Experimental approximations with shifts of $\exp (a z) / z$

"Complex sinc function"

Gerhard Opfer
Department Mathematik
Universität Hamburg
opfer@math.uni-hamburg.de
http://www.math.uni-hamburg.de/home/opfer

Haar spaces

Definition

A finite dimensional subspace H of $X:=\mathrm{C}(D)$ with dimension n is called a Haar space, if its non trivial members possess at most $n-1$ zeros in D.

Haar spaces

Example

Let

$$
f:=1 / t \text { for all } t \in \mathbb{C} \backslash\{0\}
$$

and let D be any compact set in \mathbb{C} and $S:=C D$ with respect to
\mathbb{C}, where C stands for the complement. Let $s_{j} \in S, j \in \mathbb{N}$ any sequence of pairwise distinct points. Then for all n, the spaces

$$
H_{n}:=\left\langle h_{1}, h_{2}, \ldots, h_{n}\right\rangle, \quad h_{j}(t):=f\left(t-s_{j}\right), j \in \mathbb{N}
$$

define Haar spaces with $H_{n} \subset H_{n+1}$. This is easy to see: A typical element of H_{n} is of the form

Haar spaces

Example (contd.)

$$
\boldsymbol{\eta}_{n}:=\sum_{j=1}^{n} a_{j} h_{j}, \quad a_{j} \in \mathbb{C}
$$

This expression can be given the form

$$
\begin{gathered}
\eta_{n}(t)=\sum_{j=1}^{n} a_{j} h_{j}(t)= \\
\frac{1}{\prod_{j=1}^{n}\left(t-s_{j}\right)} \sum_{j=1}^{n} a_{j} \prod_{k \neq j}\left(t-s_{k}\right)=: \frac{p(t)}{q(t)}
\end{gathered}
$$

Haar spaces

Example (contd.)

where $p \in \Pi_{n-1}, q \in \Pi_{n}$. Since q has no zeros in D, η_{n} is well defined and η_{n} has at most $n-1$ zeros in D, since p has at most $n-1$ zeros in \mathbb{C}, provided p is non-trivial.

In this example

$$
f(t):=1 / t
$$

universally generates Haar spaces in the real and in the complex case.

Haar spaces

Example

Let $f(t):=\exp \left(-t^{2}\right), t \in \mathbb{K}$. We consider spaces spanned by $h_{j}(t):=f\left(t-s_{j}\right)$ with arbitrary but pairwise distinct shifts $s_{j} \in \mathbb{K}, j \in \mathbb{N}$. We have $h_{j}(t)=\exp \left(-s_{j}^{2}\right) \exp \left(-t^{2}\right) \exp \left(2 s_{j} t\right)$. Thus, for all $n \in \mathbb{N}$ we have

$$
H_{n}:=\left\langle h_{1}, h_{2}, \ldots, h_{n}\right\rangle=
$$

$$
\exp \left(-t^{2}\right)\left\langle\exp \left(2 s_{1} t\right), \exp \left(2 s_{2} t\right), \ldots, \exp \left(2 s_{n} t\right)\right\rangle
$$

Since e^{z} has no zeros for all $z \in \mathbb{C}$, the problem is reduced to the investigation of the space

$$
\tilde{H}_{n}:=\left\langle\exp \left(s_{1} t\right), \exp \left(s_{2} t\right), \ldots, \exp \left(s_{n} t\right)\right\rangle
$$

If $\mathbb{K}=\mathbb{R}$ the space \tilde{H}_{n} belongs in the catalogue of well known

Haar spaces

Example (contd.)

Haar spaces, Karlin \& Studden, [1966, Example 1, p. 9-10]. If, however, $\mathbb{K}=\mathbb{C}$ the spaces \tilde{H}_{n} are no longer Haar spaces for $n \geq 2$.

In this example

$$
f(t):=\exp \left(-t^{2}\right)
$$

does not universally generate Haar spaces in the complex case.

Universal Haar space generators

We will denote by \mathbb{D} the open, unit disk in \mathbb{C} and correspondingly $D:=\overline{\mathbb{D}}$ will denote the closed, unit disk.

Definition

Let $n \in \mathbb{N}$ be a fixed natural number. A function G defined on $\mathbb{C} \backslash\{0\}$ with values in \mathbb{C} will be called an n-dimensional Haar space generator, if for each set of n pairwise distinct points $s_{1}, s_{2}, \ldots, s_{n} \in \mathbb{C} \backslash \overline{\mathbb{D}}$, the functions h_{j} defined by $h_{j}(z):=G\left(z-s_{j}\right), j=1,2, \ldots, n$ for $z \in \overline{\mathbb{D}}$ span an n-dimensional Haar space.

Example

Let $G(z):=z^{m-1}$ with $m \geq 1$ fixed. Then G is an m-dimensional Haar space generator but not an $(m+1)$-dimensional Haar space generator.

Universal Haar space generators

Definition

A function G defined on $\mathbb{C} \backslash\{0\}$ with values in \mathbb{C} will be called a universal Haar space generator, if for each $n \in \mathbb{N}$, it is an n-dimensional Haar space generator. A universal Haar space generator will be abbreviated by UHG.

Theorem (Hauptsatz)

Let G be analytic on $\mathbb{C} \backslash\{0\}$. Then G is a UHG if and only if G is of the form

$$
\begin{equation*}
G(z):=\frac{\mathrm{e}^{a z+b}}{z}, \quad a \in \mathbb{C}, b \in \mathbb{C} \tag{1}
\end{equation*}
$$

The proof consists of requiring that G is a one dimensional Haar space generator, a one and a two dimensional Haar space generator etc.

Universal Haar space generators

Lemma

Let G be analytic in $\mathbb{C} \backslash\{0\}$ and let G generate Haar spaces of dimension one. Then, G does not vanish on $\mathbb{C} \backslash\{0\}$.

This next result is obtained by assuming that G generates one and two dimensional Haar spaces.

Lemma

Let G be analytic in $\mathbb{C} \backslash\{0\}$ and let G generate Haar saces of dimension one and of dimension two. Then, G has the form

$$
\begin{equation*}
G(z):=z^{m} \mathrm{e}^{\phi(z)}, \quad m \in \mathbb{Z} \tag{2}
\end{equation*}
$$

where ϕ is an entire function.

Universal Haar space generators

By Theorem Hauptsatz we also can identify many non-Haar spaces. One set of examples is produced by

$$
g(z):=\frac{1}{z^{m}}, m \geq 2
$$

and the corresponding spaces generated by shifts. For $m=2$ this was shown by Rahman \& Ruscheweyh [1983].
The main Theorem (Hauptsatz) is also valid for (non empty) compact sets $D \subset \mathbb{C}$.
The theoretical part is joint work with the late Walter Hengartner, *1936 (St. Gallen) - †2003 (Québec City):

- Constr. Approx. 22 (2005), 113-132,
- Comput. Methods Funct. Theory 3 (2003), 151-164,
- Approximation Theory 10, Abstract and Classical Analysis, Vanderbilt University Press, Nashville, 2002, 223-238 (eds.: C. K. Chui, L. L. Schumaker, J. Stöckler).

Examples

Let us treat the interpolation problem in the space

$$
v_{n}:=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle, \text { where } v_{j}(z):=\exp \left(a\left(z-s_{j}\right)\right) \frac{1}{z-s_{j}}
$$

with given constant $a \in \mathbb{C}$ and given shifts $s_{j} \in \mathbb{C}, j=1,2, \ldots, n$. That means, we want to find the unique element $v \in V_{n}$ which satisfies (f_{j} given)

$$
\begin{equation*}
v\left(z_{j}\right)=f_{j}, j=1,2, \ldots, n . \tag{3}
\end{equation*}
$$

A typical element $v \in V_{n}$ has the form

$$
\begin{equation*}
v(z):=\frac{\exp (a z)}{q(z)} p(z), \text { where } q(z):=\prod_{j=1}^{n}\left(z-s_{j}\right), p \in \Pi_{n-1} . \tag{4}
\end{equation*}
$$

Thus, we need to determine p of (4). Because of (3), this equivalent to

Examples

$$
\begin{equation*}
p\left(z_{j}\right)=f_{j} q\left(z_{j}\right) \exp \left(-a z_{j}\right)=: \eta_{j}, j=1,2, \ldots, n . \tag{5}
\end{equation*}
$$

Now, this is a simple polynomial interpolation problem

$$
p\left(z_{j}\right)=\eta_{j}, j=1,2, \ldots, n .
$$

Having found $p \in \Pi_{n-1}$, the wanted solution is v according to (4), namely

$$
v:=\frac{\exp (a z)}{q(z)} p(z), \quad q(z):=\prod_{j=1}^{n}\left(z-s_{j}\right) .
$$

Examples

We choose z_{j} equidistantly on the unit circle,

$$
z_{j}:=\exp \left(\frac{2 \pi \mathrm{i} j}{n}\right), j=0,1, \ldots, n-1 \text { and } f_{j}:=f\left(z_{j}\right),
$$

where

$$
f:=\frac{1}{\Gamma}
$$

is the inverse of the complex gamma function. It is an entire function, thus, analytic in all of \mathbb{C}. The next step is to choose the constant a, the number n, and the shifts $s_{1}, s_{2}, \ldots, s_{n}$.
We first show some pictures of Γ and $1 / \Gamma$ whose values on the unit circle determine the functions completely.

Examples

Example

Figure
Real (left) and imaginary part of $\boldsymbol{\Gamma}$ function

Examples

Example (contd.)

Figure

Absolute value of $\boldsymbol{\Gamma}$ function

Examples

Example

Figure

Real (left) and imaginary part of $1 / \Gamma$ function

Examples

Example (contd.)

Figure

Absolute value of $1 / \Gamma$ function

Examples \# 1

Example

We selected the following four shifts

$$
s_{1}:=-3.67, s_{2}:=-3.57, s_{3}:=3.57, s_{4}:=3.67
$$

and chose

$$
a:=-1.009
$$

The result can be viewed in the next Figure, left side. Interestingly, the maximal error $\max _{|z|=1}|(f-v)(z)|$ depends sharply on the constant a, to be viewed in next Figure, right side.

In comparison, the corresponding interpolating polynomial of degree three has a much larger error.

Examples \# 1

Example (contd.)

Figure (Frank Stenger crown 1)
Absolute error $|f-v|$ of interpolant v (left) and dependence of the maximal absolute error on the constant a occurring in (4) (right)

Examples \# 2

Example

In the next example we selected ten shifts

$$
\pm 3.3, \pm 4.3, \pm 5.3, \pm 6.3, \pm 7.3
$$

and

$$
a:=-0.5 .
$$

The results are shown in the next figures.

Examples \# 2

Example (contd.)

Figure (Frank Stenger crowns 2 and 3)
Real (left) and imaginary part of $1 / \Gamma-v$ of interpolant v

Examples \# 2

Example (contd.)

Figure (Frank Stenger crown 4)
Absolute error $|1 / \Gamma-v|$ of interpolant v (left) and dependence of the maximal absolute error on the constant a occurring in (4) (right)

Summary

(1) Interpolation: very simple,
(3) Approximation: not too difficult,
© Shift selection: no results, so far just experimental,

Summary

(1) Interpolation: very simple,
(2) Approximation: not too difficult,
© Shift selection: no results, so far just experimental,

- Parameter selection: no results, just experimental.

Summary

(1) Interpolation: very simple,
(2) Approximation: not too difficult,
(3) Shift selection: no results, so far just experimental,

O Parameter selection: no results, just experimental © Thank You!

Summary

(1) Interpolation: very simple,
(2) Approximation: not too difficult,
(3) Shift selection: no results, so far just experimental,
(9) Parameter selection: no results, just experimental.

Summary

(1) Interpolation: very simple,
(2) Approximation: not too difficult,
(3) Shift selection: no results, so far just experimental,
(a) Parameter selection: no results, just experimental.
© Thank You!

