs: interpolation, differentiation,
definite and indefinite integration, definite and indefinite convolution, Hilbert and
Cauchy transforms, inversion of Laplace transforms, solution of ordinary differ-
ential equation initial value problems, and solution of convolution-type integral
equations. The methods of the package are especially effective for problems with
(known or unknown - type) singularities, for problems over infinite regions, and for
PDE problems.

In more than one dimension, the package enables solution of linear and nonlinear
elliptic, hyperbolic, and parabolic partial differential equations, as well as integral
equations and conformal map problems, in relatively short programs that use the
above one-dimensional methods. The regions for these problems can be curvilinear,
finite, or infinite. Solutions are uniformly accurate, and the rates of convergence of
the approximations of SINC-PACK are exponential.

In Vol 1. of their 1953 text, Morse and Feshbach prove for the case of 3-
dimensional Poisson and Helmholtz PDE that separation of variables is possible for
essentially 13 different types of coordinate systems. A few of these (rectangular,
cylindrical, spherical) are taught in our undergraduate engineering-math courses.
We prove in the talk that one can ALWAYS achieve separation of variables via use
of Sinc-Pack, under the assumption that calculus is used to model the PDE.

I. ONE DIMENSIONAL SINC FORMULAS

Formulas of Sinc-Pack are one dimensional. But because

of separation of variables, these one dimensional formulas
can be used to solve multidimensional PDE problems, i.e.,

without use of large matrices.

Sinc-Pack is package of one dimensional approxima-
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tions, for approximating every operation of calculus. For
example, let

F = O f

denotes a calculus operation, with “O” operating on a func-

tion f = f(x) of one variable, x.

The corresponding Sinc-Pack operation takes the form

F = O f ,

with O of the form

O = wOV .

Here w is a row vector of m = M + N + 1 Sinc basis

functions, O is an m×m matrix constructed by Sinc-Pack
via use of the calculus operation O and the basis w , and V

is a vector operation, which transforms a function f into a
vector f , by evaluation of f at the Sinc points, zk , i.e.,

w(x) = (w−M(x) , . . . , wN(x))

V f = (f(z−M , . . . , f(zN))T .

The components Fk of the resulting vector F satisfy the
relation

Fk ≈ F (zk)

with error of the order of exp(−cm1/2) , provided that M ∼
cN , f is analytic on the open interval (or contour) Γ on
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which the operation is defined, regardless of singularities
at end-points of Γ, and provided that F is defined on Γ .

Moreover, Γ can be a semi-infinite, or infinite interval, or
even a contour in the complex plane.

The Sinc basis w is interpolating, and satisfies the relation

‖f − w f‖ = O
(

exp
(

−cm1/2
))

,

provided that f is (Lip alpha plus analytic) analytic of on
Γ and also, f ∈ Lipα(Γ) .

(Optimal Convergence Rate: Burchard-Höllig, 1985) The

norm ‖ · ‖ is the uniform norm on Γ .

Motivational Remarks.
Martensen appears to have been the first to note that if

f is analytic and bounded in the strip

Dd = {z ∈ lC : |ℑz| < d} ,

with d a positive number, and if f is integrable over the
real line lR , then the error

∫

lR
f(w) dw − h

∑

k∈ZZ

f(k h)

is of the order of exp(−2 π d/h) . It was later shown by

Stenger that if ϕ : Γ → lR , and if ϕ is also a conformal
map of a domain of analyticity D of a function F onto Dd ,

then by setting t = ϕ−1(w) in the integral of
∫

Γ F (t) dt one
gets the same order of error for the difference
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∫

Γ
F (t) dt − ∑

k∈ZZ

w(k) F (zk) ,

with zk = ϕ−1(k h) , and with wk = h/ϕ′(zk) .

This trapezoidal rule is obtainable via direct integration of

the Sinc expansion of the function

f(t) =
∑

k∈ZZ

sinc((t − k h)/h) f(k h) ,

for which the uniform difference on lR between f and this
expansion is of the order of exp(−π d/h). The replacement

of t by ϕ−1(t) in this expansion enables exponentially ac-
curate approximations of every operation of calculus.

Sample Sinc-Pack Procedures:

(i) Interpolation
There exists an explicit Sinc basis (ω−N , . . . , ωN)T ,

such that, if, e.g., F us analytic on a finite interval (a, b) ,
and if also f ∈ Lipα(a, b) , then

f −
N
∑

k=−N

(ωk) fk = O(exp(−cN1/2)) ,

with zk = ϕ−1(k h) , with fk = f(zk), and with c a positive
constant. This type of approximation also translates to

nonlinear functions, e.g., if g is analytic on the range of f ,
then

g ◦ f −
N
∑

k=−N

(ωk) g(fk) = O(exp(−cN1/2)) ,
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and this property enables effective approximation of solu-
tions to nonlinear differential equations.

(ii) Quadrature.

I =
∫ ∞

0

dx

x1/2 (1 + x)
= π.

Ans.: Use quadd1.m

(iii) Indefinite Integration. Use the notation, for x ∈
(a, b) ,

G+(x) = (J + g)(x) =
∫ x

a
g(t) dt ,

G−(x) = (J − g)(x) =
∫ b

x
g(t) dt .

Then

G± = J±g ,

with J± a matric of order m .

For example,

1 − γ(x, 2/3) =
1

Γ(2/3)

∫ ∞

x
t−1/3 e−t dt , x ∈ (0,∞) ,

ex − 1 =
∫ x

0
et dt .

Ans.: Use indef.example.m
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(iv) Indefinite Convolution.

Model integrals over (a, b) ⊆ lR :

p+(x) =
∫ x

a
f(x − t) g(t) dt

p−(x) =
∫ b

x
f(t − x) g(t) dt .

Use “Laplace transform”. Assume that for all ℜs > 0 ,

F(s) =
∫ c

0
f(t) e−t/s dt , c ≥ (b − a) .

Then (St, 1993)

p± = F(J ±) g

But, can prove, since

J ± g ≈ wJ± g

we also get, if p± ∈ Lip alpha + analytic

F(J ±) g ≈ wF(J±) g .

Evaluation: If J± = X± S X−1
± with S a diagonal matrix,

then

F(J±) = X±F(S) X−1
± .

For example,

F1(x) =
∫ x

0
|x − t|−1/2 t−1/2 dt ,

F2(x) =
∫ 1

x
|x − t|−1/2 t−1/2 dt ,
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whose solution are

F1(x) =







0 if x = 0;
π if x > 0 ,

F2(x) = log





1 +
√

1 − x

1 −
√

1 − x



 .

See ex 3.6 abel.m .

(v) More General Convolutions. Several generaliza-
tions of the above are possible. For today’s talk, we con-
sider only

r(x) =
∫ x

a
k(x − t, t) dt , x ∈ (a, b) .

The Sinc approximation of this integral is the “key” for
achieving separation of variables when solving two dimen-
sional linear PDE over curvilinear regions.

We need the “Laplace transform”,

K(s, t) =
∫ c

0
k(x, t) exp(−x/s) dx , c ≥ (b − a) .

There exist functions fn
ν ∈ L1(0, b−a) and gn

ν ∈ L1(a, b)

such that

k(ξ, t) = lim
n→∞

n
∑

ν=1

fn
ν (ξ) gn

ν (t) ,

for all (ξ, t) ∈ (0, b− a)× (a, b) . Take “Laplace transform”

with respect to ξ , get

K(s, t) = lim
n→∞

n
∑

ν=1

Fn
ν (s) gn

ν (t) .

7



Hence, performing m–vector Sinc convolution, we get r(x) ≈
r , with

r = lim
n→∞

n
∑

ν=1

Fn
ν (J+) gn

ν .

where wJ+ g ≈ J + g . That is, with J+ = X S X−1, X =
[xij] , S = diag(s−M , . . . , sN), and X−1 = [xij] , and zk

denoting Sinc points, we get, for the ith component of r ,

ri = lim
n→∞

n
∑

ν=1

∑

ℓ

xi ℓ

∑

k

Fn
ν (sℓ) xℓ k gn

ν (zk)

=
∑

ℓ

xi ℓ

∑

k

xℓ k lim
n→∞

n
∑

ν=1

Fn
ν (sℓ) gn

ν (zk)

=
∑

ℓ

xi ℓ

∑

k

xℓ k K(sℓ , zk)

If we now set q = (q−M , . . . , qN)T , with

qℓ =
∑

k

xℓ k K(sℓ , zk) ,

then

r = X q .

II. “LAPLACE TRANSFORMS” OF GREEN’S FUNC-

TIONS

Sinc-Pack contains derivations of the multidimensional “Laplace
transforms” of all of the known free space Green’s functions

for elliptic, parabolic, and hyperbolic linear PDE. For ex-
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ample, the “Laplace transform” of the free space Green’s
function

G(x, y) =
1

2π
log

(

1√
x2 + y2

)

is just

G(s, σ) =
∫ ∞

0

∫ ∞

0
exp

(

−x

s
− y

σ

)

G(x, y) dx dy

=

(

1

s2
+

1

σ2

)−1

·

·
(

−1

4
+

1

2π

(

σ

s
(γ − log(σ)) +

s

σ
(γ − log(s))

))

A particular solution to the PDE

∇2u(x, y) = −e(x, y) , (x, y) ∈ Q , (a, b)× (c, d)

with Q = (a, b) × (c, d) is given by

u(x, y) =
∫ ∫

Q
G(x − ξ , y − η) e(ξ , η) dξdη .

The function G in this integral has a singularity at the in-
terior point (ξ , η) = (x, y) . This singularity can be moved

to the boundary by splitting the integral into 4, in the form

u(x, y) = (
∫ x

a

∫ y

c
+
∫ b

x

∫ y

c
+
∫ x

a

∫ d

y
+
∫ b

x

∫ d

y
)Gedξdη

Each of these 4 is a product integral; For example, if in
the first we fix y and η, then the integral

∫ x
a · · · is just a one
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dimensional convolution of the type p already considered.
Next, fixing x and y, we again get the same type of one

dimensional convolution. E.g. if Q = (0, 1) × (0, 1) , and
we seek an approximation of the form

u(x, y) ≈
N
∑

i=−N

N
∑

j=−N

ωi(x) Uij ωj(y) ,

then, by selecting two indefinite integration matrices, one

A = XSXi (Xi = X−1) for integration from 0 to x and
another, B = Y SY i (Y i = Y −1) , for integration from x

to 1 , with S = diag(s−N , . . . , sN) , set E = e(zi , zj) ,
G = [G(si , sj)] , then we can compute a matrix U = [Uij]

via the following 4-line Matlab program:

U = X ∗ (G. ∗ (Xi ∗ E ∗ Xi.′)) ∗ X.′;
U = U + Y ∗ (G. ∗ (Y i ∗ E ∗ Xi.′)) ∗ X.′;
U = U + X ∗ (G. ∗ (Xi ∗ E ∗ Y i.′)) ∗ Y.′;
U = U + Y ∗ (G. ∗ (Y i ∗ E ∗ Y i.′)) ∗ Y.′;

An approximate solution particular solution at an arbitrary

point (x, y) ∈ Q is then given by

u(x, y) ≈ w(x) U (w(y))T .

This solution is, in fact, uniformly accurate on Q , even
when e has singularities on the boundary of Q .

The same type of procedure works for elliptic, parabolic,

and hyperbolic PDE.
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III. BASIC ARCS AND REGIONS.

Definitions.

(i) Arc:

Γ = {ρ̄ = (x, y) ∈ R2 : x = ξ(t) , y = η(t) , 0 ≤ t ≤ 1} ,

with ξ and η analytic on (0, 1) .

(ii) Curve: A union B1 of n1 arcs Γj , with ρ̄j(1) = ρ̄j+1(0),
j = 1 , 2 , . . . , n1 − 1 .

A problem on a curve can thus be transformed into a system

of n1 problems on (0, 1) .

(iii) Contour: A curve, B1 , with ρ̄n1
(1) = ρ̄1(0) .

Planar Regions. These are a union of at most n2 rotations
of regions of the form

B2
J = {(x, y) : a1J < x < b1J , a2J(x) < y < b2J(x)} ,

J = 1 , 2 , . . . , n2 , and with the property that a2 and b2
are arcs, and such that any two regions B(2)

J and B(2)
K with

K 6= J share at most a common arc. Such regions B(2)
J

can easily be represented as transformations of a square
Q2 = (0, 1)× (0, 1) via the transformation (x, y) = TJ(ξ , η)

defined by

x = a1J + (b1J − a1J) ξ

y = a2J(x) + (b2J(x) − a2J(x)) η .

Note that ∂B2 , the boundary of B2 consists of at most a
finite number of contours.
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Note also, that a problem over B2 can thus be transformed

into a system of n2 problems over Q2.

IV. ANALYTICITY.

(i) We shall denote by X1 = X1(B1) the family of all func-

tions f(x) that are defined on a curve B1, and are analytic
on each arc Γj of B1 . (We may add additional specifications

of X1 depending on a particular problem, e.g., not only an-
alyticity, but also analyticity + Lip-alpha, or even, analyt-

icity + certain rates of blow-up, but such that the solution
to the problem should belong to analyticity + Lip-alpha.

(ii) In two dimensions, denote by fJ the function f re-
stricted to B2

J . We shall denote by X2 = X2(B2) the family

of all functions f(x, y) that are defined and have a power
series expansion, i.e.,

fJ(x, y) =
∑

(j,k)∈ZZ2
+

f (j,k)(x1, y1)

j ! k !
(x − x1)

j (y − y1)
k

with ZZ+ = (0 , 1 , . . . , for all (x1 , y1) in each region B2
J ,

and also, for all (x1 , y1) on the interior of each boundary
arc of B2

J .

Theorem: If f ∈ X2 , and if ρ̄ is an arc either in a region
B2

J , or on a boundary arc of B2
J , then f ◦ ρ̄ is an analytic

function on (0, 1) .

Now suppose that P is an arc in Q2 = (0, 1)×(0, 1) , defined
by ζ(t) = (ξ(t) , η(t)), 0 < t < 1 , and let TJ(ξ , η) be defined

as above. Then f ∈ X2 −→ g(t) = f ◦ T (ξ(t) , η(t)) is an
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analytic function of t on (0, 1) . Moreover, if f is also of
class Lipα on each region B2

J , then g ∈ Lipα[0, 1] .

V. MOTIVATING 1-d ANALYTICITY

Let F = F (x, y) be defined on Q2 = (0, 1)×(0, 1), such that
F ∈ X2 , and let Ox and Oy denote calculus operations, and

let Ox and Oy denote respectively, the corresponding Sinc
approximations of these operations. These operators typ-

ically commute with one-another, and we can thus bound
the error ‖Ox Oy F −Ox Oy F‖ in the following manner:

‖Ox Oy F −Ox Oy F‖

≤ ‖Oy (Ox F −Ox F )‖ + ‖Ox (Oy F −Oy F ) ‖ ,

≤ ‖Oy‖ ‖Ox F −Ox F‖ + ‖Ox‖ ‖Oy F −Oy F‖ .

The third line of this inequality shows that we can still get

the exponential convergence of two dimensional Sinc ap-
proximation, via one dimensional Sinc operators, provided

that F ∈ X2 , i.e., provided that there exist positive con-
stants c1 and c2 , such that

1. For each fixed y ∈ [0, 1] , function F (· , y) of one vari-

able belongs to the appropriate space X1 to enable an
error of the form

O
(

exp(−c1 N
1/2
1 )

)

;

and
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2. The norm ‖Oy‖ is bounded,

and dually, provided that

1. For each fixed x ∈ [0, 1] , the one dimensional func-
tion F (x , ·) satisfies the appropriate one-dimensional

conditions to enable an error of the form

O
(

exp(−c2 N
1/2
2 )

)

;

and

2. The norm ‖Ox‖ is bounded.

The above space X2 is thus an appropriate one for Sinc
approximation.

VI. (a) DIRICHLET PROBLEMS IN TWO DI-

MENSIONS.

We discuss here the problem

∇2 u(r̄) = 0 , r̄ ∈ B2,

u(r̄) = g(r̄) , r̄ ∈ B1 = ∂B2 ,

where the contour B1 and the two dimensional region B2

are defined above.

Let us denote the Hilbert transform of F taken over B1 by

(SF )(ζ) =
P.V.

π i

∫

B1

F (t)

t − ζ
dt .
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Let v denote a conjugate harmonic function of the solution
u to (3.9), and let f = u + iv denote a function that is

analytic in

D =
{

z = x + i y ∈ lC : (x, y) ∈ B2
}

.
Let us set

f(z) =
1

π i

∫

B1

µ(τ)

τ − z
dτ

where µ is a real valued function on B1 , which is to be

determined.

Upon letting z → ζ ∈ B1 , with ζ not a corner point of B1 ,
and taking real parts, we get the equation

µ(ζ) + (K µ)(ζ) = g(ζ) , (1)

with Kµ = ℜS µ .

The integral equation operator K defined by K u =
ℜS u arises for nearly every integral equation that is used

for constructing the conformal maps. It has been shown in
[Gaier, 1964] that this operator K has a simple eigenvalue
1, for which the corresponding eigenfunction is also 1. Fur-

thermore, the other eigenvalues λ such that the equation
K v = λ v has non–trivial solutions v are all less than 1 in

absolute value.

Writing κ = (K − 1)/2 we can rewrite (1) as follows:

µ(ζ) + (κµ)(ζ) = g(ζ)/2 .

15



Since the norm of κ is less than one in magnitude, the series

∞
∑

p=0

(−1)p κp g

converges to the unique solution of the integral equation .

Since g ∈ Lipα(B1) , we know that (see [Gakhov]) S g ∈
Lipα(B1) , so that κ g ∈ Lipα(B1) . It thus follows, that

κ : X1 → X1 . The series sum thus converges to a function
µ ∈ X1 .

It thus follows that the one dimensional methods of §2 can
be used to solve two dimensional Dirichlet problems, i.e., we

have obtain a solution via simple one dimensional methods,
i.e., via separation of variables.

VI. (b) NEUMANN PROBLEMS IN TWO DIMEN-

SIONS.
The problem takes the form

∇2 v(r̄) = 0 , r̄ ∈ B2,

∂v

∂n
= γ on γ = B1 = ∂B2 ,

where n denotes the unit outward normal at points of smooth-

ness of B1 , Let γJ denote the restriction of γ to B1
J and set

γJ(t) = γJ(ρ̄J(t)) , where ρ̄J is defined as above. Then we
have γJ ∈ Mα,d(ϕ). If v denotes the solution to Neumann’s

problem, and if u denotes the function conjugate to v , we
have u = S v , and also, v = S u , where S denotes the

Hilbert transform defined above Furthermore, the Cauchy–
Riemann equations imply that
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∂v

∂n
= −∂u

∂t
= −γ ,

where t denotes the unit tangent at points of smoothness
of B1 . Given γ, we can thus determine g(z) =

∫ z
a h(t) dt,

where the integrations are taken along B1 , and where we
can accurately carry out such indefinite integrations via use

of Sinc indefinite integration along each segment B1
J of B1 .

We can thus solve a Dirichlet problem to determine a func-

tion ν on B1 , as we did above to determine µ, and having
determined ν, we can get µ = S ν via the Sinc approxima-

tion procedure for approximating the Hilbert transform.
We can then approximate v in the interior of B2 via the
above procedure for solving a Dirichlet problem.

VI. (c) Solution of a Poisson Problem on B2

A particular solution to Poisson’s equation

∇2 w(r̄) = −e(r̄) , r̄ ∈ B2 ,

is given by

w(r̄) =
∫

B(2)
G(x − ξ , y − η) e(ξ , η) dξ dη ,

where r̄ = (x , y) , and where G denotes the Green’s function

G(x, y) =
1

2 π
log

{

1√
x2 + y2

}

.

Theorem: If f ∈ X2(B2) , then w ∈ X2(B2) .
Proof §6.5 of [Stenger, 1993].

17



Example: Let B2 denote the region

B2 =
{

(x, y) : −1 < x < 1 , −
√

1 − x2 < y <
√

1 − x2
}

,

i.e., B2 is the circular region with boundary B1 = ∪2
j=1Γj ,

where Γ1 is the upper semicircular boundary of radius 1,
and Γ2 is the lower semi-circular boundary of radius 1. We

consider the solution to the problem

uxx + uyy = −e(x, y) = −4, (x, y) ∈ B2

u(x, y) =







1 if (x, y) ∈ Γ1

−1 if (x, y) ∈ Γ2 .

A particular solution to the non-homogeneous problem

is

U(x, y) =
∫ ∫

x2+y2<1
G(x−ξ, y−η) e(ξ, η) dξ dη = (1−x2−y2) ,

(See “lap poi disc.m”) whereas

v(x, y) =
2

π
arctan

(

2 y

1 − x2 − y2

)

,

solves the homogeneous problem with the boundary condi-
tions. (See “lap harm disc.m”) .

VII. TIME PROBLEMS

Consider, for example, the integral equation solution

U(x, y, t) =
∫ T

0

∫ ∫

B
G(x − ξ, y − η, t − t′) f(ξ, η, t′) dξ dη dt′
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which satisfies the equation

1

c2
Utt − Uxx − Uyy = f(x, y, t), (x, y, t) ∈ B × (0, T ) ,

and with G = G(x, y, t) the free–space Green’s function

which satisfies the equation

1

c2
Gtt − Gxx − Gyy = δ(t) δ(x) δ(y) .

The above integral expression for U(x, y, t) (even when the
right hand side is a nonlinear function that may depend
not only on (x, y, t) , but also on Ux , Uy , and Ut) can of

course be solved iteratively, by successive approximation,
for U(x, y, t) over B× (0, T ) , provided that T is sufficiently

small. We can similarly also obtain an approximate so-
lution over this region by doing successive approximation

based on Sinc convolution, via use of the “Laplace trans-
form”

G(u, v, τ)

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
G(x, y, t) exp

(

−x

u
− y

v
− t

τ

)

dt dx dy ,

In “Sinc-Pack”, one finds an explicit expression for this
“Laplace transform”:

G(u, v, τ)

=

(

1

c2τ 2
− 1

u2
− 1

v2

)−1 (1

4
− H(u, v, τ) − H(v, u, τ)

)

,
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where

H(u, v, τ) =
1

u

1
√

1
c2τ2 − 1

v2

.

In the solution procedure, one first determines the spa-
cial accuracy, before determining the time accuracy. This

means that we first select the spacial Sinc indefinite integra-
tion matrices, which fixes the eigenvalues (that occupy the

positions (u, v) in the above expression for G(u, v, τ) ) and
eigenvectors of these matrices. The corresponding eigen-

values of Sinc time indefinite integration matrices for in-
tegration over (0, T ) are just T times the corresponding
eigenvalues for integration over (0, 1), while the eigenvec-

tors of these matrices are the same as those for integration
over (0, 1) . It thus follows, upon replacing τ by T τ in the

above expression for G(u, v, τ) , then keeping u , v , and τ
fixed, that G(u, v, T τ) → 0 as T → 0 . Gersgorin’s theo-

rems (see Gersgorin and His Circles, by R.S. Varga) may
thus be used to prove that we have a contraction for all T

sufficiently small, i.e., that the procedure converges, even
for nonlinear wave problems.

Similar statements can be made for the case of wave prob-

lems over B × (0, T ), with B ⊆ lR3, and for heat problems
over B × (0, T ) .
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