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Finding by Interval Arithmetic the Number of Zeros

of an Analytic Function Inside a Rectangle

0. Aberth

Department of Mathematics, Teaas AEJM University
College Station, TX 77843-3368 USA

For a given analytic function f(2), there are various methods available for de—

ciding Whether a region in the complex plane contains a zero. When is a

polynomial and the region is a circle, the method of D. H. Lehmer can be used.

More generally, the number of zeros in the region can be obtained by the more

diicult numerical evaluation of the integral

1 f’(z)dz
2 f(Z)

around the boundary of the region. The identical result can also be obtained by

evaluating the topological degree. R. B. Kearfott has described a method for eval-

uating topological degree that converts to an eicient interval arithmetic method

when the region is a rectangle With sides parallel to the real and imaginary axes.

We describe the method and its use in locating the zeros of an analytic function.

Typeset by AMS—TF‘X
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Iterative Methods of Solving Nonsmooth

Optimization Problems in Hilbert and Banach Spaces
with Nonasymptotic Estimates of Convergence Rate

Ya. Alber

Technion — Israel Institute of Technology
Dept. of Mathematics, 3200 Haifa, Israel

We consider iterative processes for minimization of nonsmooth convex function—
als in Hilbert and Banach spaces, for solving equations and variational inequalities
with multivalued and even discontinuous operators. We assume that the operator
of variational inequality (subgradient of functional) has arbitrary growth “on in—

finity” and it is uniformly monotone, i.e. uniformly degenerate. Under such weak

restrictions we prove a strong convergence of approximate methods, investigate
their stability and establish both asymptotic and nonasymptotic esimates for the

convergence rate. We show that the behaviour of the iterative processes depends
not only on the structure and smoothness of the problems, but also on the geometric
characteristics of the Hilbert and Banach spaces.
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The Cholesky Method for Interval Data

G. Alefeld and G. Mayer

Institut fd'r Angewandte Mathematik‘, Universitdt Karlsruhe

Postfach 6980, W—7500 Karlsruhe, Germany

We apply the well—known Cholesky method to bound the solutions of linear

systems with symmetric matrices and right—hand sides both of which are varying
Within given intervals. We discuss some general properties and derive criteria which

guarantee the feasibility and the optimality of the method.
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Practical Interval Matrix Computations

F. L. Alvarado

The University of Wisconsin — Madison

Dept. of ECE, 1425 Johnson Dr.

Madison, Wisconsin 53706-1607 USA

This presentation will describe several practical aspects of computing with in—

tervals in large problems. After a general introduction to practical interval com—

putations and the choice of languages for interval computation work, the author

will describe a useful general purpose package for the manipulation of large sparse

matrices. This popular package, the Sparse Matrix Manipulation System, has been

extended recently to interval computations of many kinds and includes tools for

the Visualization of interval computations. Although the straightforward use of in—

terval computations in this package is not always optimal, the package is a good
workbench to illustrate the advantages and pitfalls of interval computation using

large sparse matrices and vectors.

In addition to describing and illustrating the interval version of the Sparse Matrix

Manipulation System, this presentation Will describe several of the unique tools

specic to interval computation that were developed, and present a few ideas that

may be new to the audience. The rst of these ideas is the “singleton partitioned
inverse” method. This method is an extrapolation of the partitioned inverse method

for solving linear equations. For ordinary matrices, this method has the virtue of

being a highly parallel means of performing repeat solutions once a matrix has been

factored. The method has another advantage: when dealing with “thin” matrices

and interval right hand sides, a slight modication of the partitioned inverse method

can yield the hull of the solution set directly for a large class of matrices Without the

serious degradation in sparsity that results from more traditional interval solution

methods.

The second novel concept explored in this presentation is the relationship be—

tween the LINPACK matrix condition number estimator and practical algorithms
for the determination of the hull of linear equations. The presentation will explore
the practicality of this approach to interval computation.

A third novel notion explored in this presentation will be to study the effect of

ordering of the matrix on interval growth for sparse matrices. A surprising result

is that some ll—in is desirable to help control interval growth.
Finally, the presentation will describe a few application examples to power sys—

tems engineering for the determination of secure regions of operation of the power

system when uncertainty in the network injections exists.
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Interval and Circular Enclosures of the Set of

Solutions to Initial Value Problems.

The Wrapping Effect.

R. Anguelov

Department of Applied Mathematics

National University of Science and Technology
Box 346, Bulawayo, Zimbabwe

The Initial Value Problem (IVP) for systems of Ordinary DifferentialEquations

(1) i7 = f (L 50)

with a set—valued initial condition

(2) m(to)=a:° 6X0 CR“

is considered. The wrapping effect is a well known obstacle in the construction

of interval enclosures of the set of solutions x(:z:0;t)of the system (1) when $0 6

X 0. We investigate the wrapping effect introducing a new concept of a wrapping

function. The wrapping function is an interval function dened by using an IVP

associated with problem (1), It is proved that the wrapping function is the

limit of the interval enclosures produced by step~by—step numerical methods when

the step size tends to zero. Therefore the wrapping effect is the difference between

the wrapping function and the optimal interval enclosure of the solution $(XO;t) =

{m(:c°;t) : 3:0 6 X0} to the problem (1), This is used to classify the IVP

with respect to the wrapping effect. A class of IVP without wrapping effect is

determined.
I

Enclosing of the solution (C(X0;t) of (1), (2) by circle—valued functions of the

form S(t) = (c(t),r(t)) = {:13E R" : — < 7“(t)}is proposed. The wrapping

effect in the case of linear systems of differential equations is studied using a circular

wrapping function. A class of IVPs without wrapping effect is determined. Since

this class depends on the type of enclosures that are applied the class of IVPs

without circular wrapping effect is different from the class of IVPs without interval

wrapping effect.
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Higher-Order Combined Iterative Methods for Simultaneous

Determination of Zeros of Analytic Functions

L. Atanassova

Institut fiir Dynamische Systems, Universitdt Bremen

112800 Bremen 35’, Germany

Using a modication of Koenig’s theorem we present a family of combined itera-

tive methods With extremely rapid convergence for the simultaneous determination

all zeros of an analytic function (inside a simple smooth closed contour in the

complex plane). The convergence analysis is included. Some algorithms for the

inclusion of the zeros of an analytic functions derived from the presented family of

combined methods are considered.
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Bounds for the R—order of Some Classes of

Simultaneous Inclusion Methods for Polynomial Roots

L. Atanssova and J. Herzberger
Institut filr Dynamische Systeme, Universitéit Bremen

19-2800 Bremen 35’, Germany
and

Faehbereich Mnthematik, Universitc'it Oldenburg
W-2900 Oldenberg, Germany

For a general model for deriving some classes of higher—order methods for the
simultaneous inclusion of polynomial zeros, we can calculate lower bounds for their
R—order of convergence. It is shown that, in this general approach, the single—step
methods are faster convergent than the corresponding total—step methods. Some
formulas for the lower bounds are explicitly given.

This general approach makes it possible to easily derive bounds for the R—order
of concrete methods if some characteristic parameters are known. With the help
of interval arithmetic estimations, these parameters are obtained in most cases by
simple applications of the basic rules for the width operator. This will be shown
for some cases in the literature.

The results of this approach are important to determine efcient iteration meth—
ods. It is shown how one can determine optimal methods in some families of

higher—order simultaneous methods. In addition to this, we are now able to treat
some families of iteration methods by a simple application of our results.
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New Methods for Bracketing Eigenvalues of

Self-adjoint Operators

C. Beattie

Department of Mathematics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

A new approach for computing tight lower bounds to the eigenvalues of a class of
semibounded self—adjoint operators is presented that requires comparatively little a

priori spectral information and permits in some circumstances the effective use of

nonconforming nite—element trial functions. The method makes use of parameter—
ized intermediate quadratic forms and generalizes in a certain sense the left—denite
variant of Lehmann’s inclusion intervals. This formulation is developed into a sys—
tematic framework based on recent inertia results in the Weinstein-Aronszajn the—
ory. This provides greater flexibility in analysis and results in a nal computational
task involving sparse, well—structured matrices.
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Bounds to Eigenvalues of Parameter Dependent
Differential Equations

H. Behnke

Inst. Angewandte Mathematik

Technische Universitc'it Clausthal

0-3392 Clausthal-Zellerfeld, Germany

We consider the natural bending Vibrations of a free standing blade of a turbine

disc. The mathematical model describing this problem [1] results in the following
eigenvalue problem with ordinary differential equations:

($212”+ (Egg-1.0”)”— 92(9v')' = /\v

((Pyzv”+ (Pg/10”)”— 92(910')’ —— 92w 2 /\w

and boundary conditions

12(0)2 v'(0) : 10(0) 2 w'(0) = 0, v”(1)= v"'(1) = w”(1)= w"'(1) = 0.

Here :1: is the cartesian coordinate of the blade, 1) and w are the displacements in

the y and 2 direction, (1)3,= $3,011)and Q32 = (Dz(m)are area moments in y and

z direction and S228 denotes the normal force in the blade due to rotation. The

dimensionless eigenvalue A corresponds to the circular frequency. The eigenvalues
/\ = M9) depend on the real parameter Q (the angular velocity) which is assumed

to vary in the interval [0,30].
In the lecture we will show how veried bounds of the form

19(9) — e S S + e for all 9 6 [0,30]

can be computed for the smallest eigenvalue curves. Here 6 is a small positive
number and p is an explicitly known function. The eigenvalue curves show the

interesting curve veering phenomenon; by means of the calculated bounds7 we can

prove that the smallest eigenvalues curves do not cross each other.

“Veried” means, that rounding errors are controlled rigorously by the use of

interval arithmetic. An advantage of the described method is, that it can be applied
to eigenvalue problems with partial differential equations just as well.

REFERENCE

1. H. Irretier and O. Mahrenholz. “Eigenfrequencies and Mode Shapes of a Free—

Standing, Twisted, Tapered and Rotating Blade with Respect to an Elastically
Supported Root, ASME, pp. 1—9, 1981.
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011 Interval Mathematical Models of Differentiative

Electronic Circuits

I. V. Belousova

up. 59, 16 / 2, pr. Yu. Gagarina
Saint Petersburg, SU-196211, Russia,

The report considers the accuracy of an electrical dierentiative circuit with

input representing a. sum of nite spectrum signal and interferences. The interval

analysis approach is used to describe interferences and parasitic elements of the

circuit. A mathematical expression for an upper bound on the relative error of

differentiation is derived and the accuracy of this expression is explored. Algorithms
for parametrical optimization of the circuit using minimization of this upper bound

are proposed.
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Exact Estimates of the Long Term Stability of

Dynamical Systems Applied to the Weakly Nonlinear

Design of Large Storage Rings

M. Berz and G. Hoffstaetter

Department of Physics and Astronomy and

National Superconducting Cyclotron Laboratory

Michigan State Uninerstty, East Lansing, MI 48824 USA

The motion in weakly nonlinear dynamic systems like circular accelerators and

storage rings like the planned Superconducting Supercollider can be described very

well by high order Taylor maps describing the action on phase space. Recently it has

been shown that such transfer maps can be obtained very elegantly and accurately

using high order automatic differentiation and differential algebraic techniques in

several variables. In typical examples, derivatives of up to order ten in six variables

are needed. This goes far beyond the abilities of other methods, which are limited

to about order three.

Using nonlinear normal form and other methods, the Taylor maps can be used to

obtain families of approximate six dimensional invariants of the motion. In general,
the approximate invariants will not be exact unless the motion is integrable, which

in reality is rather unlikely. However, the quality of the approximate invariants,
i.e. the maximum deviations from invariance, allows a direct estimate of the time

it takes particles to get lost, which is a crucial parameter for the design of large
scale accelerators like the SSC.

Because the deviations from invariance are very irregular, a conventional estimate

of the maximum of the six dimensional deviation function is rather cumbersome

and inaccurate. On the other hand, interval methods allow an exact and rather

tight estimate of the maximum. Because of the oscillatory structure of the deviation

function and the large number of variables, this represents a nontrivial task, which

for the rst time provides the missing link to allow a rigorous quantitative stability
estimate.

All calculations are performed with the COSY language environment which pro-

vides an object oriented structured language as well as an executer. The compiler
and executer are written in FORTRAN 77 for easy portability. The ability to use

dedicated data. types for automatic differentiation and interval arithmetic drasti—

cally simplies the practical realization of the concepts discussed above.
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Performance of an Occam/Transputer
Implementation of Interval Arithmetic

O. Caprani and K. Madsen

University of Aarhus

and

Institute for Numerical Analysis, Tech. Univ.

Bldg. 305’, DK-2800 Lyngby, Denmark

Rounded interval arithmetic is very easy to implement by means of directed

rounding arithmetic operators. Such operators are available in the IEEE oating
point arithmetic of the INMOS T800 transputer. When a few small pieces of

assembly language code are used to access the directed rounding operators, the
four basic rounded interval arithmetic operators can easily be expressed in the

programming language Occam.

The performance of this implementation is assessed, and it is shown that the
directed rounding oating point operations are no longer the time consuming part
of the computations. Most of the time is spent with transport of operands to

and from the on—chipoating point unit, and by the procedure call and parameter
passing overhead.

Based on this experience, the implementation can be improved. The improved
implementation runs at 0.15 MIOPS (Million Operations Per Second), or 0.30
MFLOPS. Furthermore, it is demonstrated that an advanced interval language
compiler may provide a performance of 0.30 MIOPS or 0.59 MFLOPS on the trans—
puter.
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Use of a Real—Valued Local Minimum

in Parallel Interval Global Optimization

0. Caprani and K. Madsen

University of Aarhus

and

Institute for Numerical Analysis, Tech. Univ.

Bldg. 303, DK-2800 Lyngby, Denmark

We discuss a parallel method for nding the global minimum (and all of the

global minimizers) of a continuous non—linear function f : D —> R, where D is an

n—dimensional interval, D 6 IR". The method is based 0 the well known methods

of Skelboe, Moore and Hansen.
‘

Initially, we use a standard non—linear optimization method to nd a local min—
imizer X1, (or rather: a prediction of a local minimizer). Then the interval method

is used either to verify that the point found by the standard method is the global
minimizer, or to detect the opposite and then nd the global minimum. In case the

standard method has solved the problem posed, i.e. if Xp is the global minimizer,
the verication process is signicantly faster than application of the usual interval

method.

The new interval method starts by applying the interval Newton method to an

interval I], containing Xp as its midpoint. I], is chosen as large as possible under

the restriction that the interval Newton method must converge when Ip is used

as starting interval. In this way the original problem is reduced to the problem of

searching a domain which does not contain the local (and perhaps global) minimizer.

This domain is searched by a method similar to the standard interval method,
starting by splitting it into 271 intervals and hence avoiding IP.

The new method parallizes very well, and experiments on distributed memory

systems with up to 32 processors are reported.
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Interval Arithmetic in Maple

A. Connell and R. M. Corless

Department of Applied Mathematics

University of Western Ontario

London, Ontario Canada N6A 537

We deseribe an implementation in the computer algebra language Maple of the

draft Basic Interval Arithmetic Subroutines library proposed by George Corliss.

Maple provides a variable—precision numerical environment, in that one can, at

any time, set the global (environment) variable Digits to the desired precision. The

only limits to Digits are the memory available on the machine. Maple’s built in

arithmetic and elementary functions are of high quality and efciency (for software

arithmetic). This implementation of interval arithmetic is also variable—precision.
Besides the normal operations of nite interval arithmetic, we allow some manip-

ulations with the symbol “innity”, which is taken to mean positive real innity by
this package, and the symbol “FAIL” which indicates a failure, such as occurs when

subtracting innities. We have not yet implemented “smart” interval arithmetic

operators which take into account derivative information.

We were unable to overload the operators + ,i—

,
*

,
and /, but were able to use

Maplels so-called “inert” operators “85+”, “85—”,“85*”, and “85/7’. This results in

a package that is easier to use than one that uses pure procedure calls, but is less

satisfactory than true operator overloading.
We will discuss the implementation and verication of the arithmetic and ele—

mentary functions, and present some simple applications. Finally we will discuss

the potential for using the symbolic capabilities of Maple to improve the tightness
and efciency of this package.
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Automatic Differentiation Applications

G. F. Corliss

Marquette University and Argonne National Labs

Department of Mathematics, Statistics, and Computer Science

Milwaukee, WI 53233 USA

Automatic differentiation is a technique for the fast, accurate computations of
ordinary and partial derivatives required by many self—validatingalgorithms. Given
a program for the function to be differentiated, we nominate independent and de—
pendent variables, and we produce a program that computes the desired derivatives.
The ability to compute accurate derivatives efciently is a critical enabling tech—
nology for optimization, nonlinear systems, continuation methods, stiff odes, and
sensitivity analysis. Argonne has deVeloped two complementary software tools:
ADOL—C and ADIFOR.
ADOL—C is a very flexible tool using operator overloading in C++. It can be

used to generate derivatives in either the forward or the reverse modes, Taylor
series, or mixed partial derivatives of any order. ADOL—C can use a checkpointing
scheme to restrict storage demands to grow only logarithmically in the execution
time of the original function.

We describe the application of AD OL—C to two signicant applications. The rst
is a model under development at Sandia of unsaturated ow in a porous medium.
The second application of ADOL—C was to a new algorithm using Padé series in
M :“ailin’npucit Way to some stfft ordlnafy differential equations. ADOL—C computes

the neCessary high—order Taylor Series and also derivatives of the Taylor coefcients
with respect to the rst term, thereby enabling the exploration of a completely new

class of algorithms. Initial explorations suggest that the new algorithms are very
competitive with conventional methods in both speed and accuracy.

The second tool for automatic differentiation is ADIFOR, a Fortran—based source
transformation tool. ADIFOR accepts F ortran code for the function to be differ—
entiated and uses advanced compiler technology to generate portable Fortran code
to compute the derivatives. We describe the handling of sparse Jacobians by ma—
trix coloring or by sparse saxpy operations, partially separable functions, functions
which are dened implicitly, second order derivatives, and functions which may not
be differentiable.
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P-Matrices and the Rank-One Matrix Polytope
Regularity Problem

G. E. Coxson

Department of Electrical and Computer Engineering
University of Wisconsin—Madison

1415 Johnson Dr.. Madison, Wisconsin 53706 USA

A real matrix polytope is a bounded aine mapping from a polytope in R,“ to

Rnxn. Any such mapping may be described in terms of a starting matrix and

is independent additive matrix perturbations each in the form of a xed matrix

multiplied by a parameter restricted to a closed bounded interval. When each of

the k perturbation matrices has rank one, the polytope is called a rank—one matrix

polytope. In this paper, we assume the polytope domain is a hyperrectangle. Any
interval matrix is a rank—one matrix polytope with hyperrectangular domain.

An important problem in the study of interval methods is that of testing nec-

essary and sufficient conditions for robust nonsingularity, or regularity, of interval

matrices. This paper shows that, starting from any given rank—one matrix polytope
with a hyperrectangular domain, one can construct a matrix which is a P~matrix if

and only if the matrix polytope is regular. A P—matrix is dened as a matrix Whose

principal minors are all positive.
One way to use this P—matrix formulation is to strengthen a computational

complexity result of Rohn and Poljak. In a recent paper, they prove that the

regularity problem for interval matrices with rank—one radius matrix is co-NP—

complete. We Show using the P—matrix formulation that the more general problem
of testing regularity of rank-one matrix polytopes is co—NP—completeand, as a

special case of this, the interval matrix regularity problem is co~NP—complete as

well. An additional corollary is that the problem of testing whether a given matrix

is a P—matrix is co—NP—complete. These results imply that unless P=NP, which is

considered to be highly unlikely, any algorithms for these problems must exhibit

worst—case exponential—time computational behavior.
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Reliable Recursive Computation
of Some Determinant Ratios

A. Cuyt and B. Verdonk

Dept Mathematics and Computer Science
Universiteit Antwerpen (UIA), Universiteitsplein 1

13—2610 Wilrijh-Antwerpen, Belgium

Let {Sn} and 2 1) be complex—valued sequences and consider the
quotient of determinants

Sn ... Sn+k
g1(n) g1(n+ k)

mi”) i:: “(T
91(77.) g1(n+l€)

... gk(n°+h)

The quantities play a crucial role in many numerical computations. We refer
to convergence acceleration methods based on composite sequence transformations
[BREZa], univariate and multivariate approximation and interpolation formulas
[CUYT, MUHL] and many other applications. It is therefore essential that reliable
algorithms be developed for the recursive computation of the values The
recursive computation schemes available at this time often exhibit unstable numeri—
cal behaviour due to breakdown or near—breakdown of the algorithm. Some singular
rules have been developed [ALCUj BREZb] to handle the situation where the de—
nominator vanishes theoretically. Whether or not these rules should also be applied
in case of near—breakdown of the algorithm is difcult to determine. The aim is to

develop algorithms which yield the values Ek(Sn) With guaranteed accuracy based
on a combination of theoretical results and scientic computation tools.

REFERENCES

[ALCU] Allouche H. and Cuyt A., A recursive computation scheme for singular tables
of multivariate rational interpolants, Numer. Algor. (to appear).

[BREZa] Brezinski C., A general extrapolation algorithm, Numer. Math. 35 (1980),
175—187.

[BREZb] Brezinski C., Other manifestations of the Schur complement, Lin. ALg. Appl.
111 (1988), 231e247’. Numer. Math. 35 (1980), 175~187.

[CUYT] Cuyt A., A recursive computation scheme for multivariate rational interpolants,
SIAM J. Num. Anal. 24 (1987), 228~238.

[MUHL] Miihlbach G., The general Neville—Aithen-Algorithm and some applications,
Numer. Math. 31 (1978), 97—110.
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Interval Methods via a Posteriori Error Estimates

B.S. Dobronec

Computing Center, Academy of Sciences, Siberian Branch,
Akademgomdok, Krasnoyarsk, Russia

Interval methods for solving ODE’s and PDE’S are presented in this paper.
The methods are based on a posteriori error estimates.

The proposed methods are as follows: rst, solve a given problem and some

additional problems by some numerical methods, then use splines to interpolate the

resulting numerical solutions. An interval solution consisting of a linear combina—
tion of these splines is then sought.

Interval analysis is applied here only for computing defects of the spline solu—
tions and the necessary constants. The technique allows the computation time to

be considerably reduced and the precision to be improved.
The advantage of this approach is that known numerical methods for solving

ODE’S, PDE’s and spline approximations are used for its realization. This approach
is applied here in particular for “stiff” ODE’S, boundary—value problems for higher
order equations With a small parameter, elliptic problems, and two—dimensional

parabolic equations. An illustrative numerical example is given.

REFERENCES

1. BS. Dobronec and V.V. Shaidurov, Two-Sided Numerical Methods, Nauka,
1990, 208 p. (in Russian)

2. BS. Dobronec, TWO—sisded solution of ODEs via a posteriori error estimates,
J. CAM 23 (1988), 53451.
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On Clustering of Boxes in

Multidimensional Global Optimization

K. Du and R. B. Kearfott

Dept. of Mathematics, Univ. of Southwestern Louisiana
U.S.L. Box 4-1010, Lafayette, LA 70504-1010 USA

We consider branch and bound methods for enclosing all global minimizers
of a nonlinear C2 or Cl objective function. In particular, we consider bounds ob—
tained with interval arimmetieralongAMth—thmidpointest/Wotrtioracceieratiorwm" ’ ”

procedures. Unless the lower bound is exact, the algorithm Without acceleration
procedures in general gives an undesirable cluster of boxes around each minimizer.
Here, we analyze this problem in the multidimensional case, by generalizing argu—
ments we previously presented for the one—dimensional case. Theoretical results
are given which show that the problem is highly related to the behavior of the
objective function near the global minimizers and to the order of the corresponding
interval extension. We make various simplifying assumptions to be able to present
a clear analysis. For example, we do not consider non—isolated minima, the effect
of interval Newton methods, or minima which occur on boundaries of constructed
sub—boxes.
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A Computer Test of Interval Matrix Asymptotic Stability

I. V. Dugarova

Department of Applied Mathematics and Cybernetics
University of Tomsk

5’6, Lenino sin, Toms/c, 634050, Russia

The interval matrix stability problem, important in practice, is discussed in

[1]—[6].It is important to create simple computer methods to test such a prop~
erty for an interval matrixSinwmicult to simultaneouslystunecessmy
and sufcient conditions for interval matrix stability, most papers are devoted only
to the development of Wnt criterion for stability or instW1]—[6]. The
sufcient condition test considered in the present report is based on Gershgorin’s
theorem as well as on methods that have been worked out in [1] and However,
the proposed algorithm is distinct from [1H3], and is efcient not only for interval
matrices with negative diagonal elements. Its advantage is illustrated with numer—

ical examples. Furthermore, as in the papers and [4], another simple sufcient
condition for interval matrix instability is presented.

REFERENCES
1. Heinen, J .A. Sufcient conditions for stability of interval matrices. Int. J.

Control 39 6, pp. 1323—1328 (1984)
2. Xu, Daoyi. Simple criteria for stability of interval matrices. Int. J. Control 41

1, pp. 289—295 (1985)
3. Xu, Daoyi. Stability criteria for interval matrices. Comput. and Comb. Meth-

ods in System Theory Amsterdam: Elsevier Science Publishers B.V., 1986.
4. Ziao, X.—X. and Qian, L.—L. Some new results for stability of interval matrices.

Contr. Theory and Adv. Techn. 4 2 (1988)
5. Yedavally, RK. Stability analysis of interval matrices: another sufcient con-

dition. Int. J. Control 43 3, pp. 767—772 (1986)
6. Argoun, M.B. On the sufcient conditions for the stability of interval matrices.

Int. J. Control 44 5, pp. 1245~1251 (1986)
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The VPI Software Package

J. Ely
Mathematical Sciences Dept,

Lewis and CZark College,Portland, OR 97219

The VPI (Variable Precision Interval) software package is a collection of rou—
tines written in C++ (by this author) to support variable precision interval arith—
metic. It appears to be the oldest of the various C++ packages, having been used as

early as 1988, although it has endured many modications and enhancements since

then. Here, the author discusses its capabilities, aws, evolution (including the de—
velopment of a vectorized version for the Cray YMP), and a variety of pedagogical
and research applications to which the author has put it.
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On Ways of Obtaining Guaranteed Solutions,

for a System of Ordinary Differential Equations

OB. Ermakov

Department of Mechanics and Mathematics

Computer Center, Saratov State University
Astrakhanskaya 85”,Saratov, Russia 410071

In the paper, ways of nding guaranteed solutions for a system of ordinary
differential equations are considered. These ways are based on the extrapolation—
interpolation Adams methods of any orders and on Taylor series. The methods

account for the errors of input data, the errors of method and the rounding er—

rors° To implement the first method for obtaining guaranteed solutions, nite
differences and recurrence relations for the coefficients of the Adams formula are

used. Both for the second method and for obtaining estimates of errors in the

methods, we apply the idea, proposed by R. E. Moore, dealing With recursive com-

putation of Taylor coefcients. This approach allows us to compute the Taylor
coefcients very economically. In the realization of these methods, we use capa—
bilities of the PASCAL—XSC compiler (high—accuracy arithmetic, computation of

expressions With maximum precision) to take rounding errors into account; do—

ing so Will give high—accuracy guaranteed estimates solution of initial problem. A

comparision of accuracy and execution time of these methods will be presented.
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A Unied Approach to Real Numbers and Intervals

M. H. Escardé, D. M. Claudio and B. R. Tavares F ranciosi

CPGCC da UFR GS, Porto Alegre, Brasil

Intervals are constructed by a generalization of Dedekind’s construction of real

numbers, in such a way that real numbers are particular cases of intervals. Intervals
are dened neither as pairs of reals nor as (closed) sets of reals. Instead, intervals
are dened as incompletely specied reals., and hence we call them,partial.realsrwn
also. Reals are then obtained from complete specications. Specically, reals and
intervals are constructed by (possibly partial) functions oz : Q —> {0,1} subject to
certain conditions. Intuitively, the rational numbers p such that 01(1))2 0 are the
lower bounds of the real number or interval dened by a, and the rational numbers

q such that a(q) : 1 are the upper bounds of the real number or interval dened by
41. Then 01 denes a proper interval if Oz is undened for some rational numbers, and
denes a real number otherwise. The set of partial reals obtained in such a way turns
out to be a Scott domain ordered by graph inclusion of functions. In particular,
the bottom element of the domain of partial reals is the totally undened function,
which can be written [—00,+00]. Then this domain is also a topological space with
Scott topology. It turns out that the Scott topology restricted to real numbers
is the usual Hausdorff topology for real numbers. This fact is important because
the computable functions on the domain of partial reals must be continuous in the
Scott topology in order to be computable. Another way of stating this property is
to say that a function on real numbers has a Scott—continuous extension to intervals
iff it is Hausdorff—continuous. Moreover, every extension is monotonic, and there is
a unique maximal extension, which corresponds to the so-called interval extension.
This work also develops the arithmetic for partial reals, in such a way that the
arithmetic for reals is a particular case of the arithmetic for partial reals. This
unied construction of reals and intervals allows also to develop a unied theory of

computability, and to relate real analysis and computability. A partial real dened
by oz is computable if 01 itself is computable as a function. An operation on real
numbers is then a higher—order function. Scott domain theory allows such higher—
order functions, and denes the notion of computability for them. It turns out that
the four arithmetic operations and several other functions are computable.
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Generalization of the Oettli—Prager-Theorem
H. Fischer

Technische Universitdt Mdnchen

Institut fur Angewandte Mathematik and Statistik

Arcisstr.21, 8000 Milneth 2, Germany

The classical Oettli—Prager theorem deals with a system Ax = b of linear

equations. It allows to check whether or not an approximate solution is acceptable
Within prescribed tolerances (intervals) for the coefcient matrix A and the right—
hand side I). This theorem can be generalized in two respects: We replace intervals

by more general regions (hypernorm—balls). And we replace the matrix A by an

operator A that maps a linear space X into a linear space Y, where the dimensions

of X and Y are arbitrary. Thus the new theorem can be applied for instance to

integral equations.
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Asynchronous Interval Iterations

A. Frommer

Fachbereich 7 Mathematik, Bergische Universitiit Wuppertol
Gaustme 20, D—5600 l/Vuppertal 1, Germany

A large class of methods for enclosing the solution 37* of a real (non—interval)
problem, for example an n X n linear system, result in an iteration,

(1) $k+1 =H$k,k=0,1,...,

where

H : R” ——> R”, R” : space of all interval vectors of dimension 72.

Typically, H is an inclusion isotone interval extension of a continuous real operator
that admits 36* as its unique xed point. Thus, if we have an initial interval vector
:270such that Hmo Q 51:0,Brouweris fixed point theorem shows that 30* 6 £170and, by
inclusion isotonicity, 513*E :c’“ for all k.

Instead of the synchronous iteration (1) we propose to consider an asynchro-
nous modification, where at a given stage only some components of H are evaluated
at a vector whose components are made up of various results of previous stages.
This kind of iterative scheme arises very naturally on parallel computers if one tries
to minimize delays due to communication and/ or synchronization. Although these
asynchronous iterations are much more general than (1), it turns out that in the
interval case its convergence properties are quite the same as for the synchronous
iteration. This holds in particular for the standard situation described at the end
of the previous paragraph.

The lecture will rstly present some results of the theory. It will then focus
on several numerical examples on local memory as well as shared memory parallel
computers, which compare the practical performance of synchronous and asynchro—
nous methods. We are using a (non—optimal)interval arithmetic which delivers
guaranteed bounds for the desired solutions.
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The Bernsteinalgorithm with Subdivision

J. Garloff

Fachhochschule Konstanz, Fachbereich Informatz'k
Postfach 10 05 43, 19-7750 Konstanz, Germany

Upper and lower bounds for the range [m] of a multivariate polynomial

m

p($1,...,$n) : ail-"inwil...in
i1,...,ln:0

on an n—dimensional interval vector X can be obtained by expanding the polynomial
into Bernstein polynomials. For n = 2 and k 2 m the expansion is

L.
7

May) = 2 big?)-p§f)(:v,y), (my) 6 X

M=0

Where

Pif)($7y)= (f):z:i(1— $)k_iyj(1 _ y)k—j

5g.»2 ii Kg)(3)]
‘1

(3(gas (at 2 0 3 > m or t > m).
3:0 t=0

Then for all k 2 m the following relations hold

- (k)(1) IrifljnbijSm

(k) _

(2) Ingxbij2m

with equality in (1) (resp. (2)) iii min bx?)(resp. max 5%))is assumed at one of the

four Bernstein coefcients 63,8),6%),6311:),52:).

In this talk we show that degree elevation (raising k) is inferior to subdivision,
i.e. subdivide X and calculate the Bernstein coefcients by on the subintervalvec—
tors. We concentrate on how the Bernstein coefcients on the subintervalvectors
can be computed in a very economical way from the Bernstein coefcients on X.

Then we report on how the Bernstein algorithm may be applied to solve prob—
lems of robust control, e.g., checking (Hurwitz) stability of a polynomial with co—

efcients depending multilinearly on parameters varying in intervals.
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The Proof Theorems on a Computer:
Interval-Analytic Aspects

N. Glazunov

Glnshkov Institute of Cybernetics, AN Ukraine

Prospect Glnshkova; 4’0, Kiev 252207 Ukraine

Let f = f(x,y) be a sufciently smooth real function of two variables. An

interval‘analytic method for proving theorems about properties of such functions

f is discussed, and examples of its applications are given. The main example of

application of this method is a proof of the famous Minkowski conjecture concerning
the critical determinant of the region lxlp + lyllp< 1,}? > 1 We consider the

Minkowski conjecture in analytical form, which is proposed by Davis

I discuss the following aspects of the method and its applications:
- common description of a method;
— interval—analytic strategies for proving conjectures [3—5];
— choice of domains and intervals;
— parallel computations;
— interval—analytical investigation of singularities;
— software for computer support of the method [6];
— interval-analytic computations on computers;
— another applications, and conclusions.
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Interval Non-smooth Optimization

M. Gutowski

Institute of Physics, CAI-3.2, Polish Academy of Sciences

Al. Lotnikow 32/46, PL-02-668 Warsaw, Poland

Objective functions of many variables arising from various practical problems
of experimental data tting often contain non—smooth terms like absolute value or

max{0, f Non—smooth objective functions are hard to maximize using classical

methods. Interval methods, besides Monte Carlo type methods, are among the few

capable to nd a global extremum in such cases Unfortunately, there is only a

very limited choice of powerful accelerating devices when dealing with non—smooth

problems. This is the reason for the rather large number of boxes, which possibly
contain the desired solution, being generated during the calculation course. In this

contribution we want to present some practical experiences with Ichida and Fujii’s
algorithm [2]modied in such a way as to lower the chance of dealing with a large
number of boxes. There are two important points in our “upgrade”. The rst is to

adopt the proper strategy of selecting a box to be bisected as the next one, without

losing convergence properties of the algorithm. The second idea is to check from

time to time (when “out of memory” error might be unavoidable) whether the boxes

cannot be merged into one or more clusters, thus effectively lowering the number

of objects to be dealt with. The method works satisfactorily when the number of

unknowns is small.

REFERENCES

1. H. Ratschek and J. Rokne. “Interval Tools for Global Optimization,” Com-

puters Math. Applic. 21 6/7, pp. 41—50 (1991).
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Efcient Solution of Large Systems of

Nonlinear Constraints

with Inexact Data and Explicit Termination Criteria

G. D. Hager

Department of Computer Science

P. 0. Bar 2158 Yale Station

Yale University, New Haven, CT 06520

Many robotics applications require propositional decisions to be computed from

noisy geometric sensor data. In structured situations, this problem is usually posed
by tting a parametric surface or volumetric model to the data, and then choosing
the action appropriate for the resulting parametric description. The equations
describing the models are usually highly nonlinear as are the criteria used to choose

the appropriate action. In those cases Where the errors in sensor data are bounded,
making a decision from sensor data can be posed as solving a large set of nonlinear

equalities and inequalities until given termination criteria are met.

A typical example is the problem of deciding the graspability of an object based

on its shape and size. Objects are observed by a range scanner that delivers a dense

(one quarter million bytes) range “image.” Objects are described by a superellipsoid
(an ellipsoid where the exponents are allowed to range from 2 to 00) augmented with

deformations such as bending and twisting. The graspability criteria are described

by inequalities on the size and shape parameters of the superellipsoid.
In general, this class of problems leads to large sets of nonlinear equalities and

inequalities with the following general properties:

0 The set of equations are highly overdetermined. For example, in the case above,
10 to 15 parameters are determined using over 1000 constraint equations.

0 The precision to which model parameters can be computed is ultimately gov—
erned by the precision of the sensor data which is bounded, but typically several

orders of magnitude worse than machine precision. The precision to which the

equations can be solved also varies widely based on the density or completeness
of the data delivered.

0 Model parameters need only be solved to the precision required to reach a

specific decision. The constraints describing decision criteria are typically much

simpler than the constraints describing the data model.

0 There are occasionally data outliers that could potentially render the system
inconsistent if countermeasures are not taken.

We have built an interval-based bisection algorithm to solve these types of

problems. Some interesting aspects of this algorithm are:

0 Because of the relatively large data errors and the potential for outliers, we

found that Newton—style methods performed far worse than a procedure that

uses direct interval—based constraint testing.
0 The structure of the procedure makes it possible to prove that, for n parame—

ters, only 2n data constraints are relevant to an interval. By implementing a

relatively inexpensive selection procedure, it is possible to signicantly speed
up the constraint solving process. Given this result, it follows that the solution
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procedure used by the bisection algorithm can be performed in constant time

using 6712 processors operating in parallel,
o The structure of the decision constraints are used to guide the bisection process

so that the computation needed to reach a decision is kept to the minimum.

Furthermore, the amount of computation performed varies adaptively based

on the character of the data and the system of constraints.

We have generally found that interval—based algorithms are an extremely ex-
ible basis for solving these types of problems.

The full paper will describe the basic structure of the bisection algorithm,
detail the selection procedure mentioned above, and Will also include some experi—
mental results from the grasping example given above. We Will also briey describe

the extensions required to use interval—based constraint solving in less structured

situations“
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Solving Systems of Nonlinear Equations
Using Generalized Interval Arithmetic

E. R. Hansen

654 Paco Drive, Los- Altos, CA 94022, USA

In an earlier paper R. Hansen, A Generalized Interval Arithmetic, pages
7—18 of K. Nickel (ed). Interval Mathematics, Springer—VerlagLecture Notes in
Computer Science no. 29, 1975.] the author introduced a generalization of interval
arithmetic. It was designed to reduce the growth of intervals which occurs during
computation because of dependency. In this paper, we consider application of this
arithmetic to solving systems of nonlinear equations.



32 NUMERICAL ANALYSIS WITH AUTOMATIC RESULT VERIFICATION

Estimations and Enclosures of Condition Numbers
for Evaluation Algorithms

G. Heindl

Fachbereich Mathematik and Institut fr Angewandte Informatik
Bergische Universitdt, Gauss—Strae20

D5600 Wuppertal 1, Germany

It is shown that the problem of estimating and enclosing condition numbers for
evaluation algorithms can be reduced to the problem of estimating and enclosing
the determinants of certain Hessenberg matrices. There are several methods for
solving the reduced problem, and any of them can be Viewed as a special realization
of automatic differentiation.
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On Bounding the Range of Some Elementry Functions

in Fortran 77

C. Hu, A. Awad and R. B. Kearfott

Department of Computer and Mathematical Sciences

University of Houston-Downtown

Houston, TX 77002

and

University of Southwestern Louisiana

We present Fortran 77 programs to obtain the range of the arcsine, arccosine,

arctangent, arccotangent, hyperbolic sine, hyperbolic cosine, hyperbolic tangent
and hyperbolic cotangent functions over intervals. These programs are to be part
of the software library INTLIB.

Algorithms and test data will be discussed. We Will also present the techniques
used to narrow the result interval and to speed up the rate of convergence.
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On the Solution of Volterra—type Equations
with Preassigned Accuracy

V. V. Ivanov

General theory of complete error estimation for the solution of applied problems
on computers is briey considered.

Some conjectures by N. S. Bakhvalov about properties of optimal algorithms
are formulated.

General results and validity of the conjectures are illustrated with the solution

of Volterra—type equations as the main example.
Software for the solution of applied problems on computers with automatic

result verication is briey described.

Some industrial and scientic applications are given.
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Correct Implementation of Floating Point Algorithms

K.—U. Jahn

Fachbereich Mathematiic and Informatik
der TH Leipzig, Karl-Liebknecht-St'r. 132

0-7030 Leipzig, Germany

Properties on numerical algorithms are usually proved in idealized abstract

spaces. The spaces occurring on a real computer are different from them. So

the question arises how the behaviour and the computed results differ from the

theoretical ones.

A calculus is introduced to get an answer to this question. The calculus is

a generalization of Hoare’s for verifying algorithms. For example, there will be

given a rule for verifying While-loops When the occurring oating point numbers are

replaced by sets of numbers which include the exact values. This rule has the same

shape as its original, namely

{IA B}S{I} i—{I#} while 3+ do §{I# /\ am},

Where I# and 3+ are weak and strong generalizations of the loop invariant I and

the loop condition B, respectively. g differs from S in replacing all not exactly
computable resp. representable numbers by enclosing intervals.

The properties of the calculus Will be proved, and applications to numerical

examples Will be given.
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Distance Measuring and Computing Similarity Grades

K.—U. Jahn

Fachbereich Mathematik and Informatik
der TH Leipzig, Karl-Liebknecht-Str. 132

0-7030 Leipzig, Germany

For pairs (X , Y) of n—dimensional hyperrectangles X, Y and a Wide class of
metrics d, the corresponding Hausdorff” distance dH (X, Y) can be effectively com—

puted. This was shown in a paper by the authorg

Now it will be shown that the computation can be extended to sets repre—
sentable as nite unions of hyperrectangles, however for a restricted class of metri—
ces. If only a two—sided approximation of the Hausdorff distance is required, which

can be arbitrarily improved, then a method can be given which works for each
metric.

Using the Hausdor—distaeefefite unions of intervals, thenjstmmaoe
computed effectively for arbitrary bounded sets. This will be applied for computing
similarity as well as congruency grades of sets. Further applications to example—
based learning and image recognition will be given.
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Use of Interval Methods for Solving Minimax Problems

C. Jansson and O. Kniippel

Informatik III, Technische Universitc'it Hamburg—Barbary
Eissendorfer Sir, 5’8, 2100 Hamburg .90, Germany

Minimax problems arise in many practical applications in physics, chemistry,
and engineering. For example, in multivariable control—system design and structural

engineering, the minimization of important structural properties like robustness can

be expressed as minimax problems.
We present a method which computes guaranteed lower and upper bounds for

the global optimum value of minimax problems,
The numerical performance of our method is discussed on standard test exam—

ples and some real world problems.
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Estimation of the Parameters of Nonlinear Models from

Experimental Data via Interval Analysis

L. Jaulin and E. Walter

Lahoratolre des Signa’ax et System63, SUPELEC

Plateau de Moulon, 91192 Glf—sur-Yoette Cedem, France

Building mathematical models to understand, predict and control the behavior

of a system is a basic activity in most elds of pure and applied science. Frequently,
prior knowledge is not sufcient to allow a complete derivation of the model, and

experimental data must be used to select a suitable model structure and estimate

its unknown parameters.
The most classical approach for parameter estimation is to look for the value of

the parameter vector that minimizes a criterion, usually the sum of the squares of

the errors between the experimental data and corresponding model outputs. Except
in very special cases, such as when the errors are afne in the parameters. no explicit

formula is available to compute the optimal parameter vector, and iterative methods

are used to compute displacements in the parameter space that improve the value

of the criterion. Such an approach has two main drawbacks: it is essentially
local and does not guarantee convergence to the global optimum; (ii) it provides
no reliable indication on the uncertainty with which the unknown parameters are

estimated.

To solve problem (ii), we suggest in this paper to look for the set of all models

that are acceptable instead of looking for the model that is optimal in the sense of

a given criterion. The rst step is then to list all the properties that the model

should have to be acceptable. A rst example of such acceptability conditions is

that the residuals between the data and corresponding model outputs lie between

some known bounds that express the condence intervals attached to individual

measurements (see e.g. [1] and all other papers of the same special issue). One can

also consider that errors are acceptable if the probability that they correspond to

realizations of some random variable with known probability distribution is higher
than some prior threshold. Other conditions not directly related to the errors can

be considered as well and several acceptability conditions may have to be met

simultaneously for the model to be acceptable.
Once conditions of acceptability have been dened, one is interested in charac—

terizing the set S of all values of the parameter vectors such that the model belongs
to set of acceptable models. This is a problem of set inversion that needs be solved

globally in order to avoid problem In this paper we shall present a new algo—
rithm, based on interval analysis, that makes it possible to approach 5 as precisely
as desired.

The approach will be illustrated with several examples.

REFERENCE
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Use of Interval Arithmetic in Symbolic Computation

J. R. Johnson1 and W. Krandick2

Department of Mathematics and Computer Science

Drexel Univesity, Philadelphia, Pennsylvania 19104 USA

and

Research Institute for Symbolic Computation
Johannes Kepler University, 14-4040 Linz, Austria

This project explores the use of interval arithmetic in symbolic computation.
Interval arithmetic, a formalism for computing with ranges of numbers, provides
an efcient and error free method of combining oating point arithmetic with exact

symbolic computation.T_heprimary goal of this project is tmdeirelop and ana—

lyze exact algebraic algorithms that use approximate interval arithmetic for certain

intermediate computations yet still produce guaranteed results. The purpose of
such hybrid algorithms is to obtain a practical efciency gain to time consuming
algebraic algorithms such as Collins’ Cylindrical Algebraic Decomposition (CAD)
based Quantier Elimination. The CAD algorithm is a powerful method for proving
mathematical theorems involving polynomial equations and inequalities. Reduced
execution times will allow more complicated and interesting problems to be solved.

The correctness of the CAD algorithm relies upon correctly determining the

signs of real algebraic numbers and correctly determining the number of real roots

of polynomials with integer and real algebraic number coefcients. This can be

accomplished with time consuming exact computation with polynomials and real

algebraic numbers. However, in many situations the desired information can be

obtained with a veriable approximate computation. For example, if a real algebraic
number is contained in an interval which does not contain zero then its sign can

easily be determined from the endpoints of the interval.

There are many algebraic algorithms which can obtain useful information from

rough interval bounds and hence benet from judicious use of interval arithmetic.

Example hybrid algorithms include Lehmer’s multiprecision integer GCD algo—
rithm, real algebraic number sign computation, algebraic number inequality tests,
polynomial root bound computation, polynomial root isolation and renement, and

approximate algebraic polynomial GCD calculation. Preliminary study of some of

these algorithms shows the potential merits of this approach.
We will report on the design of an arbitrary precision interval arithmetic pack—

age, intended to be used in conjunction with exact algebraic algorithms, and our

experience using the package in the development of hybrid interval—symbolic algo—
rithms. The interval package also includes algorithms for exact interval arithmetic
with rational endpoints. The goal of the hybrid algorithms is to replace time con—

suming exact computation, where possible, by approximate interval computation
in such a way that the exact results can be recovered. Interval arithmetic is per—
formed with increasing amounts of precision, and only when interval arithmetic
fails to provide the desired information, do we resort to exact computation. We
will illustrate some techniques for determining the amount of precision necessary

1Supported by NSF grant COR—9211016

2Supported by Austrian Science Foundation (Grant M022-PHY)
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for certain computations, for systematically increasing the precision, and for suc—

cessfully combining both interval and exact computation. Empirical results Will

be presented showing the performance improvement over exact algorithms and the

effectiveness of interval arithmetic to provide exact information.
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An Interval Step Control for Continuation Methods

R. B. Kearfott and Zh. Xing
Dept. of Mathematics, Univ. of Southwestern Louisiana

USE. B02: 4-1010, Lafayette, LA 70504-1010 USA

We present a step control for continuation methods that is deterministic in
the sense that it computationally but rigorously veries that the corrector it—
eration Will converge to a point on the same curve as the previous point (i.e. the
predictor / corrector iteration will never jump across paths),and (ii) each predictor
step is as large as possible, subject to verication that the curve is unique with
the given interval extension. We propose two different interval step controls to
guarantee rigorousness. Those are: interval Gauss—seidel iteration for a general 72—
dimensional continuation problem and interval arithmetic function value checkingfor a 2—dimensional problem, which greatly increases eiciency. Several theorems
guarantee that our algorithms are appropriate, and can not fail (under some as—

sumptions). We present performance data and comparisons with a non interval
step control method (PITCON version 6.1). A comparison of plots obtained from
both step controls reveals that a non interval step control will behave erraticallyin situations Where the interval step control leads to orderly progression along the
curve. Two—dimensional experiments, tests using the Topologist’s sine curve, which
has Changes in curvature of increasing magnitude, suggest that this interval step
control is very efcient when rapid changes in curvature occur, and that it is much
faster than the non interval step control for such functions, assuming both step
controls follow the curve successfully. We apply this interval step control in con—
junction with slope arithmetic to CAD Geometric graphic design problems. It
solves the problem of approximating the intersection curve of two patches with a

guaranty of nding all branches of the intersection curves.
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Efcient Iteration with Operation Decomposition

R. B. Kearfott and S.—F. Shi

Dept. of Mathematics. Univ. of Southwestern Louisiana:

U.S.L. 30$ 4-1010, Lafayette, LA 70504-1010 USA

We haVe recently considered (in Computing 47, pp. 169~191) decomposing
a system of nonlinear equations by dening new variables corresponding to the
intermediate results in the evaluation process. In this work (ibid.) we applied both
a derivative—free component solution process and an interval Gauss—Seidel method
to the larger, sparse system of equations so obtained.

A geometrical analysis of the component solution process indicates when con—

vergence of the process is expected, Without evaluating iteration matrices and with—
out coordinate bisection. A separate analysis indicates when a linearized Gauss~
Seidel step is necessary, and how to make it most effective. In this talk, we will

present experimental results on an improved, eicient hybrid algorithm combining
the component solution process with an occasional Gauss—Seidel step on a single
component.
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Interval Arithmetic With Mathematica

J. B. Keiper

Wolfram Research, Inc.

100 Trade Center Drive, Champaign, IL 61820 USA

The arbitrary—precision arithmetic in Mathematica displays results with as

many digits are are known to be correct. This sort of arithmetic, sometimes referred
to as signicance arithmetic, has certain advantages over xed—precision arithmetic.

We show how interval arithmetic is the correct model to use for signicance arith—
metic and how this is done in Mathematica. As an implementation of interval

arithmetic, signicance arithmetic is limited to intervals that are short relative to

their magnitude. For this reason Mathematica also provides correctly rounded in—
terval arithmetic With the function Real Interval[ ]. We show some examples of
how this works.
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Interval Calculations Programs
in the ASIAS Program Package

N. A. Khlebalin and A.V. Lazarev

Department of Automation of Manufacturing,
Moscow Steel and Alloys Institute,

Peruoma'yskaya 7, Elektrostal,
Moskowskaya oblast, 144000, Russia

Program package ASIAS is used to solve problems of analysis and synthesis of

automatic systems with interval initial data (parameter values, initial conditions

and characteristics of external disturbances). The distinctive property of the pro—

gram package is that operations with interval values are performed in accordance

with the rules of interval analysis. That is why the interval calculations programs
are one of components of the software in the ASIAS program package. They work

with the following interval mathematical objects; functions, linear algebraic equa—
tions systems, matrices, differential equations.

‘

For interval functions, the package allows determinnation of the range and

construction of the borderline functions (major—lineand minor—line). For polyno—
mials with pure— and functionally—interval coefcients, ASIAS can localize the sets

of roots (oneconnected and multiconnected). For complex fractionally—rationally—
interval functions ASIAS can determine the amplitude, phase, logarithmic and other

characterictics.

For linear interval algebraic equation systems, ASIAS can determine the vari—
ous sets related to solutions solutions (united, tolerable, guaranteed solution set).

Matrix algebra is presented by the following programs: derivation of the char—
acteristic polynomial, derivation of the joined matrix, multiplication, raising to a

power, calculation of the interval of the determinant values.

For interval differential equations the sets (pipes) of the solutions are con—

structed.

Most of the solution methods of these pure mathematical problems are not

traditional. They use the results obtained in automatic control theory, more specif—
ically in interval automatic systems theory, whose development has been progressing
for about 15 years.

The package is written on FORTRAN for the IBM PC. The teaching version

is provided with a course of lectures and effect drawing. Program package ASIAS

is a developing system. At present, the interval calculations programs are comple—
mented by symbolic operations and translated to the language PASCAL—XSC.

REFERENCE

“Program package ASIAS (Analysis and Synthesis of Interval Automatic Sys—
tems)”, Interval Computations 1 2 (1991) pp. 83—84.
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Renormalization for One Parameter Families of

Hierarchical Models

H. Koch3 and P. Wittwer

University of Terms at Austin, Department of Mathematics

Austin, TX 78712, USA

and

Université de Genéve, Département dc Physique Théorique
Geneve, CH 1211 (Switzerland)

We present a detailed proof of a theorem which was announced at the confer—
ence on “Nonlinear Evolution and Chaotic Phenomena”, held in N oto, Sicily, Italy.
The central object of our study is a nonlinear operator, acting on a Banach space

of analytic functions. An extension of interval arithmetics to such spaces is used to

prove the existence and local uniqueness of a xed point for this operator; and the

bounds are carried out on a computer. The listings of our computer programs, as

well as details of our proofs, are available.

On a certain Banach space 5 we consider the xed point problem for the

nonlinear operator N, which is dened by the equation

OO

(1) (MW) = E/ dsexpwsiwitMW.
—00

Here, the normalization constant c = c( in (1) is chosen such that (N (0) = 1,
i.e., c = f d3 exp(—L232)[f(52)]f;the other constants will be specied.

We consider not only the Banach space 8, but a family of such spaces Sp.
This is because, for the purpose of doing interval analysis, we represent N as the

product of three operators: One which takes the K—th power of a function, one

which convolutes it with the Gaussian measure, and one that scales its argument
by a factor 0+,For the rst two of these operators, if the domain is chosen to be

an open subset of one of the spaces Sp, then the range is no longer contained in the

same Banach space.

Interest in this xed point problem stems from the theory of critical phenomena
in statistical mechanics and quantum eld theory, where N describes the action of

a “block spin renormalization group operator” on a space of hierarchical lattice

models. Given the dimension d of the lattice, and an arbitrary integer L > 1

dening the block spins, the canonical values for the parameters 13and a are 6 = Ld

and oz : [FL—2‘3,respectively. In particular, for d = 3 (the most interesting case

from the point of View of physics) and L = 2, one obtains E = 8 and oz 2 1/
These are the values which we use in our analysis (actually, we only assume that oz

lies in a certain small interval containing 1/

3Supported by the National Science Foundation under Grant No. DMS—9103590.
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Interval Methods in Electrical, Electronics and

Control Engineering

L. Kolev

25’ Tamarind Court, 4 Cheryl Road

Avondale, Harare, Zimbabwe

The paper will present an overview of technical problems arising in Electrical,
Electronics and ControlEngineering that have been solved usingintemal—methods.
More specically, the following topics will be covered.

1. Tolerance analysis of steady states in linear electric circuits:

a) direct current circuits and

b) alternating current circuits.

2. Robust stability of linear electric circuits or control systems.
3. Robust performance of the same class of circuits and systems.
4. Transient analysis of the same class of circuits and systems.
5. Analysis of nonlinear circuits and systems

a) determination of all steady—states:
~ Constant steady—states
— T-periodic steady—states

b) Uniqueness of T—periodic steady—states.
It is shown that the above technical problems can be transformed to corre—

sponding mathematical problems: linear interval systems result from problem 1;

global nonlinear optimization problems result from 1b, 2 and 3; ordinary differen—
tial equations result from problem 4; systems of nonlinear equations result from

problem 5. The latter problems are then effectively solved using appropriate inter—
val methods.

The paper will emphasize advantages of the existing interval methods over

the traditional, non—interval methods, as well as some difficulties encountered in

applying interval methods (mainly due to lack of interval software packages).
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Improved Interval Algorithms for Tolerance and

Robustness Analysis

L. Kolev

23 Tamarind Court, 4’ Cheryl Road

Avondale, Harare. Zimbabwe

In this paper, it is shown that various engineering problems dealing with tol—

erance, robust stability and robust performance analysis of linear electric circuits

or control systems can be reduced to solving corresponding global nonlinear mini—
mization problems.

Depending on the nature of the engineering problem considered, two classes of

minimization problems arise. The first class comprises minimization problems with

simple constraints (the state-variable vector r E X where X is an interval vector).
The second class of problems includes additional functional inequality or equality
constraints. In both cases all the nonlinear functions involved are multivariate

polynomials. Problems of the former type arise in robust stability analysis as well

as in “worst—case” tolerance and performance analysis. Tolerance and performance
analysis in statistical formulation or determination of the so-called stability margin
lead to minimization problems of the latter type.

Several algorithms for tolerance and robustness analysis of linear electric cir—
cuits and control systems are suggested. They are based on rst and second order

interval methods for global minimization. The algorithms also incorporate var—

ious simple techniques (not fully exploited previously) which lead to substantial

improvement of their convergence rate.

Numerical examples show that the overall efficiency of the presented algo—
rithms is superior to that of other known interval algorithms (based on rst—order
minimization methods or the Bernstein method).
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Efcient, Accurate, Exhaustive, and Robust Method
for Solving System of Non-Linear Equations

P. Koparkar
National Centre for Software Technology

Gulmohar Road, Cross Road No. .9

John, Bombay 400049, India

Various real—life objects along with their properties need to be modelled for the

purpose of simulation and performance analysis using computers. The objects are

modelled by certain mathematical (symbolic) expressions, while the properties are

modelled by equations involving these expressions. In engineering applications, the
solution sought to the system of equations has requirements different from those of
a mathematical solution. Arriving at a solution in one form or another, amenable to

further processing, is important. It is essential that the solution is computable on

the machine and the method can be automated. The method used for this purpose
should be efcient (involving minimal computations), accurate (numerically high
precision), exhaustive (detecting all possible solutions) and robust (working without

failures). In this paper we present such a method for solving the system of non-

linear equations over a nite, bounded domain, when the functions involved are

differentiable and their range evaluation is possible either by interval methods or

by some other means. With this point of View, methods based on strategies such
as numerical iterative renement or recursive sub division are more welcome.

Numerical iterative method renes a guess about the solution to arrive at a

better one, and iterates this until the guess is acceptable. It offers no guarantee of

convergence. Also, it may converge only to a particular solution ignoring others.

Thus, it lacks exhaustiveness and robustness. However, such a method can quickly
nd the solution to the desired accuracy, whenever it converges.

On the other hand, recursive subdivision (bisection) method considers the
entire domain at a time, and subdivides it and recurses when necessary. It concen—
trates only on those subdivided portions that show a potential to contain solutions.
It exhausts all solutions in the domain and is robust. However, if more accuracy
is desired, it becomes inefcient as the deeper subdivision increases the number of
subdomains exponentially.

These two methods are unacceptable when the solutions are computed auto-

matically on the machine, since neither of them shows all the desirable charac—
teristics. The method proposed in this paper starts with the entire domain and

applies subdivision to ensure exhaustiveness and robustness. Later it switches over

to numerical iterative renement for efciency and accuracy. Switching takes place
only when the convergence of the renement method is guaranteed. A computable
condition for this guarantee is worked out using range evaluation techniques and
results from topology and mathematical analysis. The method devised is of generic
nature in that it covers a large spectrum of applications. We conclude the paper
with the discussion of implementation of the method on computer.
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Towards a Veried Solution of Linear Systems
Basing on Common Software Libraries

C. F. Korn, Ch. Ullrich

Institut fit?"Informatik, Universitiit Basel

Mittlere Str. 142, CH—4056Basel, Switzerland

In the past decades huge numerical software libraries have been developed. Lin—
ear systems have deserved a special interest which is reected in the great amount

of available packages. As a major drawback these provide just an approximation
of the true solution7 its accuracy is normally estimated by the means of “backward

analysis”. Examples show that these estimations are sometimes very precise, in

other cases completely wrong, giving way to misleading interpretations of the com—

puted solution. This problem is avoided when using automatic result verication.
Our approach consists in reusing the existing software extending it by a verication

capability. This is achieved by adopting following strict separation when computing
the inclusion of a linear system:

1. approximation phase: an approximate solution is computed using the routines

of existing software libraries.

2. verication phase: based on the delivered approximation an inclusion is com—

puted.
Of course this separation is in principle possible for any numerical problem.

This strategy has several consequences. First, the approximation is computed fast

(assuming the used library is optimized). Since the rst phase is absolutely in-

dependent of the second, precomputations for the verication step are not done,
especially the exact (but in all known implementations inefcient) dot-product is

not used. Second, the inclusion step is executed only if required by the user. Third,
the interface of the verication routine must be adapted to the interface of the ap-

proximation routine.

The feasibility of this approach will be shown by means of the extension of

one particular library. Runtime (and accuracy) measurements will show that the

verication of the results can be achieved with low additional costs - even for linear

systems of high dimension.
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Semimorphic Function Evaluation

W. Kraemer

Univ. Karlsruhe, Kaiserstr. 12

13-7500 Karlsmhe 1, Germany

The construction of reliable computer programs for the approximation of math—
ematical functions will be discussed. A procedure will be described which allows

the computation of oating—point approximations for f with maximum accuracy.

This means, that for every valid oating—point argument :v, the computed approx—
imation will be equal to the exact (real) value rounded to the nearest

oating—point number.

If the exact value is the midpoint of two adjacent oating-point numbers the

oating—point result will be determined corresponding to an antisymmetric rounding
(round(—a) = —round(a)).

This leads to:

1%") < f(y) => ft?) S y)
f(“$) = fffC) => —UC)= cl
f(*~75)= —f($) 2‘ —ivl= *x)

2f(:v)is a p—number =

In analogy, the computation of (best possible) directed rounded function ap—

proximations will be considered. Using such approximations, an optimal oating—
point enclosure of the range

f(X) == {1%) l 96 E X}

of the function f over the interval X can be determined.

The main advantage of such routines is full compatibility on all computer
platforms with identical data formats. The routines always produce exactly the

same output and lead to portable software.

Standardization of the elementary mathematical functions would be a very

desirable task. To require the functions to always deliver the best possible numerical

results seems to be the most natural way to do this. The specication of the square
root function in the IEEE—754 standard is the only one that already fulfills this

requirements.
Around such implementations reliable mathematics can be built!
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Global Optimal Solutions with Tolerances

and Practical Composite Laminate Design

B. P. Kristinsdottir, Z. B. Zabinsky and T. Csendes

Industrial Engineering Dept, Univ. of Washington,
Seattle, Washington 98195 USA

and

Kalma’r Laboratory of Cybernetics, Jo’sef Attila University,
Arpad ter 2, P. 0. Boa 652, 17-6701 Szegecl, Hungary

An algorithm for nding a large feasible n—dimensional interval for constrained

global optimization is presented. The resultant interval is iteratively enlarged about

a seed point While maintaining feasibility. An interval subdivision method may

be used to check feasibility of the growing box. An alternative method to check

feasibility using a different global optimization algorithm is discussed. The resultant

feasible interval is constrained to lie Within a given level set, thus ensuring it is close

to the optimum. It is proved that the algorithm converges in a nite number of

iterations.

The ability to determine such a feasible interval is useful for exploring the

neighborhood of the optimum, and can be practically used in manufacturing con—

siderations. The algorithm is applied to a real life engineering design problem to

construct manufacturing tolerances for an optimum design of composite materials.
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Nonlinear Systems of Equations and Ordinary
Differential Equations: Periodic Orbits of

Conservative Systems and Non-Integrability

W. Kuhn

School of Mathematics, Georgia Institute of Technology
Atlanta, GA 30332

The paper presents a test for non—integrability of ordinary differential equam
tions. It is based on periodiosolntionsnnd the Poincaré map. Astandard—appreach
to nd a xed point of the Poincaré map P(;c) = x is to use a N ewton—like interval
iteration. If there exists a rst integral (or constant of motion), the Jacobi matrix
of the Poincare map becomes singular and the usual iteration schemes must fail.
In other words: If the iteration can be applied successfully, then the ODE has no

rst integral. The problem now arises how to decide that there are no more than
m already known rst integrals.

A restatement of the problem is how‘we can use the singular equation P(a') : a:

and the m integrals to establish a xed point iteratively. We show how to construct

a new Poincaré map on an (n — m — 1) dimensional manifold (71is the dimension of
the ODE), which is no longer singular and whose xed point represents a periodic
orbit. Also, a successful iteration shows that there are only m integrals.

The paper also shows how to work with the program, which does the veri—
cation automatically. It only requires the ODE and a (good) initial guess of the

periodic orbit in a user—friendly symbolic form.

An application to the general 3—Body Problem is given. For this problem,
it = 12 and m = 4.
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Programming Environments for Scientic Computation
with Verication: PASCAL-XSC and C-XSC

U. Kulisch

Institut Angcwandte Mathematik, Univ. Karlsruhe

Kaiserstr. 12, D~7500 Karlsruhe .2, Germany

PASCAL—XSC is a PASCAL extension which signicantly simplies program—
ming in the area of scientic and technical computing. PASCAL—XSC is an updated
PASCAL which contains the full Standard PASCAL. It is immediately usable by
PASCAL programmers. PASCAL—XSC is easy to learn and ideal for programming
education.

In a quite natural way PASCAL—XSC provides a number of concepts which are

vital in a contemporary programming environment: a module concept, an operator

concept, functions and operators with general result type, overloading of functions,
procedures and operators, dynamic arrays, subarray slices, a string concept, over—

loading of the assignment, of read and of write, and of others. Thus, modules and

operators, for instance, for complex arithmetic, rational arithmetic, higher preci«
sion or multiple precision arithmetic, or interval arithmetic can easily be developed
by the user. Arithmetic expressions and numerical algorithms come considerably
closer to the usual mathematical notation. This simplies programming essentially.
Programs are easier to read and to write. They are easier to debug and therefore

more reliable. Many programs can be read like a technical report.
C-XSC is a superset of the well—known language C. It is implemented as a

numerical class library in the programming language C++. C—XSC may be inter—

preted and can be used as an arithmetic module extending the properties of the

language C.

The programming environments PAS CAL—XSC and C—XSC make the computer
more powerful arithmetically. They provide a large number of predened data types
for elements of the most commonly used vector spaces such as real and complex
numbers, vectors and matrices as well as real and complex intervals, interval vectors,
and interval matrices. Operators for elements of these types are predened and can

be called by their usual operator symbol. Thus, PASCAL—XSC and C—XSC make

the computer look like a vector processor to the programmer.

All predened numerical operators are of highest accuracy which means that

the computed result differs from the correct result by at most one rounding. 24

mathematical standard functions are provided with their generic names for real

and complex arguments as well as for real and complex interval arguments. The

computed values are of highest accuracy. While the emphasis in computing is

traditionally on speed, in PASCAL—XSC and C—XSC the emphasis is on accuracy

and reliability of results. The total time for solving a problem is the sum of the

programming effort, the processing time, and the time for the interpretation of

results. The XSC—languages reduce this sum considerably.
Numerical mathematics has devised algorithms which deliver highly accurate

and automatically veried results by applying mathematical xed—point theorems.

This means that these computations carry their own accuracy control. However,
their implementation requires suitable arithmetic support and powerful program—
ming tools which were not previously available. The development of PASCAL—X80
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and of C—XSC has aimed at providing these tools within the setting of PASCAL and
of C, respectively. Both languages are based on an identical large arithmetic run—

time system. PASCAL—XSC and C—XSC are particularly suited for the development
of numerical algorithms that deliver highly accurate and automatically veried re—

sults. As an example, this is essential in simulation runs where the user has to

distinguish between computational artifacts and genuine reactions of the model.

Problem—solving routines with automatic result verication have been developed
in PASCAL—XSC as well as in C—XSC for a large number of standard problems of
Numerical Analysis.

Via the f2c compiler from AT & T and the C interface of PASCAL—XSC and
C—XSC all FORTRAN libraries can be linekd and used with PASCAL-XSC and
C—XSC programs.

A language description of PASCAL—XSC has been published by Springer—
Verlag (ISBN 3—540—55137—9 and ISBN 0—387—55137— 9). Among others, the book
contains a major chapter with sample programs, exercises, and solutions as well as

a complete set of syntax diagrams, detailed tables, and an index. It can be used
directly as a textbook for lectures on the subject of computer programming.

Compilers for PASCAL—XSC as well as the complete language description and
user’s guide are available in Europe from “N umerik Software GmbH”, Rettigstrae
6, D—7570 Baden—Baden, Germany, FAX—Number: +49 721—69 44 18. Licence fees
vary depending on machine type and size. In the USA and Canada please contact
FB Software, PO. Box 44 666, Madison, Wisconsin 53744—4666 or C. Abaci, Inc.,
208 St. Mary’s St., Raleigh, NC 27 605.

The reference manual and language description of C—XSC is also being printed
by Springer—Verlag(ISBN 3-540—56328—8).The book will be available at the time
of the conference. It contains a chapter with sample programs, and a library of

problem—solvingfunctions and programs with automatic result verication for st an—
dard problems of Numerical Analysis. The material in this book should be easily
accessible for C or C++ programmers. All software concerning C—XSC can be
obtained from the addresses mentioned in the preceding paragraph.
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Adaptive Predictive Control Using Neural Networks

and Interval Optimization

D. Layne, Staff Engineer
Research and Technology Dept, Martin Marietta Astronautics Group

P. 0. Bar 1036, Littleton, CO 80160 USA

Adaptive nonlinear control methods that are robust to uncertainties and dis-
turbances are needed in many applications, including process control, robotics (ex—
ible arms with variable loads) and large, exible space structures. In large space
structures, the tasks of controlling the rotations, pointing with high accuracy, and

stabilizing the Vibrations in the absence of damping pose difcult theoretical and

computational control problems Challenges include the following:
(i) Large space structures that frequently change conguration will require on—

board system identication.

(ii) Control laws are needed for exible bodies with rigid attachments.

(iii) Robust control schemes for distributed parameter systems are needed to com—

pensate for unmodeled dynamics and uncertain parameters.
A control architecture that combines Model Reference Adaptive Control (MRAC),

neural network estimators, and interval optimization is being developed to address
some of these problems. MRAC systems [1] are typically model—following con—
trollers, using gradient minimization of current error between the plant and a ref—
erence model. In adaptive predictive control (receding—horizon),a plant estimator
is used with the reference model to minimize predicted error.

The envisioned applications have unknown or uncertain plants, so neural net—
works (trainable input—output mappings) will emulate plant dynamics. Using time—
lagged inputs, several neural net models have been trained on simulated obser—
vations to perform time—series prediction, including feed—forward nets with back—
propagation learning and adaptive spline nets with least—squares learning. The
spline nets learned faster with more accuracy on sample vibration suppression prob—
lems. The networkmaqqinsgcarec desi.ggied+mbecdiecntir&1kb,“ahiétsrniaytue
trained on plant output or on errors between plant and desired reference model. A
gradient—based method is being implemented to minimize predicted errors between
the adaptable neural net estimator and the ideal reference model Sensitivities
(gradients of network outputs with respect to control inputs) are readily computed
in backpropagation nets, and may be computed via automatic differentiation for
the more complex spline nets.

Interval optimization of the cost function will increase reliability, avoid local
minima and help characterize the nonlinear neural net models. Interval implemen—
tation of the iterative neural net training algorithm is not planned. However, a

trained network mapping may be extended for use in an interval Newton algorithm
to compute a guaranteed, global minimum within a specied region of system pa—
rameters. Software simulations are being developed for single—input, single—output
test cases.
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Parallel Interval Global Optimization in C++

A. Leclerc

5771 Ave. Chateau Du Nord
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For quite some time, it has been held that no numerical algorithm could guar—
antee having found a global solution to the general nonlinear global optimization
problem. The reasoning was:

The function to be minimized can only be sampled at a nite number of points.
Therefore, there is no way of knowing whether the function dips to some smaller
value between sampled points.

Although this argument is probably true using evaluations of functions at points,
it is not true of methods which can produce asymptotically accurate lower bounds
for the range of values of the function over compact sets.

Interval arithmetic, for example, provides asymptotically accurate upper and
lower bounds on ranges of values of functions over continua. Coding interval arith—
metic in C++, the author has designed an ideal bounding mechanism which is:

1. capable of producing reliable, “tight”, and asymptotically accurate bounds
efficient to compute
applicable to any programmable function

easy to generalize and automate

convenient for an unsophisticated user to utilize

Using this mechanism, a rigorous algorithm is presented which produces a list
of “boxes” enclosing the set of all global minimizers and an interval trapping the
minimum value. The algorithm does not require dierentiability. However, for
diiferentiable problems, improvements in efciency are achieved by using interval
Newton methods, monotonicity tests, and convexity tests. Numerical examples
illustrating the techniques are given.

For further improvements in efciency, the algorithms are parallelized. The

parallelization task is accomplished by distributing processes over a network of
workstations. Each process performs the interval global optimization algorithm
but with a different subregion of the initial search space. Communication overhead
is minimized in order to maximize the speedup. Issues of distributed initialization,
load balancing, and global termination detection are addressed. Finally, an analysis
of the speedup is determined.

W993?”
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Complementing Interval Arithmetic with Logic Programming
J. H. M. Lee and M. H. van Emden

Department of Computer Science

University of Victoria

Victoria, Canada, V8W 3P6

Logic programming realizes the ideal of “computation is deduction,” but not when
oating—point numbers are involved. In that respect logic programming languages
are as awed as conventional languages, such as Fortran and C: they ignore the
fact that oating—point operations are only approximate and that it is not easy
to tell how good the approximation is. We aim to extend the benets of logic
programming to computation involving oating—point arithmetic by using interval
arithmetic.

Interval arithmetic contributes methods guaranteeing correctness at the level of
a simple arithmetic expression. As embedded in imperative languages, however,
interval arithmetic lacks verication of an entire algorithm involving conditional
statements and iterations. This works against an important goal of interval arith—
metic: reliability.
We combine interval arithmetic and logic programming, in such a way that rig-
orously justied claims can be made about the error in numerical computation.
Cleary incorporated a relational form of interval arithmetic into Prolog so that
variables already bound can be bound again. In this way, the usual logical inter—
pretation of computation no longer holds. Based on Cleary’s idea, we develop a

technique for narrowing intervals, which is guaranteed to produce results that are

logical consequences of the arithmetic axioms and the input intervals. We present
a relaxation algorithm for coordinating the applications of the interval narrowing
operations to numerical constraints in a network.
We incorporate relational interval arithmetic into two established logic program—
ming languages: CHIP and CLP(7€). We modify CHIP by allowing “domains” to
be intervals of real numbers. Interval narrowing is shown to be an instance of the
Look—Ahead Inference Rule used in CHIP. In CLP(7Z), we represent intervals by
inequality constraints. Interval narrowing is viewed as a constraint simplification
step. Most importantly, the enhanced languages ICHIP and ICLP(R) preserve
the semantics of logic so that numerical computations are deductions, even when
oating—point arithmetic is used.

We have constructed a prototype of ICLPUZ), consisting of a meta—interpreter
executed by an existing CLP(R) system. We expect our method to be applicable
to, besides numerical computing, temporal and spatial reasoning, and automatic
theorem proving involving arithmetic.



LAFAYETTE, LOUISIANA, FEBRUARY, 1993 59

Strategies for a Boundary-Based Interval Newton’s Method

P. Linz and L. Simcik

Division of Computer Science, University of California
Davis, California 95616 USA

We consider here the multi—dimensional root—ndingproblem

f1($1,5€2,...,$n)=0

fn<$17$27'"'7$n):0

Krawczyk’s method starts at the center of a given region in R”, Where the Jacobian
is computed and used to nd the region in which roots may possibly be located.
The boundary—based interval Newton’s method, on the other hand, is‘tartswatmthew H ,""”‘bound‘aries‘ of the" region *‘ahd'‘ses" “Slopeinformation to eliminate regions Where no

root can be located. To illustrate, consider the one—dimensional case

1%) = 0

for a: 6 [(1,1)].Suppose that > 0 and that

I
= M.xgggllf(:6)!

Then the region (I)— £19112,[9)cannot contain any root and can be eliminated from
further consideration. The generalization of this observation to more than one
dimension is immediate.

The boundary—based method has a number of advantages over Krawczyk’s
method. One is that it can shrink the interval even if the Jacobian is singular.
Another advantage is that it only requires the derivatives 3713:,and not the inverse of
the J acobian, thereby considerably speeding up each iteration. Furthermore, as our
research shows, with a careful strategy, the boundary—based method considerably
reduces the need for interval splitting, Which is a major source of diiculty for
Krawczyk’s method.
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Interval Methods Applied to Variable Bound Reduction
in Nonlinear Programs with Application to

Infeasibility and Redundancy Diagnosis
Part 1: Theory

W. A. Lodwick

University of Colorado at Denver

Department of Mathematics - Campus Box 170
P. 0. Boss 1735764, Denver, Colorado 80217-3364 USA

Methods, algorithms and numerical experiments for variable bound reduction
in nonlinear programming problems are developed. In particular, two approaches to

compute bounds on variables found in nonlinear functional constraint inequalities
are used and tested. The techniques developed herein are applied to infeasibility
and redundancy diagnosis.

Part 2: Applications of Interval Methods
for Variable Bound Reduction in Radiation Therapy,
Renery Models, Fuzzy Linear Programs

and Articial Intelligence
Problems associated With radiation therapy, renery models, fuzzy linear pro—

grams and constraint logic programming require the computation of bounds on

associated variables as a means to determine the set of feasible values which either
solves the problem or identies starting values for an optimizer. Part 2 of the talk
Will discuss how to compute bounds on variables in nonlinear functional constraints
(prior to optimization in the case of a mathematical programming problem and as a

means for instantiation in the constraint logic programming case) in radiation ther—
apy problems, renery models and in constraint logic programming (an extension
of PROLOG).
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Veried Solution of Ordinary Initial Value Problems
with Large Step Sizes and with Step Size Control

R. J. Lohner

Institute for Applied Mathematics

University of Karlsr’ahe
Kaiserstr. 12, W-7500 Karlsr'ahe, Germany

In the past, several methods have been designed which compute veried bounds
for the solution of ordinary initial value problems fully automatically on a computer.
Most of these methods allow arbitrary step sizes to be prescribed at each time step,
but their authors usually do not treat the question of step size control. Also, most

methods, being explicit, do not allow step sizes which are larger than an Euler step.
There seems to be no method which supports both step sizes larger than the Euler
step and a built—in step size control.

In this talk we will present an extension of our earlier method which now

allows step sizes larger than an Euler step, by using a suitable interval polynomial
arithmetic. Additionally, the method is supplemented by a step size control which
basically is due to Eijgenraam (1981).

These two extensions yield a much more powerful and exible enclosure method
for initial value problems than the previous method. The extensions will be pre—
sented, discussed and demonstrated with many numerical examples.
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On the Presentation of Ranges of Monotone Functions

Using Interval Arithmetic

S. M. Markov

Division for Mathematical Modelling Institute of Biophysics
Bulgarian Academy of Sciences, Acad. G. Boncheu str., block 25A

B04113 Soa, Bulgaria

We consider the representation of ranges of functions (in many variables) by
means of various extended interval arithmetic structures, such as structures involv—
ing innite intervals, improper (Kaucher type) intervals, etc. A program system
supporting the computation of ranges of functions and their derivatives using such
extended intervals is reported.
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Some Interpolation Problems Involving Interval Data

S. M. Markov

Division for Mathematical Modelling Institute of Biophysics
Bulgarian Academy of Sciences, Acad. G. Bonche'v str., block 25A

30-1113 Soa, Bulgaria

We consider some interpolating problems using polynomial functions in the
situation when interval input data are involved. Special attention is given to the
situation when the degree of the interpolating polynomials is substantially less

than the number of input data points. An algorithm and a program computing the

envelopes of the potential families of interpolating polynomials are reported.



64 NUMERICAL ANALYSIS WITH AUTOMATIC RESULT VERIFICATION

Standards for Floating Point and Vector

Floating Point Arithmetic

D. W. Matula

Dept. of Comp. Sci. and Engrg.
Southern Methodist University, Dallas, TX 75275 USA

The IEEE oating point standard has been virtually universally adopted for
PC and workstation platforms and is likely to become an available option on main—
frames and supercomputers in their next generation. Several distinct features of
the standard have contributed to its success in removing the chaos from previous
nonstandardized oating point numeric computation systems. For the primitive
arithmetic operations the controlled directed rounding feature dictates unigue re—

sults. The not—a—number feature provides completeness for the operations over all

arguments. The precision hierarchy thoughtfully treats both expanded accuracy
and range. We describe these features and their signicance in providing efcient

—hardware support for automaticr’esuWW
present extensions of these ideas beyond the primitive arithmetic operations to
the area of transcendental function and vector processing hardware primitive op-
erations. Problems and proposed solutions for handling error monitoring ags in
a parallel and / or pipelined vector processing environment without degradation of

efficiency for well structured computations will be presented and evaluated.
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Epsilon-Ination in Verication Algorithms

G. Mayer
Institnt fn'r Angewandte Mathematik, Universitc'it Karlsrnhe

Postfach 6980, W-7500 Karlsrnhe, Germany

We present a new criterion for some class of nonlinear functions f : D Q R” —>
R” which guarantees that epsilon—ination combined with xed point iteration will

necessarily result in an inclusion

Md) 9 [w] (*)

in a nite number of steps. Here is some interval vector constructed by the
iterative process just mentioned. The theorem generalizes a recently published
result of S. M. Rump which was derived for linear functions f. It is well known
that in the case of Brouwer’s xed point theorem applies to verify a xed point
of f in

We also interprete some ansatz in several algorithms for eigenvalue problems
and for initial value problems as an epsilon—ination, thus showing that the concept
of this ination is very general.
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Restrictions on Approximation of the

Standard Functions for Constructing
Standard Interval Procedures

G. G. Menshikov

Faculty of Applied Math. and Control Processes
St. Petersburg State University

St. Petersburg, Russia
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An Approach to Reliable Computations with Minimal

Representation

E. A. Musaev

Steklov’s Mathematical Institute

StPetersburg, Russia

Sometimes continuation of an interval computation comes to a dead end as
two values to be compared happen to be incomparable. When indeniteness is due
to the selected precision, repeating the computation with a higher precision seems

very attractive. On the other hand, it is impossible to determine a priori what
precision is necessary. An approach to automatically get the minimal necessary
representation is suggested below.

The idea that the computational process could choose the necessary precision
is proposed in [I], while the basis of the concrete method suggested here is described
in [2,3]. In this model, the program consists of several shells, which differ only in
the representations used. To begin, the shell with the simplest representation is
initialized. If incomparable values occur, then this shell is frozen, and control is
transfered to a shell with a more complex representation (in the case of concurrent
processes it could be initialized immediately, but have lower priority). When this
shell comes to the point with incomparable values, it corrects them and activates
the previous shell, but if the values are still incomparable, a third shell is initialized
to get them properly.

In this scheme, the low level shell makes a path for the complex and expensive
high level shells, computing, when possible, directions for IF and CASE operators,
and iteration counters for loops. On the other hand, the high level shells correct the
values computed by the low level shells. We use the the term “wave computations”,
since the points of control in the shells run one after another like waves on a sea.

A scheme for realization of this idea is proposed. It is described using a lan~
guage similar to Algol 68, with elements of Pascal and C. It could be also described
very well in C++ or other object—oriented languages. When true concurrent pro—
cessing is available, it is not necessary to freeze all high level processes. It is suicient
to have a guarantee that a process with a higher level will never outstrip any process
of lower levels (it is necessary to properly process rendezvous points). A process
with a lower level should have higher priority in comparison with a process of higher
levels, so the process of level 0 is frozen if and only if it is needed in support of the
process of level 1, while the process of level 1 is freozen if and only if it is needed
in support of the process of level 2, or it is at the same point as the process of level
0, or the process of level 0 is'running now and there are no processor resources.

Moreover, besides ease in obtaining real concurrent computation, the advantage of
this scheme is an ease in using it with immediate effect.

REFERENCES
1. Yakovlev A. G., On some possibilities in the organization of localization compu—

tations on computers. Interval analysis. Informational materials ~ Computer
Centre, Siberian Division of the Soviet Academy of Sciences, Krasnoyarsk, 1990
—

pp. 33~38 — (in Russian).
1%
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on interval mathematics, Saratov, May 29—31, 1990, Saratov State University,
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3. Musaev EA. Non—hierachical wave computations, Proceedings of the confer-
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Finite Element Method for Nonlinear Elliptic Problems
with Result Verication

M. T. Nakao

Department of Mathematics, Faculty of Science

Kyushu University 33, Fukuoka 812, Japan

In the last decade, various kinds of numerics with result verication have been
proposed for differential equations. We investigated for years the numerical ver—

ication of solutions for partial differential equations (PDES) based on the nite
element method and computable error estimates combined with the in—
nite dimensional xed point theorem. While the FEM is developed as the most

convenient and strong numerical method for PDES and many error analyses have
been done from the theoretical point of View, there are very few works on numerical
or explicit error estimates in the a posteriori sense except for the linear coercive
case. Our work also implies that we can obtain the finite element solution with a

posteriori and guaranteed error bounds, even if we have no information about the
existence of an exact solution for the original problem.

In our method, an element u in a certain function space is treated by the

computer as the sum of the rounding R(u) and the rounding error Here,
R(u) means the projection of u into some nite element subspace and RE(u) the
set including potential error. When the elliptic problem is dened as the xed point
form: a 2 Fa, the verication condition is represented, through some fixed point
theorem, by R(FU) + RE(FU) C U instead of FU C U for a bounded, closed
and convex set U. R(F U ) is calculated as the linear combination, with interval
coe'icients, of basis functions in the nite element subspace, and RE(_FU) is given
by a nonnegative real number corresponding to the error bound for the projection.
In order to determine the rounding error RE(F U ), we use some computable error

estimates of approximate solution for Poisson’s equation by FEM.
Since our verication method utilizes a kind of set valued N ewton—like iterative

method which includes the usual Newton’s method for obtaining an approximation,
it is possible to verify the exact solution by the same procedure or scheme as in the
calculation of approximate solution. We also emphasize that the verication can be
done by the use of standard C 0 elements. This fact leads us to easy implementation
of the verication program for various domain shapes, e.g. polygon, curved region
etc. Moreover, it appeared recently that, by the numerical determination of the
constant in a priori error estimates using a computer, our method can also be
applied to nonconvex domains, e.g. an L—shape domain, in which the solution has
only low regularity.

In this talk, we show the basic verication principle of the method for the
nonlinear Dirichlet problem and present some numerical examples. Furthermore,
we will briey mention an extension to evolutional problems.
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On Some Generalizations of Interval Arithmetic

V. M. Nesterov

St. Petershurg Institute for Informatics and Automation
Russian Academy of Sciences, Born 52

St. Petershnrg 1.95256, Russia

The problem of computing the range of values of an elementary function f (3:),
where a: E I for some interval I, often occurs in practice. Computing the range
of values of terms constructed from such functions is very important as well. By
elementary functions in the limited sense, we mean the functions exp, ln, sin, cos

etc. In a broader sense, we mean a nite set of arbitrary functions forming a basis
for some application.

The situation when functions under investigation are continuous and monotone
is quite simple [1,2]. The situation when a function tends to innity near some point
(e.g. lnm’, 1 / :1: near 0) is much more interesting. Also, it is very important to be
able to estimate the range of a function over an innite interval.

In this paper we consider special generalizations of interval arithmetic which
enable us to solve the aforementioned problems in some cases. The generalization to
innite intervals is widely known [1,2]. In this paper we propose a method to reduce
the arithmetic of innite intervals to arithmetic of nite intervals. To do this, we

introduce a mapping from the set of real numbers without one point but with one

additional element — “innity” to the ordinary set of real numbers. This mapping
generates a corresponding mapping between sets of innite and nite intervals. Use
of this approach leads to good results for functions which have only one break point.
We also propose a method to estimate the accuracy in the computed range of a

term constructed from elementary functions. This method extends results obtained
in the paper

A second type of generalization uses a nite set of intervals instead of individual
intervals (which we also consider) as an argument of the interval function. This
approach enables us to work with partially continuous functions with many break
points.

The third group of generalizations is used to estimate the range of functions
in more than one variable. These generalizations are based on preliminary investi—
gation of the monotonicity of the function and on discovering the points where the
function tends to innity.

REFERENCES
1. V. M. Nesterov. On one extension of interval analysis and its application for

estimation the range of function values. Mathematical methods for algorithm
construction and analysts, Leningrad, Nauka, 1990, pp. 109—124. (In Russian).

2. S. M. Markov. Extended interval arithmetic involving innite intervals, 26p,
Private communication.
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Rigorous Chaos Verication by Interval Methods

A. Neumaier and T. Rage
Institute of Applied Mathematics

University of Freibnrg, Hermann-Herder-Str. 10

19-7800 Freibnrg, Germany

Faculty of Physics
University of Freibnrg, Hermann—Herder-S’tr. 5’

D-7800 Freibnrg, Germany

It is shown how interval analysis can be used to give rigorously valid enclo—
sures of portions of stable manifolds of xed points of nite—dimensional nonlinear
mappings Whose Jacobian at the xed point is real hyperbolic.

The main tool is a semilocal version of a well—known existence theorem for sta—
ble manifolds of mappings which gives veriable conditions under which a specied
neighbourhood of an approximate manifold contains a specied part of the stable
manifold. The proof is based on the xed point theorem of Banach, applied in a

suitable space of Lipschitz continuous functions.
Theorem 1: Let F : Q Q IR” —> IR" be a Lipschitz continuous function having

the xed point x* E Q, and let A E lIanxn be an interval matrix such that

(1) F(y) —— E A (y — x) for all any 6 9.

For some nonsingular matrix Q E anxn, let

B B2 —1
A =

11 12U Q ( 62) (B21322

with interval matrices BM, 1312, B21 and 322 of sizes p X p7 p x q, q X p and g X g,
respectively, where p + q = n. For some nonsingular matrix C' 6 1Rqu and some

interval matrix L E llquXp
, put

D I: I + —- B22),
(4) E1: C(LBH — B21)7

If
(6) M 3: B11 + 312L-

If the closure conditions

(7) llDllp+ HCHqHMHpS  < 1 and

(8) DL + E g L,

hold for suitable norms P in RP and q in qu, then, for any subset Z of RP
with

(9) 062,Mt§2 fortEE,
(10) a:*+KtC_ZQ for 1362,
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there are unique Lipschitz continuous functions x : Z —> 9, a : Z —> E and
g : E —> R" such that

(11) : $(a(t)) for t E Z
,

t
(12) $(t):$*+Q$(t):$*+Q for tEE,

(13) $(0) = 56*, x(s) — :c(t) E K(3 — t) for 3,13 6 E,
(14) g(0) = 0

, 9(3) — g(t) E L(s — t) for 3,75 6 E,
(15) 0(0) 2 0

, 0(3) — 0(t) E M(s — t) for SJ 6 2,

As an application, we describe a method for obtaining a computer—assisted
proof of chaos in discrete dynamical systems7 by verifying sufcient conditions for
the existence of a transversal homoclinic point.

Numerical results are described for two 2—dimensional systems, namely the
Chirikov standard map and the Poincaré mapping of a continuous—time dynamical
system.

In the latter case, the interval enclosure of the Poincaré mapping and its Ja-
cobian was calculated by the initial value problem solver AWA of R. Lohner. The
very long runtime of this program makes it desirable to develop faster enclosure
methods for ODE’s which simultaneously enclose the solution and its derivative.
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A Neural Network for Optimizing Radiation Therapy Dosage
F. Newman and H. Cline

University of Colorado Health Sciences Center

Dept. of Radiology, Campus Boa: 0-278

4200 E. 0th Ave, Denver, Colorado 82062 USA

An associative memory technique has been developed for encoding, storing and
retrieving two—dimensional radiation therapy treatment plans. The objective of this
technique is to automate the search for a feasible set of radiation beams to be used
as a starting point for constrained dose optimization. The mathematical model is
a simple linear relationship. Each patient / tumor image is encoded as a vector :0.

Each set of radiation beams corresponding to a particular patient is encoded as a

vector y. The set of all feasible beams for any patient consists of a 360 degree array
of adjaCent pencil beams. The intensities and arrangements of the pencil beams are

varied to deliver a feasible (perhaps optimal) dose distribution. The feasible beam
arrangement must be input by human intervention at this stage of development.

Training consists of:

1) forming a set of representative encoded patient / tumor vectors, {x C}?=1
2) determining the feasible beam vector y,- to be associated with each patient

vector, 51:,

3) orthogonalizing the patient vectors with respect to each other and the beam
vectors with respect to each other using the GramHSchmidt technique

4) stacking the vectors (cvi’sand yi’s) as columns into matrices X and Y.
Recall consists of presenting a novel patient/tumor image 32’ and nding a

solution 3/ = YXTJJ' that has been shown by Teuvo Kohonen et al to be an optimal
solution in a least—squares,minimum norm sense. A feasible beam conguration is
obtained as a linear combination of stored feasible beams using correlation matrix
formalism. That is, a heteroassociation is formed.

Future work Will entail training With beam vectors from feasible regions usinginterval methods so that subjective user decisions are eliminated from the training
process and a closed, automated loop is formed.
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On Combination of Interval Analysis and
Object-Oriented Approach in Solving Systems

of Non-linear Differential Equations

A, V. Nikitin

up. 162, 39 / 1, pr. M, Torech
Saint Petersburg, SU-194223, Russia

This paper presents a combined interval analysis and object—oriented approachto solving systems of nonlinear differential equations. A new interval version of an
iterative Newton—like algorithm, based on the Senyo and Vengersky modicationof the Krawczyk interval iterative method is proposed. Implementation of this
algorithm using an object—oriented programming technique, including C++ class
libraries, is discussed. Perfomance of this implementation in a program for transient
analysis of non—linear circuits and networks is presented.
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Numerical Methods for Enclosing Solutions of

Ordinary Differential Equations With Interval Data

V. A. Novicov and A. N. Rogalev

Computing Center of the Siberian Department
of the Russian Academy of Science

Aeademgorodok, Krasnoyarsk 660036 Russia

and

Department of Computational Mathematics

Krasnojarsk State University

Consider the initial value problem

(1) dy/div = ay), y E R”,

(2) y($0) = yo E Y0

Where Y0 is an interval in R“. We Wish to compute an interval valued function

Y(:c) = [YLower(a:),YUpper(a:)]for which the true solution y($,x0) E Y(:I:) for all
:e E [330,$71],yo 6 Y6, and prove convergence. The construction of upper and lower
bounds YLOWer,Yupper is based on analytical representation of a spline solution for
IVP (1), (2) and interval techniques to bound the global error.

Consider the grid 2:0 < £1 < --- < an 2 :cT and step size it = InaXz-(zez-—— 33,--1)
Denition. Let the interval valued function Y(m) satisfy conditions

D {y($07y07$) I yo 6

(4) C(Y($)7{y($0,yo,$) I yo 6 Y0} —> 0 as h *‘> 0,

Where C is the Hausdorff distance, then we call Y(m) a convergent external interval
estimate.

The right side of (1) may be a linear or nonlinear function.
1. First we suppose that at, y) is a linear function. The interval estimate Y(a') is

respresented as

(5) YOU)= 5(3)) + hml—TCL‘),7133)],

Where 5 is united extension of spline solution 8(a) over yo 6 Yb, i.e.

: UyoEY08(x03y07 307

and r(a') is a bound on the global error.

The components of the vector spline function 8(a)) are represented in the form

‘1
_ .J' d

( _ .)q+j6 8,5. 2 ngir 61KH a)
PO

.
j! a

(gm.
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These components satisfy collocation conditions in grid points

= 2 07 ' '

'39)

C53: I 0) ' '

'7q7

(j
__ fQ—l)3K)Ixzmr A (xi+1,s(3c,-+1)),j= 1,---,d,z' =1,---,n.

Parameters of the spline solution (degree m, defect d) are chosen so that stability
and convergence is guaranteed.
2. If a nonlinear function f(a:,y) is treated, then the interval estimate Y(:v) has
same form The spline solution 8(a:) is constructed in the form

51((370): 7.1%;

m
.

_
. 2+1

(7) 81((1’2‘)= 81<'(:vi—1)+Z f£3)(mi—1,S($i—1))($—.),—,
5” E [$i—11$i]7i: 1" ' '7”-

Realisation of the numerical method includes:

analytical computation in (8),
linearisation of 3(5c)in analytical form over initial values y?,yg,- ~ -,y2,
interval estimation of the global error.

We prove that the Hausdorff distance between the interval function Y(:c) and
the set of true solutions tends to zero as the step size h tends to zero.

Theorem. The interval valued function

YOU)= 3(99)+ hml-TW), 7196)],

Where

dlq! max" ]y(m+1)(n)[ exp(:th) — 1

W + 1)!2:32.01»!+ mum-1 Lt
’

(8) 7133)=

t: 2(lbll+la1l)7

aj I : M(_1)j+1m! ml ]

for the linear function f (:c, y),
and

YOU)= 5(1') + hml—WUL7136)]+ W2(Yo)[—T1($)7T1(m)l,

7193)= (6”A“- 1)bz/(llAll(m+1)!)»
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T1073)= (6"A”—1)51/HAll,aij= 13(6+ 1/(m +1)!)a

bl = W — 1)0/4762 = m — 1)GW2(Y0)+WEE-+1),h)
Where Y) is the Width of the interval vector Y,
m is a modulus of continuity,
L is a Lipshitz constant,
G is a bound for the second dervative of the function (:13,s(:c)),
k=1,...,n;j:1,...am;

for the nonlinear function f (1:,y),

converge to the set of true solutions IVP (1), (2) in the sense (3)—(4)for linear IVP
and converge to the set of true solutions IVP (1), (2) as h —+ 0 and W06) —+ 0 for
nonlinear IVP (1),
Test example. Consider the system of Moore

yl : y?)
I

342 : ‘91

With initial values

y1(:c0)=[1— 6,1 + e],

31(550)= [—66],

The step size was chosen 7r/30 and 7r/300.
Results of computations at m = 20007r showed that value of the spline solution
is equal to value of true solution to Within the range of accuracy of the arithmetical
operations. The interval function Y(a:) includes the set of true solutions, and the
value of the interval function 5' is equal to set of true solutions {y(x0,yo,m) I
yo 6 Yb}.
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A Family of Linear Programming Preconditioners
for the Interval Gauss—Seidel Operator

M. Novoa III

1928 Hickory Ave., Apt. B, Harahan, LA 70123 USA

In [1], Kearfott presented an algorithm employing linear programming to com—

pute preconditioners for the interval Gauss~Seidel operator. These preconditioners
were, in a certain sense, optimal. Additional preconditioners were presented in
In this work, we present theoretical results for these, as well as additional linear

programming preconditioners.

REFERENCES

1. Kearfott, R. B., “Preconditioners for the Interval Gauss—Seidel Method,” SIAM
J. Numer. Anal. 27 3, (June, 1990), pp. 804—822.
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An Incremental Existence Test

Based on Interval Newton Methods

M. Novoa III

1928 Hickory/106., Apt. B, Harahan, LA 70123 USA

Application of an interval Newton operator can prove existence of a root of a

nonlinear system of equations within a rectangular region, or box. In [I], Kearfott
proposed that, in the context of a generalized bisection algorithm, one could check
existence componentwise, accumulating information about the separate components
of derived boxes obtained from repeated applications of the interval Newton and
bisection operators. In this work, we have developed a general framework for such
an incremental existence test. This framework allows application of both the Gauss—
Seidel and Gaussian elimination interval Newton operators, as well as hybrids.
Furthermore, the framework may be used with both interval Lipschitz and interval
slope matrices.

REFERENCE

1. Kearfott, R. B., “Interval Newton / Generalized Bisection When There are

Singularities near Roots,” Annals of Operations Research 25 (1990), pp. 181—
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A Solution of Linear Resistive Networks by
Interval Computation

K. Okumura and K. Sakanashi

Department of Electrical Engineering, Kyoto University
Kyoto 606, Japan

When we try to obtain solutions of linear circuit equations whose coecients
are given by interval numbers, we usually use the Monte Carlo method. As is well
known, however, the Monte Carlo method requires substantial time to compute the
solutions as the number of trials increases, in order to obtain an accurate range forthe solutions. To overcome this difculty we will use interval computation.

This paper presents a method for obtaining solutions of linear resistive net—
works whose components are given by interval resistances and interval current
and / or volt age sources.

First, a formulation of the network equation suitable for interval operation is
proposed. In the theory of the linear networks whose parameters are given by real
numbers, the cutset or tieset equations are usually used. From the point of View of
interval computation, it is not necessarily acceptable to apply these equations to the
linear network with parameters set to interval numbers, since the elements of thecoefcient matrix are given by linear combinations of the parameters. This causes
us to have a bad estimation of the interval solutions of voltages and currents. When
the network parameters are given by interval numbers, it is important to formulate
the network equation in a manner suitable for interval computation. The authors
propose formulation of the network equation in a hybrid form.

Second, we try to solve the hybrid network equation by means of the interval
Gaussian algorithm. The condition for the interval Gaussian algorithm to be carried
out is not necessarily satised in the hybrid equation as as well as the usual cutset
or tieset equations. Hence we propose to use Hansen’s scaling method to implementthe interval Gaussian algorithm more practically.

Third, in order to have a more accurate range of solutions, we propose solvingthe pair of hybrid equations based on maximally distant trees. So far in the networkwith parameters of real numbers, the cutset or tieset equations are formulated based
on one tree such as the normal tree. The interval solutions of the hybrid equationbased on one tree are shown to have a fairly good estimation of the tree branch
voltages. On the other hand, the interval solutions of the co—tree branch voltagesdo not always have a good estimation, because we need more interval computationfrom the tree voltages. Hence, we formulate the another hybrid equation based onthe tree maximally distant from the former one. The intersection of the interval
solutions of the both hybrid equations gives us a good estimation of solutions.

Finally, we give numerical examples comparing with the technique with the
Monte Carlo method. A comparison with the results by the usual cutset equationis also made. The results by the hybrid equation using maximally distant trees are
shown to be in fairly good agreement with those by Monte Carlo method. The
computation time by the proposed method is far shorter than the Monte Carlo
method.
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Survey of Validating Computations in Pure Mathematics

P. S. Pankov

Institute of Mathematics, Republic of Kirghizstan Academy of Sciences

Lenenskii prosp. 265a, Bishkek (Frunze),720071 Kirghizstan

1) Some results obtained without strict estimation of computational errors.

0 Stability of particular linear solutions of the three body problem (Ryabo, Yu.

A., 1958, mechanical computer was used) and further investigations (Bryuno,
A. D.).

0 Verication of Riemann’s hypothesis on the C—functionwithin bounded domains

(many authors, since early 1950s).
0 All convex polyhedra with faces being regular polygons (Zalgaller, V. A.,

196
0 Existence of periodic solutions of concrete differential equations, taking account

of computational errors (Umbe, M., 1970, Stokes, A., 1970, Sinay, Ja. G.,
1979).

o Convexity of the zero sequence of the function + si(:c + (Dzyadyk,
V. K., Stepanetz, A. 1., 1972).

0 Some cases of Minkovski’s conjecture (Malyshev, A. V., since 1976, Glasunoc,
N. M. used interval analysis).

2) The general scheme to reduce any problem to proving a strict inequality on a

compact set and to use interval analysis was proposed in Some results obtained

rigorously:
o A universal insert for convex gures of unit width (1978).
o A wider coefcient domain that unites known ones where an asymptotically

stable nite—dimensional subspace of solutions of delay—differential equations
exists (Dalmato'u S. L., 1979).

0 Proof of Polya’s conjecture (consequence of the aforementioned Riemann hy—
pothesis) (Matiyasevich, Yu. V., 1982).

0 Proof of Feigenbaum’s conjecture (Lanford 0. E, 1982) and proof of univer-

sality of area—preserving maps (Eckmann J. ~P., Koch H., Wittwer P., 1984).
o Improvements of known estimates in: univalency of analytical functions; spline

approximations; Lebesgue’s problem on universal cover of gures of unit diam~

eter; densest packing of equal balls in three—dimensional space
o Relativistic stability of matter (Fee’rman, 0., de la Liane, R., 1985). Stability

in small denominator problems (Rana. D., 1987).
0 Existence of rotating boundary layer (with Imrmaliev, M. I., 1987).
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Enclosures for Solutions of Operator Equations
with Applications to Nonlinear Boundary Value Problems

M. Plum

Mathematisclies Institut der Universitiit zu Ko'ln

Weyertal 86—90, Dw5000 Ko'ln 41, Germany

Consider the operator equation

(1)

Where L0 : X ——> Z is linear and bounded, and F : Y —> Z is Fréchet differentiable,
with X Q Y Q Z denoting three real Banach spaces such that the embedding

: X —> Y is compact and E5 : Y —> Z is bounded. We make the general
regularity assumption that, for some real 0, L0 + 0E)? : ——> Z is one—to—one and
onto.

We will present a method for proving the existence of a solution of problem (1)
Within an explicit and “close” ' ||y—neighborhood of some approaimate solution
to E X, provided that

i) the defect L0[w]+7041) of to can be bounded, in the norm - “Z, by a suiciently
small constant 6 ;

ii) the operator L :2: L0 + ,77'(w)E§: X —> Z, i.e., the linearization of problem (1)
at w, is one~to—one (and thus, as can be shown by Fredholm’s Alternative Theorem,
also onto), and the inverse L’1 (more precisely, E§L—1)can be bounded explicitly
in a suitable way. In our practical examples, we realize such bounds by computing

UEX , L0[U]+J-'(U)=0 ,

.L'9
"our nish Jilwrrlsdb ‘tna‘t'; I3}: “inf uvc A

,

(2) “any : Knuumz

We give an elementary condition in terms of 6 and K and of some simple quan—
tication of the Fréchet differentiability of .7: Which implies the desired existence
and enclosure result via Schauder’s Fixed Point Theorem, and which is satised for

sufciently small 6.

The formally simplest application of the method are systems of nonlinear equa—
tions in R” (where X = Y = Z 2: R", L0 3 0). In this case, however, the bound (2)
for the matrix inverse L—1 appears to be unnecessarily rough, since very accurate

enclosure methods for matrix inverses exist.

Our main goal is to apply the method to nonlinear elliptic boundary value prob-
lems on some bounded regular domain 9 C R“. Here, X is some appropriate closed

subspace of containing the boundary conditions, Z 1: 122(9), L0 1: ~A,
:2 F(;1:, Vu(a:)), Where F is some given nonlinearity, and the “inter—

mediate” space Y is chosen suitably (for instance, Y z: if F is independent
of the gradient Vu).

Obviously, also integro—dierential equations and even more general functional
dierential equations may be treated, at least in principle. Moreover, our approach
covers “augmented” problems occurring in parameter—dependent problems with

turning points, after change of parameters.
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In practice, concrete methods for the computation of 6 and K (see i) and ii)
above) are needed. In our applications to boundary value problems (also to turning
point problems), we use a quadrature formula, (with remainder term bound) to

compute 5, While the main numerical work which has to be done for the calculation
of K consists in the computation of bounds for eigenvalues of L or of L*L.

The method is illustrated by several numerical examples.
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Validation of Multiple and Tightly Clustered Roots

L. B. Rail

Dept. of Mathematics, Univ. of Wisconsin

Madison, Wisconsin 53705 USA

Multiple and tightly clustered roots of polynomials and analytic functions may
be difcult to approximate accurately and present problems With regard to vali—
dation. Techniques based on Newton’s method and the principle of the argument
provide ways to locate, detect, approximate, and validate approximations of such
roots.
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New Results on Global Optimization
with Automatic Result Verication

D. Ratz

Institut fin Angewandte Mathematik, Universitdt Karlsruhe

Kaiserstme 12, D-7500 Karlsruhe, Germany

We present some new results on an interval method for global optimization with
automatic result verication. The method based on the algorithm of E. Hansen is
able to compute veried enclosures for all global minimizers and the global minimum
of a function f : R” —> R.

We give an overview of the different techniques used in our algorithm, and
we describe the modications and additional features improving the efciency of
our implementation compared to former versions. A modied box splitting in the
Gauss—Seidel—Step,the use of special preconditioners introduced by Kearfott, and
the test of local uniqueness for the global minimizer are some of the main topics of
the talk.

Test results for standard global optimization problems are discussed for differ—
ent variants of our method in its portable PASCAL~XSC implementation. These
results demonstrate, that in many cases the efficiency of the algorithm is better than
that of traditional methods, which do not give an automatic result verication.
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The Brouwer Fixed Point Theorem
and Veried Inclusions

G. Rex

Mathematisches Institut

Fachbereich Mathematik/Informatik
Universitc'it Leipzig, Augustusplatz 10

D-0-7010 Leipzig, Germany

Miranda (1941) has shown that a generalized intermediate value theorem is
equivalent to the Brouwer xed point theorem. It is shown that Miranda’s version
of Brouwer’s xed point theorem is directly constructive for the derivation of veried
inclusion operators for a solution 2 of a system of equations = 0. A radius
vector for an interval vector enclosure of z is computed on the basis of the Perron—
Frobenius theory [1, Theorem This new access is discussed for both linear and
nonlinear f. The neW results are extensions of

REFERENCES
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Veried Inclusions of Solutions of

Linear Interval Equations

J. Rohn

Faculty of Math. and Physics, Charles University
Malostranske nam. 25, 11800 Praha 1, Czechoslovakia

We shall describe a method for computing with arbitrary accuracy an interval
enclosure of the solution set of a system of linear interval equations

(1) A15102 b]

with an inverse stable n X n. interval matrix AI (Le. |A“1} > 0 for each A 6 AI).
The method is based on the fact that in this case an interval vector X I encloses
the solution set of (1) imrsects 2n explicitly dwunbomed
convex polytopes.
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A Step Size Control for Lohner’s Enclosure Algorithm
for ODE’s and Applications

W. Rufeger
School of Mathematics, Georgia Institute of Technology

P. 0. 30$ 37331, Ga. Tech. Station, Atlanta, GA 570222 USA

For nonlinear ODE’s discretizations are traditionally the most important prac—
tical methods to get approximations of the true soluti0n(s). But in general the

computability of a difference solution does not imply the existence of the true
solution. There is no theory available for what the difference—approximations really
describe: the behavior of a true solution, a diverting (ghost) solution or nothing at
all.

Consequently, it is desirable to compute a set of values (“the enclosure”) which
is guaranteed to contain the values of the true soluti0n(s) while simultaneously
verifying the existence of the true solution.

The Enclosure Algorithm developed in Karlsruhe by Lohner and Adams
1. yields guaranteed interval enclosures for all times t E [0,T] and the computed

bounds are mathematically safe from all kinds of errors,
2. rests

a) on the methods of interval arithmetic and on the Kulisch Computer Arith~
metic (e.g. the computer language PASCAL—XSC)

b) on an explicit one—step Taylor method of arbitrary order p with simulta—
neous enclosure of the local discretization error

c) on the application of the Banach and the Brouwer xed point theorems,
3. and is supplemented here by an automatic step size control, mainly in View of

the computability of an enclosure in a close neighborhood of a pole, e.g. in the
Restricted Three Body Problem.
The step size control is based on an estimate of the excess of the computed

enclosure [y(tj+1 as compared with the set of true solutions starting at [y(tj)].
For this purpose a few approximations of solutions y*(t, yj) are used which start
on the boundary of [y(tj
Lohner’s Enclosure Algorithm with step size control has been used for the de—

tection of “diversions” or “spurious difference solutions” or “ghost solutions” for
the Restricted Three Body Problem and for the Lorenz Equations. A further ap—
plication for this algorithm is the vercation of the existence of periodic solutions
in a closed region (strip) S (whose lateral extension can be made negligibly small
within graphical accuracy) for the stify coupled simplied Oregonator, a numeri—
cally ill—conditional mathematical model in chemical kinetics.
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Veried solution of Large Linear Systems

S. Rump

Informatik III —Progmmmier3pmchen und Algorithmen
Technische Universitd't Hamburg, Eissendorfer Strae 38

2100 Hamburg 90, Germany

Some new methods Will be presented for computing veried inclusions of the
solution of large linear systems. The matrix of the linear system if typically of
band or sparse structure. There are no prerequisites to the matrix such as being
M —matrix, symmetric or positive denite. Examples Will be presented.
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Precise Zeros of Analytic Functions

Using Range Arithmetic

M. J. Schaefer

Universitiit Tbingen, Wilhelm-Schickard-Institut
Sand 15’, 7400 Tbingen, Germany

Range arithmetic is a special kind of interval arithmetic in which a number is
similar to an ordinary oating point number but has additionally a small range field
and a variable number of mantissa digits. The range eld keeps track of uncertain—
ties in computed results due to roundoff and truncation and its small size enhances
the eiciency of this arithmetic. Formal interval. calculations, when needed, are
best implemented using two ranged numbers to represent a single interval.

We present a practical algorithm for the computation of all zeros of a function
f in a given rectangle, to a number of guaranteed decimal places requested bythe user at the start of the program. This function must be analytic inside the
rectangle and on its boundary, and must not have any zeros on the boundary.The precision of computation is varied dynamically for maximum efciency. The
algorithm is based on a discrete version of the argument principle and is shown
to converge when carried out in range arithmetic and memory constraints can be
ignored. Some numerical examples are presented as well.

The algorithm proceeds in a manner similar to an algorithm presented by P.
Henrici and I. Gargantini for the simultaneous approximation of all zeros of a poly—
nomial, which in turn was based on H. Weyl’s proof of the fundamental theorem
of algebra. Our algorithm uses rectangles rather than squares and maintains inde—
pendent lists of adjacent rectangles, where it is known that the rectangles in a list
collectively contain at least one zero of the function f. Rectangles in one list do not
border on rectangles in other lists. If the rectangles in a list contain exactly one

zero, an attempt is made to locate it rapidly using N ewton’s method and to verifyits location by surrounding the point in question by a small square and tracing its
boundary in the same way as described below for rectangles. The size of the squareis chosen to satisfy the user’s accuracy requirements.

The number of zeros contained in a rectangle R can usually be obtained bythe following method: values of f at the corners of R are computed and classied
according to their location (entirely within a quadrant, overlapping an axis, etc).If the values of f at the endpoints of a side L can be put in a box not containingthe origin, an estimate of is obtained and then checked to see if it covers
the origin. If the origin is not covered, the argument range of f along L is well
determined, and if it does (or if L) was never computed in the rst place), L is
recursively bisected and the computations for each half repeated. There is a limit
to the maximum permissible depth of recursive function calls which depends on the
current precision of computation. Of course, all four sides of R are processed in
this way.

A list of rectangles is managed like this: each rectangle in turn is bisected alongits longer side and its two emerging subrectangles checked for zeros. Rectanglesknown not to contain zeros are of course discarded, others appended to the end of
the list. (If too many rectangles accumulate which contain an undetermined number
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of zeros, the precision is increased.) It is important to organize the computations
and storage of results in such a way that expensive interval computations are not
repeated. For this reason each rectangle maintains four pointers pointing to binary
trees that store the results of the recursive procedure calls described in the previous
paragraph. Two adjacent rectangles will share a tree if their overlapping sides are
of equal length; otherwise the shorter of the two will point to a subtree of the
other’s tree. From time to time the rectangles in a list are inspected to determine
whether they still represent a connected region; if not, the list is split into two or

more independent lists. Also, if the region is suiciently small the correspondinglist need no longer be processed.
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Vector Processor Support for Semimorphic Arithmetic

L. Schmidt

Institut fr Angcwandte Mathematik, Universitc'it Karlsruhe
Kaiscrstmssc 12, Wet/500 Karlsruhe, Germany

For many years, languages for scientic computation like Pascal—X804, AC-
RITH~XSC5, and C—XSC have been in widespread use. They are available on manyhardware platforms, ranging from personal computers to mainframes. Vector and
parallel computers, however, were not covered until now, mainly because there was
no implementation of semimorphic arithmetic which could take advantage of the
pipelining and parallelization features. This talk and the related paper will focus
on arithmetic for vector processors.

To obtain the best possible results in terms of performance, the available hard—
ware (i. e. the vector processor pipelines) must be used extensively. We will present
algorithms for the basic arithmetic operations (addition, subtraction, multiplica—
tion, division) which only use built—in oating—point operations. They are well
suited for vectorization and deliver reliable results of maximum accuracy. For the
computation of inner products, we discuss an algorithm using n long accumulators
to hold the exact sums of n dot products computed in parallel. A short excursion
to pipelined interval and complex arithmetic will close this part of the talk.

Implementation of the presented algorithms was done in FORTRAN 77, and
is portable with the exception of very few data format dependent routines. All
arithmetical array operations dened in ACRITHeXSC, and more, are included in
the library. A fully compatible interface to ACRITH—XSC is provided including,dynamic array and subarray support.

Performance comparisons will take a large part of the talk. The implemen—tation of the algorithms presented is compared with the numerically equivalent
implementation of the ACRITH—XSC runtime library. To Show the benets of the
vector processor support for more complex problems, a linear system solver with
automatic result verication is included in the comparisons. The measurements
were done on an IBM 4361 mini—mainframe,an IBM 3090 / 300 VF mainframe with
vector facility, and a Fujitsu VP 2600 high performance (5 GFLOPS) vector pro—
cessor.

4distril'mted by Numerik Software GmbH, D~7570 Baden—Baden, Germany5IBM Program Product, released in 1990, order no.: 5684—129
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Application of a Parallel Interval

Newton/Generalized Bisection Algorithm to

Equation-Based Chemical Process Flowsheeting

C. A. Schnepper and M. A. Stadtherr

Halliburton Services, 1710 West Plato Rd. #603
Duncan, Oklahoma 73533 USA

and

University of Illinois at Urbana—Champaign

Computer—aided process simulation, design, and optimization are important
tools in the design and control of manufacturing processes in the chemical and

petroleum industries. The diagram of a process, showing the units and the connec—
tions between them, is often referred to as a process owsheet, and, especially in
the chemical engineering literature, the associated simulation or optimization prob—
lems are referred to as process owsheeting problems. In contrast to the traditional
sequential modular approach to owsheeting, in which the problem is divided into
a sequence of smaller subproblems which are solved repeatedly until converging to

a solution of the overall problem, equation—based owsheeting uses a single, very
large, sparse system of nonlinear equations to model a process.

In equation—based owsheeting, the nonlinear equation solving algorithm is typ—
ically some quasi—Newton based approach. Such algorithms are not always reliable
when the initial guess is not good, and they are not designed for nding multiple
roots, if they exist. Various approaches have been used to address this problem, in—
cluding trust region methods, homotopy methods, and methods based on imbedded
nonlinear programming problems. Bisection approaches have not received serious
consideration in this context because the number of variables involved in process

owsheeting makes such approaches infeasible on serial computers. However, by
taking advantage of parallel computer architectures, interval bisection techniques
can be made feasible, providing a globally convergent solution method capable of

locating multiple solutions.

We describe here the application of a new parallel interval Newton / generalized
bisection algorithm for solving the large, sparse, nonlinear equation systems arising1

11n cnemic'ai process owsneet‘ing.‘ “l‘he algorithm is designed for implementation
on MIMD computers with a combination of local and shared memory. It is based
on the simultaneous application of root inclusion tests to multiple interval regions,
and it is designed for use with the sparse matrices associated with equation—based
chemical process owsheeting models.

The algorithm was tested successfully on several relatively small owsheeting
problems. Tests were performed using between 2 and 32 nodes of a BBN TC2000
parallel computer. These initial results demonstrate the potential of the approach
and point the direction toward handling larger problems and implementations on

other parallel machines.
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Veried Surface / Surface Intersection of

Parametric Bézier—Surfaces

P. Schramm

Institut far Angewandte Mathematik, Universitdt Karlsr'ahe

Postfach 6980, W—7500 Karlsrahe, Germany

The calculation of intersection curves between (parameterized) surfaces is one

of the major tasks in Computer Aided Design. The algorithms available for solv—
ing this problem can be subdivided into the following classes: Lattice evaluation,
marching methods, recursive subdivision and algebraic methods All these al—
gorithms have in common that the evaluated intersection curve is given as a series
of discrete points approximating it.

A new approach is made in computing the intersection as a parameterized
curve in the parameter plane of each surface:

If two surfaces X(u, v) and Y(s,t), X, Y : [0,1]2 —> R3 are given, the problem
of intersection is solved by computing u(a), «2(a),3(a), t(oz), er 6 [g, 6!]where u, v,
s and t are polynomials of the same degree n.

The method of obtaining this result is a functional xed point iteration in a

Tschebyscheff Functoid {Sn(.M), Q, l3, El, (resp. {ISn(M), 6%,9, ®, for a ver—

ied inclusion) [2] where M is the space of the real (interval) polynomials and Sn
(resp. I5") is the Tschebyscheff rounding from M to 5,,(M) (resp. ISn(M)) the

space of real (interval) polynomials with a maximum degree of n. The xed point
equation system to be solved is given by

I Sn(X (WI), Mal) — Y(S(a),t(a)))x um)
ISn(X(u(a), WU) — Y(8(0z)at(a)))y v(d)
I3n(‘Y(lt(a)v 17(0)) — Y(8(0¢)»t(a)))z 2

3(a)
15nd,“ f/Xaum,v(€))d€ — a) M)

where the integrand \2/.X2(u({f),v(€ of the fourth equation (parametrization
condition for (u(0z),0(a))T) is expanded into a Taylor series.

This method has the advantage of calculating an approximation with respect
to an interval inclusion of the intersection curve which gives the true topology of
the real intersection curve. Up to that moment the algorithm was only applied to
Bézier surfaces.
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On Hardware Implementation of some Exactly Rounded

Elementary Functions

M. Schulte and E. Swartzlander

Deptartment of Electrical and Computer Engineering
University of Texas at Austin

Austin, Texas 78712-1084 USA

An algorithm is described which produces exactly rounded results for the func—
tions of reciprocal, square root, 2x, and log2(ac). Hardware designs based on this

algorithm are presented for oating point numbers with 16 and 24 bit signicands.
These designs perform a polynomial approximation in which the coefficients are

originally computed using the minimax criterion. The coefcients are then ad—
justed to guarantee exactly rounded results for all inputs. To reduce the number of
terms in the approximation, the input interval is divided into subintervals of equal
size and different coefcients are used for each subinterval. A method is presented
for determining the accuracy of the pre—rounded result which will guarantee exact

rounding. Area and performance estimates indicate that for numbers with 16 bit

signicands, the functions can be computed in approximately 55ns on a 5mm by
4mm chip. For numbers with 24 bit significands, the functions can be computed
in approximately 80ns on a 10mm by 10mm chip. The algorithm present in this
paper can be extended to provide extremely accurate results for other elementary
functions and other number formats.
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NUMERICAL ANALYSIS W

metic Block Cyclic Reduction

Block Dimension with
A

sition Methods

Interval Arith

for Arbitrary
.

Applications to Domain Decompo

II. Schwandt

chhnische Universitdt Berlin

Fachbe'reich 3 (Mathematilc)
D-1000 Berlin 12, Germany

ave been widely used for the efcient solution

h special regular sparse coefcient structures

resulting mostly from discretizations of partial elliptic boundary value problems.
The Buneman algorithm for matrices of the form (—5,A, ——T)and its variations

are well known examples for this kind of methods.

In the context of enclosure methods, interval arithmetic versions of the Bune—

man algorithm have a signicant importance as they seem to be up to now the

only interval methods which are not only efcient, but which can also guarantee,

under appropriate conditions, satisfactory or even optimal inclusions for systems of

equations with interval coefcients whose structure can be derived from the above

mentioned class of applications.
The cyclic reduction principle underlying the Buneman algorithm(s) originally

implied some restrictions on the matrix size. While the size of the matrices A, S,

T is arbitrary, the number of block rows (the block dimension) is restricted to be

of the form 271—1for matrices derived from Dirichlet problems (or 2" and 2”+1 for

Neumann and periodic problems, resp.). This restriction causes problems in partic—
ular if there are problem dependent limitations on the step size in the discretization

or simply memory problems for very large problems. Therefore, Sweet (1974, 1977)
has proposed a modication of the point (noninterval) Buneman algorithm for ar—

bitrary block dimensions.

In the present context an interval arithmetic variant for arbitrary block di-

mensions is presented. Under the aspect of optimal inclusions, however, there still

remain restrictions. We extend the range of admissible block dimensions for op-

timal inclusions and we estimate the width of the enclosures in the non optimal
cases. As an example for the application of the increased exibility concerning the

block dimension we mention the integration of the new interval Buneman variant

in a Schur based interval domain decomposition method.

-

In View of a practical application, we discuss the vectorization and paralleliza—
t10n of:the resulting algorithms and we briey introduce the implementation of a

vectorlzmgsimulation of an interval arithmetic on CRAY computers and a simula—
t10n on IEEE based machines. Numerical examples are included.

Block cyclic reduction methods h

of large linear systems of equations wit
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Solving Interval Linear Systems with

Nonnegative Matrices

S. P. Shary
Computing Center, Siberian Department of the Russian Academy of Sciences,

Academgorodols, 660036 Krasnoyarsk, Russia

Let the interval linear algebraic system (ILAS)

Ax = b

be given with the interval n X n — matrix A and the interval it ~ vector b. A classical
interval analysis problem is the problem of “outer” componentwise evaluation of
the united solution set

X*(A, b) = {3: e R" | (3A «5 A)(Elb e b)(A:c = 5)},
formed by solutions of all point systems Ax = b with A E A and b E b. Tradition—
ally, it is formulated as follows

nd an interval vector V that contains

the united solution set of the given ILAS

If V is the least inclusive, i.e., its components are the projections of X*(A, b) on

the coordinate axis, then it is called the optimal solution of the stated problem.
Determining such optimal V appears intractable in general, so researchers usually
conne themselves to constructing algorithms to solve this problem optimally only
for particular classes of interval linear systems. In this work we present new effective
(polynomially complex) numerical methods for computing the optimal solutions of
the ILAS with nonnegative matrices, based on ne geometric properties of these
systems’ united solution sets,
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Fast Automatic Differentiation
for Vector Processors

D. Shiriaev

Institutf. Angewandte Mathematik, Univ. Karlsruhe
Kaiserstr. 12, D~7500 Karlsruhe 1, Germany

Automatic differentiation is a non—approximative method allowing fast and
exact evaluation of derivatives of any degree. Automatic differentiation does not
incur any truncation errors and could yield exact results if the calculations could be
carried out with innite precision. The only errors introduced are those associated
with using real arithmetic, instead of rational arithmetic.

The execution time requirement for gradient computation using the basic al—
gorithm for fast automatic differentiation is only a small multiple of that for the
program which computes the underlying function values. Unfortunately, all avail—
able systems implementing this algorithm suffer from a storage requirement that
grows proportionally to the execution time of the original program. The storage
requirement can therefore be signicantly large for computation intensive problems,
thus limiting the size of the problems that can be solved with this method.

We discuss a semimorphic extension of the general scheme of fast automatic
differentiation from scalar arithmetic to the customary higher numerical spaces.
Our main goal is to provide a basis for achieving high accuracy and for reducing
the storage and temporal requirements of fast automatic differentiation. The set of
basic operations is extended to vector operations, including accurate dot product,
improving the numerical, space and time performance of the method. Using the
compound vector operations, the control-ow structure of the underlying program is
simplied and reflects better the nature of the problem, increasing reliability, ease of
programming and maintenance of the programs. Vector operations provide a basis
for parallelization and vectorization, and, if they are hardware supported, the speed
of resulting program can be signicantly increased. Inclusion of the accurate dot
product as a basic operation of fast automatic differentiation improves signicantly
the numerical behavior of the algorithm and provides a basis for the achieving high
or even maximal accuracy.

The new method is compared with another implementations of automatic dif—
ferentiation on the example of the Helmholz energy function, illustrating the effec—
tiveness of the proposed ideas.
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Complexity of Fixed Points - A Review

K. Sikorski

Department of Computer Science

University of Utah, Salt Lake City, Utah 84112 USA

We address the problem of approximating fixed points of nonlinear mappings
and survey all recent complexity results.

We consider two error criteria: 1. absolute and 2. residual.

For contractive functions and the absolute criterion we exhibit an optimal
algorithm (Le. and algorithm minimizing in the worst case the number of function

evaluations). This algorithm is based on the bisection—envelope construction in the

one dimensional case. In multivariate case the Banach’s simple iteration algorithm
is optimal if the dimension of the domain of functions is large. For moderately large
dimension we present an ellipsoid algorithm based on the ellipsoid construction of

Kchachian. This algorithm establishes an upper bound on the complexity. We

conjecture a formula for a lower bound, however the actual complexity is still not

known.

For noncontractive functions and the absolute error criterion, the bisection

algorithm is optimal in the univariate case. In the multivariate case we show that

the problem is unsolvable with nite cost. This holds even in the two dimensional

case and nonexpanding functions (Lipschitz with constant 1).
For noncontractive functions and the residual error criterion the problem is

tractable, however its complexity is an exponential function of the dimension.
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Correction Terms for Quadrature Formulas

W. Solak

Institute of Mathematics

Academy of Mining and Metallurgy, Ul. Mickiewicza 30

Cracow, Poland

Reference provides information concerning correction terms With parameter
for the following quadrature formulas

Gm = n+1 [f] + mart—316w) + an + an — f(a + 24a)
— 3f(b) + w — 3h) — f(b — 2,6101

and

135%[f] = Mn[f] + h(24)—1[2f(b— 0.5m) — 3 f(b _ 1.5%) + f(b — 2.5311)

+ 2f(a + 0.5,8h) + 2f(a + 0.5h) — 3f(a + 1.5h) + f(a + 2.5h)]

Where

n—l

Tn+1Ifl = h 2 f(a + m) + 0.5hma) + f(b)l
i=1

and

n—1

= h E f(a + + 0.5)h), where b — a = nh

i=0

In particular, in the case  = 1, formula (1) reduces to Gregory’s formula see [I],
[2] and formula (2) to Laplace formula [1] for the integral

b

1m: / f(rv)d~’v
In the general case} use of the above formulas shortens calculations of numerical

integration. Further consideration of this problem is discused in

Formulas (1) and (2) are of the fourth order and are given only the rst cor—

rection terms, so-called of the first degree.
The principal purpose of this paper is to obtain estimates of errors in approx—

imate integration with a parameters in formula and

INTEGRATION FORMULAS

If a function f E C2k[a,b], then the integral (3) can be represented by the rst

Euler—Maclaurin formula (see [1], p. 152)

/ f(rv)drr-= Tn+1ifl ~ 2 gf—gazl—“(w— zz-“(aw
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B2k(b —_ a) h2k_ (2)f kg
(21:)!

for some 6 between a and b.

A useful variant of the rst Euler—Maclaurin formula is (see

_

2

H=am+i£?wwwwawwi
+2§3®mw+®wn+owa

and

7 80 2

= Lg+6[f]-— hfmw) _ Jul/(GM

if.-—90[“m»+”wn+owu
If l E (0,20'0‘5), 32 E (20'0'5,1)] and f"’(b) 7Ef’”(a) then exists N such

that for n 2 N we have

0%AH3HHSG%AHwdsHSGam
for these formulas

If 1 E (0,(7/80)0'5), g 6 ((7/80)0‘5,1) and f”'(b) 75f"’(a) then exist Nand

for N Z N we have

LAssLddzzLam
for these formulas
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Algebraic Algorithms with Automatic Stability Analysis

H. J. Stetter

Institut fur Angewandte und Numerische Mathematik

Technische Universitiit Wien, Wiedner Hauptstme 6-10

A-1040 Wien, Austria,

In algebraic algorithms as they are implemented in standard Computer Algebra
systems like REDUCE, Mathematica, etc., computations use rational numbers with

potentially “unlimited” wordlengths for numerators and denominators. The use of

oating—point arithmetic in such algorithms has appeared counter—productive to

most computer algebraists. On the other hand, however, some algebraic algorithms
have been Widely used in Numerical Analysis with excellent success and with a

potentially enhanced information return, in spite of oating—point computation.
The best—known example is Gaussian elimination for linear equation solving.

This unexpected fact arises from the more sophisticated implementation which

is indispensible with approximate computation: A potential breakdown of the ac—

curacy has to be monitored which leads to a consideration of the algorithm for all

data in some Vicinity of the specied problem. Thus potential nearby degenerations
of various sorts are discovered. In Scientic Computing, such information is often

more essential than a 100% accurate result for the specied data.

Naturally, it is this supplementary monitoring in the algorithm — and not the

use of oating—point arithmetic — which may make the oating—point versions of

algebraic algorithms more suitable for Scientic Computing than the “strict” ver—

sions. Therefore, we have begun to design “embedded” versions of a number of

classical algebraic algorithms, like the Euclidean algorithm for the g.c.d. of univari—

ate polynomials or Buchberger’s algorithm for the computation of Groebner Bases

for sets of multivariate polynomials.
In these versions, quantities which are below a specied threshold relative to the

data level of the problem are disregarded for the further computation; but the effect

of this perturbation is stored and its propagation (both forward and backward)
is accumulated. The result of such an algorithm describes the most degenerate
situation which may occur in a (speciable) small neighborhood of the specied
problem. If, e.g., a minute change of some coefcients of a set of multivariate

polynomials leads to a positive-dimensional manifold of joint zeros, this fact will

be uncovered, whereas present “exact” implementations would give no indication

of this fact.

While we have, at rst, continued to use rational arithmetic throughout in an

effort to have exact assertions about neighborhoods etc. and to separate sources

of perturbation, we have now considered the use of floating-point arithmetic plus
the use of intervals at crucial points. Some rst results of this approach will be

reported. It is claimed that such versions of algebraic algorithms will have a higher
applicability in Scientic Computing than the standard rational arithmetic versions.
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Numerical Integration in Two Dimensions

with Automatic Result Verication

U. Storck

Institut fiir Angewandte Mathematik

Universitdt Karlsruhe (TH), Germany

In scientic and engineering problems, the values of multidimensional integrals
are frequently needed. There are many different methods for numerical integration,
especially in one and two dimensions. Particularly in the two—dimensional case,

however, the remainder term, assuming it is taken into account, is not given in
a form suitable for numerical computation. In addition, the round—off errors are

rarely taken into account. Therefore, a reliable statement about the accuracy is

not possible in general, and the numerical results are often doubtful.
In order to obtain an error estimate for a numerical result, two methods for

calculating integrals of tyorm

b d

J=/ / f(a:1,$2)d;c2d:c1

with automatic result verication are presented. We will call these procedures
the single Romberg extrapolation and the double Romberg extrapolation. The

approximations of both algorithms are determined by Romberg extrapolation and
can be presented by a linear combination of grid-values of the integrand. In order to

obtain tight enclosures of the approximations the employment of the precise scalar

product and interval arithmetics is necessary. The corresponding remainder terms
are mainly determined by the Taylor coefcients of the integrand. For calculating
enclosures of these terms, we use automatic differentiation, interval arithmetics
and the precise scalar product. In both algorithms, the quality of the remainder
term chiey determines the error of the result, i. e. the width of the enclosure of
the integral. We therefore examine in detail the representations of the remainder
terms in dependency on the chosen step size sequences. Finally a short comparison
of the two integration methods and further aspects for the integration in higher
dimensions are given.
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Interval Analysis Isn’t Fuzzy Is It?

M. J. Tretter

Department Business Analysis, Texas AEJM University
College Station, TX 77843-4217

There are some intriguing relationships between fuzzy set theory and interval

analysis. Recent research by Zadeh (“Random sets and fuzzy interval analysis”,
Fuzzy Sets and Systems 42 (1991) pp. 87—101)offers a combined approach. This

paper will look at extending this relationship. Applications will include Moore’s
1984 interval analysis approach to risk analysis and a fuzzy/ interval approach to

geometric programming.



LAFAYETTE, LOUISIANA, FEBRUARY, 1993 105

Truncated Newton’s method with Automatic

Differentiation and Interval Error Bounds

R. J. Van Iwaarden

2208 Williams St,

Denver, Colorado 80210 USA

The use of automatic differentiation (AD) to solve systems of nonlinear equa—
tions using truncated Newton’s method will be presented with numerical examples,
computed error bounds using interval analytic techniques and run times illustrating
it’s potential for applications. Little or no previous knowledge of AD is assumed

and open questions regarding AD will be presented.
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Computation of Integrals of Uncertain Vector Functions

V.M. Veliov

International Institute for Applied Systems Analysis
Schlossplatz 1, 11-2361 Larenburg, Austria

We address the following problem of integration of an uncertain function

f : [0,1] —> R”. Suppose that the only information about is that E

conv{f1(t), . .. ,fp(t)}, t 6 [0,1], where f1(-), . .. ,fp(-) are known functions. Then

folf dt can, in principle, have any value from the set

I = {/099(t)dt; 99(t) E conv{f1(t), . .. ,fp(t)}, — integrable}.
The problem is to approximate the convex set I with any given accuracy. This is

a particular case of the more general problem of approximation of the set

1 1

J = J/F(t)I/V dt = t t Ftt)w(t) dt; w(t) E W, — integrable %,0 0

where F( is an (n X r)—matrix function and W is a convex compact set in RT.

Two interrelated issues arise: 1) to develop the theory of quadrature formulae

for set—valued integrals as (1); 2) to choose tools for representation / approximation
of convex sets in R". Both of them will be discussed in the talk, but here we

sketch only the rst one, which is well understood for n = 1, but is much more

complicated in the multidimensional case.

Let 0  T1 < < Tm g 1 and a1, . .. ,am 6 R generate the linear quadrature
formula 217:0aig(Tz-h)), which is exact for real polynomials g of degree 1. Let

to = 0, t1 = h, , tN 2 Nb : 1 be the N—points uniform grid in [0,1]. It turns

out that the linear composite formula

N —1 m

JN = Z (Z aiF(tk + nh)W)
k=0 i=0

approximates J with accuracy const/N2 with respect to the Hausdorff distance

between sets (the constant also can be estimated), provided that F is Lipschitz
continuous and is of bounded variation.

In general, there are no linear quadrature formulae that approximate J with

accuracy better than const / N 2
even in the class of analytic matrices F and sets W

with smooth boundaries. Conditions for F and W under which such formulae exist

are known, but are too restrictive and not satised in many applications. However,
certain higher than second order nonlinear quadrature formulae turns out to exist

under essentially weaker conditions. They are in the form of

N —1

jN = conv Z
k=0

where A]?depend on F linearly and D is a certain nonlinear mapping, independent
of N and k. Thus, given W, the image D(W) can be evaluated (in some cases

analytically) and used in any formula of the above type. We discuss some particular
cases and numerical aspects.
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Linear-Time Algorithms that Locate

Local Maxima and Minima of a Function

from Approximate Measurement Results

K. Villauerde and V. Kreinouich

Computer Science Department
University of Teras at El Paso

El Paso, TX 79968, USA

The problem of locating local maxima and minima of a function from ap—

proximate measurement results is vital for many physical applications: in spectral
analysis, elements are identied by locating local maxima of the spectra; in ra—

dioastronomy, sources and their components are located by locating local maxima

of the brightness; elementary particles are identied by locating local maxima of

the experimental curves.

In mathematical terms, we know n numbers 51:1 < < an, and n intervals

I,- = [yi_,yf],i = 1,...,n, where yi—= y,-
—

e, y,-+= y, —I—e, and we know that the

values of the unknown function at the points it, belong to I,-. The set .7:

of all the functions f that satisfy this property can be considered as a function

interval (this denition was, in essence, rst proposed by R. Moore himself We

say that an interval I locates a local maximum if any function f E .7: attains a local

maxima at some point from I. So, the problem is to generate intervals I1, ..., Ik
that locate local maxima.

Evidently, if I locates a local maximum, then any bigger interval J D I also

locates them. We want to nd the smallest possible locations I. We propose an

algorithm that nds the smallest possible locations in linear time (i.e., in time that

is g Cn for some

Remarks.

1. By looking for the smallest possible location, we want an optimal interval

estimate in the sense of [R80] and [RR80] (see also [K86]).
2. There exist various algorithms that locate the global maxima of an intervally
dened function (see, e.g., [M79], [D583], [RR88], [M91]). For these algorithms,
local maxima are the main obstacle that has to be overcome, and not the nal

result, so we cannot apply these algorithms to locate all local maxima.

3. Local maxima and mimima are also used in the methods that accelerate the

convergence of the measurement result to the real value of a physical vari—

able, and thus allow the user to estimate this value without waiting for the

oscillations to stop [N88].
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Veried Computation of Pole Assignment
by Complete Modal Synthesis

P. Walerius and G. Ludyk
Inst. Automatisierungstechnik, Universitdt Bremen

Kufstez’ner Str. / Gcb. NW 1, W—2800 Bremen 33, Germany

In control engineering Pole Assignment is a method to synthesize a control

law. The aim of synthesis is to give a system some chosen properties. A fundamental

requirement is to guarantee stability.
In this work, the controller design for multivariable linear systems will be

realized by using state variable feedback or output feedback. Under the condition

that the system is controllable, the dynamic behaviour that is determined by its

eigenvalues can be changed arbitrarily. The Complete Modal Synthesis delivers an

explicit controller formula for calculation of the unknown feedback matrix. The

proposed methods for veried computation of the feedback matrix is based on

this formula which is trMed into a system of nonlinear em where the

unknown variables are the coeicients of the feedback vector.

By application of inclusion procedures for the solution of nonlinear systems,
the computation of the feedback vector for the pole placement problem can be

carried out with high precision and verication.
The computed results with the new method are in the form of precise inclusion

intervals of the feedback vectors. It is furthermore always guaranteed that the exact

solution lies in the computed intervals.
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FORTRAN—X80
A Portable and Versatile Fortran; 90 Module Library

for Highly Accurate and Reliable Scientic Computing

W. V. Walter

Institut Angewandte Mathemati/c, Univ. Karlsruhe

Kaiserstr. 12, D~7500 Karlsruhe 1, Germany

The new Fortran: 90 standard offers a multitude of enhancements and exten—
sions of the old FORTRAN: 77 language. Many new features and concepts such

as dynamic arrays, array operators, pointers, modules, and user—dened data types
and operators are essential for contemporary programming. However, the math—
ematical properties of the arithmetic operators and the mathematical elementary
functions, in particular any accuracy requirements, still remain unspecified. In this

sense, the Fortran: 90 standard is still arithmetically and numerically decient.
FORTRAN~XSC is a versatile toolbox intended for use in a wide range of

numerical applications. The library consists of a number of Fortran: 90 modules

providing accurate scalar, vector and matrix arithmetic for real and complex num—
bers and intervals, accurate conversion routines for numerical constants and in—

put / output data, multiple precision arithmetic, a reliable and highly accurate im—

plementation of the Fortran: 90 intrinsics SUM, DOTPRODUCT MATMUL and of

the BLAS (Basic Linear Algebra Subprograms), and more. The user has full control

of the rounding mode to be used in an operation. Every operation is guaranteed to

be accurate to 1 ulp (unit in the last place).
FORTRAN—XSC is particularly useful for the development of self—validating

numerical algorithms. Such algorithms deliver results of high accuracy which are

veried to be correct by the computer, so there is no need to perform an error

analysis by hand. For example, self-validating numerical techniques have been suc—

cessfully applied to a variety of engineering problems in soil mechanics, optics of

liquid crystals, ground—water modelling and vibrational mechanics Where conven—

tional oating—point methods have failed.

FORTRANeXSC is written in pure standard—conforming Fortran: 90 and is

fully portable. The module library automatically adapts to the native oating—
point system of the machine used and exploits the hardware arithmetic as much as

possible. The only requirement is that the arithmetic of the machine be faithful,
that is, that the elementary operations provide least—bit accuracy.



LAFAYETTE, LOUISIANA, FEBRUARY, 1993 111

Interval Test: An Application of Interval Arithmetic in

Data Dependence Analysis

Zh. King and W. Shang

Center for Advanced Computer Studies

University of Southwestern Louisiana

Lafayette, Louisiana 70504 USA

Data dependence analysis is a basic step in detecting loop level parallelism in

numerical programs. Testing if there is a dependence in a loop can be converted to

checking if there exist integral points in a polyhedron described by a set of linear

equations and inequalities, Several methods on the data dependence test have been

proposed. Some of those methods only consider single dimension test, i.e., they
either consider cases where the polyhedron is described by only one linear equation
and some inequalities, or for the cases Where multiple linear equations are involved,
they test those linear equations separately and independently, which often results

in an inaccurate test. Some simultaneous data dependence tesnethods consider

all linear equations and inequalities together to have more accurate results, but

they have exponential complexity of the number of loops. In this paper, interval

operations are used. This greatly simplies the previous work and also gives a new

0831153015siagacdimecsismifeet icelleduin item's Mast tpoosecqeohlsry grim};lta aeov sata a

dependence analysis is achieved by transforming equivalently a data dependence
test problem with any number of linear equations to a test problem with only
one linear equation and applying some single dimension test methods such as the

GOD test, Banerjee’s test, l—test and interval test. The method reported in this

paper overcomes the inexactness of traditional test methods which check dimension

by dimension rather than simultaneously checking, and improves many previously
proposed methods in aspects of accuracy, application and efciency.
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Possibilities for Further Development of

SCI-Languages

A.G. Yakovlev

Moscow Institute of New Technologies in Education

Nizhnyayu Radischeuskaya, 10, Moscow, 109004, Russia

In recent years an entire family of so—called SC—languages (languages for Sci—

entific Computations) along with program systems implementing these languages
has been developed. The family includes ACRITH—XSC [1] (FORT RAN—SC [2]),
PASCAL—SC and —XSC [4], MODULA—SC [5], C—XSC [6], etc. Characteristic

features of the languages are: high accuracy of numerical operations, in particu—
lar, of specially implemented scalar products and elementary functions, exibility
in controlling rounding directions for numerical results to be computed, availabil—

ity of various means for programming interval computations and so on. Also, the

languages have a number improvements of a universal nature. For instance, they
usually support modularity. In general, the languages are primarily based on com—

fort able and effective programming of localizational (self—validating)numerical com—

putations. However, the contemporary technical base and achievements in software

design allow some additional concepts to be implemented, increasing the advantages
of SC-languages. Among these concepts are

c multi-aspectness, allowing operation on different representations of the

same mathematical objects either simultaneously or separately [7—8];
0 parallelism of operations, computing methods and their versions, allowing

not only increased speed, but also the accuracy and reliability of localizational

computations [7, 9];
o orecomputation, based on the idea of repeated localization of intermediate

results. In particular, this permits all available computing resources to be

concentrated on increasing the accuracy of the nal result accuracy [7, 9];
o analytical evaluations that become implementable because of a special

organization of a symbolic-numeric interface. This permits implementation
of combined (numerical—analytical) computing methods [8];

o classifying that allows increased expressiveness and tractability of program—

ming when programs with a complicated logical structure have to be written

[10];
0 special objects and exceptions allowing fuller use of the information con—

tained in initial data, and allowing avoidance of many by explicit tests of

conditions which would obfuscate a program text. [11]; etc.

To support some of these concepts, new language constructs and methods of

their implementation have been developed. Other concepts can be implemented by
constructs existing in other programming languages.

In general, introduction of the proposed concepts into 80— languages allows

increased accuracyas necessary, increased speed and reliability of algorithms, in—
creased expressiveness and tractibility of programming, and also more exibly to

adjust the relation “quality of the nal result / usage of computing resources.”
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On Some Problems of Best Approximation
in Interval-Segment Analysis

V. S. Zyuzin

Department of Mechanics and Mathematics

Computer Center, Saratov State University
Astrakhanskaya 83, Saratov, Russia 410071

The denitions of algebraic polynomials which deviate least from zero and

meet some requirements are introduced in terms of interval-segment analysis. There

is a special algebraic polynomial in many variables deviating least from zero Which

has one linear dependence. With this polynomial and interval Taylor series7 we can

construct polynomials close to the best ones.
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A Method for Finding Complex Intervals

Containing Zeros of Nonlinear Equations

V. S. Zyuzin and L. V. Kupriyanova

Department of Mechanics and Mathematics

Computer Center, Saratov State University
Astrakhanskaya 83, Saratov, Russia 410071

In this communication, a method and a program in PASCAL—SC for nding
complex intervals containingthe zeros of nonlinear functions Will—bapresented. The

communication continues the work “On one way of nding intervals containing
zeros of nonlinear equations” presented at the conference “INTERVAL-92.” In

contrast to other known methods, the method developed here allows determination

of all intervals containing both real and complex zeros on the Whole complex plane.
Numerical examples will be presented.
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UNICALC - AN INTELLIGENT SOLVER FOR PROBLEMS

WITH IMPRECISE AND SUBDEFINITE DATA

A.B. Babichev, O.B. Kadyrowa, T.P. Kashevarova, A.L. Semenov

Novosibirsk Branch of the Russian Research Institute of Articial Intelligence
Novosibirsk 630090, Russia, email semenov©isi.itfs.nsk.su

A new calculus apparatus based on one approach to knowledge representation and processing
was suggested in To implement this apparatus the UniCalc solver which can both solve new

classes of problems and deal with more usual tasks in a very unusual but efcient way was developed.

UniCalc is designated to solve arbitrary algebraic and algebraic-differential systems joining

equations, inequalities and logic expressions. A system may be subdetermined or overdetermined

and it’s parameters (coefficients, variables, constants, Cauchy initial values) may be given imprecise

(as intervals). Both real and integers intervals may be used to nd solutions of corresponding
types. Any initial approximation to solution is not required. The solution of an algebraic system is

represented by a parallelepiped containing all system roots. The appropriate message is issued if a

system has no roots. A point (with given accuracy) will be output for a system with unique root.

The solver is a multiwindow integrated environment providing all necessary capabilities: an

input and modication of systems to be solved, calculations, an output of solutions in desired form

and so on. An input language allows to formulate a problem in the usual math notation and built-

in multiwindow editor has all necessary functions for simultaneous input and editing of several

systems. All kinds of problems (precise and interval, real and integer) are solved by the unique

original algorithm. The solver contains a compiler, some preprocessors (including a preprocessor

for symbolic manipulation) and the kernel: a data—ow processor. The processor implements a

concept of “generalized computational model” [1]being a data-ow model of knowledge processing.
This model is a non—deterministic parallel asynchronous process of subdenite calculations. To deal

with subdenite data the processor uses algorithms of interval arithmetic.

To estimate efciency of the UniCalc a lot of different problems was solved. We solved linear

and nonlinear algebraic systems of equations and inequalities, different kinds of integer problems,
optimization problems, interval problems, systems of ordinary differential equations and so on. In

general, results of testing were very successful especially for complicated nonlinear systems and

integer problems. Also we have solved an optimization problem for Rozenbrock’s functions (up to

15—th order) and Powell’s function.

Current UniCalc release runs on IBM PC/MS DOS and requires 450Kb of RAM. This cong~
uration permits to solve systems up to 250 variables and up to 300 expressions.
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WHY LINEAR REGRESSION METHODS WORK SO WELL

FOR NON-LINEAR PROBLEMS?
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In many real~life situations, we must estimate the value of a physical quantity 3; that is difcult
to measure directly. So, to avoid direct measurements, we measure whatever variables we can, and

then based on the measured value 2:1, ..., xn, try to estimate y. These situations is most frequent
in geology, when it is very costly to measure the properties of the deep layers, and much cheaper
to measure the waves reected from those layers.

In some situations, we know the relationship between x, and 31, so we can use this known

model to estimate 3/ based on 93,. n geology, this relationship is usually highly non-linear. In

many situations, however, this dependency between an, and 3/ must be determined experimentally.
There exist many statistical methods that help to discover such a dependency, the simplest of them

(linear regression methods) help to discover linear relationships 3/ : E, aim. For the cases when

we are not sure whether the relationship is linear or not, standard statistical procedures require
that we rst try simple linear regression methods, and then, if linear methods do not work, try
more complicated non- linear methods.

In geology, since the relationship between different parameters is highly non—linear, we would

expect that in the majority of the cases linear regression methods would fail. Unexpectedly, in the

majority of cases, linear methods succeed! The same strange phenomenon occurs in economics:

when we, e.g., analyze the dependency of the workers—per—managerratio on the parameters that

characterize the business, we also get a pretty good t for linear regression in an evidently non-linear

situation. Why are linear methods working so well in non-linear situations?

In the present report, we present an answer to this question. Of course, if all the variables

x,- are independent, and the actual dependency of g on ac, is non-linear, then linear regression
methods cannot work. But in many cases, the values 11:,- are not independent. For example, in

geological measurements, if in reality, we have a 3—layersituations, then we need, say, 9 parameters
to describe these 3 layers. So, if we measure the values of reections in 30 different point, the results

of these measurements are evidently interdependent. Let us show how interdependency leads to the

applicability of linear regression formulas. Let us consider the simplest case, when all the variables

m,- depend on one parameter 3. The dependency is non—linear for all i. Since we measure x,-

with a certain precision 5, we actually have the interval dependency that associates with each s the

interval — 5,315) + 8]. Hence, we can use the approximate formula for as soon as it

lies inside that interval. In particular, if the actual dependency is smooth (which is most often the

case), we can retain several terms in the Taylor expansion of x,(s), and thus consider the case when

all these dependencies are of the type 2 ago)+agl)s+ag2)s2+ —|—agk)skfor some k. Likewise,
31(5): (1(0)+a(1)s+a(2)s2 + +a(k)sk. So, 3/ and each of :17,-belong to a (k + 1)—dimensional linear

space of all linear combinations of k + 1 functions 1, s, ..., 8’“. Hence, if n > k, we have n + 1 > k + 1

vectors in an (1%;+ l)—dimensional space. Therefore, these vectors are linearly dependent, i.e., y

can be represented as a linear combination of 56,-.

The same conclusion can be obtained when ac,- depend on several parameters 33-.

Our conclusion: if linear regression works in a non—linear situation, one does not need to

search for an error. Moreover, if this is the situation, then we can be sure that the variables x,- are

interdependent, so we can look for the dependencies between them.



TOWARDS INTERVAL SEMANTICS FOR LOGIC PROGRAMS
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For logic programs, one of the most reasonable semantics is the so called stable model semantics,
that was proposed by M. Gelfond and V. Lifschitz. According to this semantics, if we ask a query
Q, the answer is “yes” if all reasonable sets of beliefs include Q, “no” if none of the reasonable belief
sets include Q, and “unknown” if Q is included in some sets of beliefs but not in all of them. A
belief set is a set of atomic statements in which someone believes. It is called reasonable if, crudely
speaking, the following is true: if we start with this set of beliefs B, and apply all the rules from
a given logic program, then the resulting set of beliefs T(B) coincides with B. In other words,
everything that can be concluded from this set of beliefs is already there. Such a reasonable set of
beliefs is called a stable model.

One of the main problems with stable sets is that for some logic programs there is no stable set

at all. The simplest example is a program 1) <— not 1). The reason why it has no stable set is that in
stable model semantics, it is interpreted as “if we do not believe in p, then we believe in p”, which
makes no sense. In more complicated cases, the reason is not so evident. One can argue that such

programs represent inconsistent knowledge. This may be true, but such programs do appear when
we formalize human reasoning. Since our goal is to formalize commonsense reasoning, and not to

criticize it, it seems desirable to generalize stable model semantics so that it would be applicable
to such programs as well.

Such a generalization (called stable model semantics) was proposed in In the situations
where no stable model exists, we can have several people with different sets of beliefs. None of
these sets is stable. Therefore, after we apply the rules, each of them changes his set of beliefs.
But sometimes, if one chooses a sufciently broad spectrum of opinions, one can guarantee that

(although each expert changes his opinion) the set of all their opinions remains the same. So, in
this case, although each set of beliefs is not stable, but the class 8 of these sets can be stable (in
the sense that T(S) = S In this case, we can say that an answer to a query is “yes” Q is true in
all the belief sets that belong to each stable class, “no” if Q is false in all these belief sets, and in
all other cases it is “unknown”. It is proved that an arbitrary program has a stable class, so this
semantics is well dened.

This semantics has a slight drawback: if Q is true in some of the belief sets, and false in some

others, the answer is always “unknown”. However, if Q is true in 90% of belief sets, then we have
more reasons to believe in Q than if it is true in 10% of belief sets. In the present paper, we show
how to add this distinction to stable class semantics.

The idea of this addition is simple: Let us again consider the group of people with different
views, but now we will not only consider the set of those views, but also count how many of them
hold to each View. This set will be called stable if after applying T not only the classes remain
the same, but the numbers as well. For such stable classes, for each query Q, we can compute
the ratio of those who believe in Q. We prove that such stable classes exist for an arbitrary logic
program, and that for each program, the set of ratios that correspond to different stable sets form
an interval. “Yes” and “no” answers correspond to degenerate intervals [1,1] and [0,0], but, say,

[0.1,0.2] and [08,09] are evidently different cases of what was before classied as “unknown”.
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INTERVAL RESTRICTIONS HELP IN DESIGNING
GRAPHICAL INTERFACES FOR MACHINE CONTROL

Ray Bell
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Modern computer—aided design (for example, design of a car or a plane) starts with the de-

signer’s testing and comparing different shapes and choosing the best ones. There exist many
different graphic tools that help; these tools make the task of forming a graphical representation
really easy. For example, graphics is included in wide—spread Turbo C and Turbo Pascal compilers.
With many software packages, even kids can easily design graphical images.

After one or several shapes are chosen based on computer simulations, it is necessary to make
models of these shapes to test their aerodynamical, optical, and other physical properties. There
exist machines that cut wood or metal following a computer program. Unfortunately, we cannot

directly translate the image generated by a graphical program into the instruction for these ma-

chines. The reason is that these machines require the manufacturing program to be written in a

special low—level language, and they do not understand the high—level languages that are used for

graphics. As always with low level languages, these programs are difficult to debug. For a normal

program debugging only increases time. For a manufacturing program, in addition to wasting the

programmers’ time, we have to make several wrong cuts before we nally x the program. There—
fore, it is desirable to develop something like a compiler from a graphic language to the language of
machine control. It is difcult to write a compiler, because graphical packages deal with 2—D images
(2-D projections of a 3—D shape), and for manufacturing, we need to know a 3-D shape itself.

So what we really need is an interface between the graphical software and the machine control
software.

We describe the general idea of such an interface, and the results of an actual implementation
of this idea (on the basis of Turbo Pascal graphics).

The idea is as follows. It is very easy to describe a 2—D projection using a graphic package.
To describe a 3-D image, we must somehow represent the third coordinate of each point using
the same 2—D representation. In other words, to describe the shape of a surface z($,y), we must
somehow store the values of 2(20,3/) that corresponds to each pixel (:10,y). In graphic packages, the

only information that we can store for each pixel is its color. So, we must use color of a point (a, y)
to encode the 3—rd coordinate of a point whose projection is In the majority of terminals,
there are not so many colors: the number of colors is much smaller than the number of possible
different real numbers 2 that can be represented in a computer.

But for design, we do not need supermicron precision. So, in addition to the desired shape
zd(m,y), a value 6 > 0 is given, and for each a: and 3/, such that the resulting shape z(a:,y) must

belong to the interval [zd(a‘, — 6,2d(:r,y) + (5]. If we take this fact into consideration, then for
reasonable 6, the number of essentially different depths z is smaller than the number of colors on

a monitor, and therefore, we can use a convenient color coding to represent 3-rd dimension.

The resulting system is easy to use, and it takes as much time (a few minutes) to program
machine control to cut a shape, as it takes to draw this shape on the screen. Besides, since the same

program is used for drawing and cutting, there is practically no need for debugging: if something
is wrong, we will see it graphically.
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PROBABILITY DENSITY FUNCTIONS:

A CONSTRAINT PROPAGATION APPROACH
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Consider an multiplication constraint among 3 interval valued quantities. The reasoning pro-

cess for using that constraint to narrow its operand quantities is quite different from solving an

interval equation AB = C. For one thing, given C and AB = C, narrowing A implies widening B.

Yet a multiplication constraint among interval-valued quantities A, B, and C means that ab = c,

and narrowing A implies narrowing B.

In this paper we explain the difference between constraint propagation with interval-valued

labels, and evaluation of interval equations. A body of Articial Intelligence work on constraints

and intervals of signicant size is reviewed, and contrasted with analogous work in the interval

mathematics eld.

Viewing constraint propagation as the well-known AI algorithm called Waltz ltering, a novel

proof of Waltz ltering using techniques of program verication is given, which applies to interval—
valued and other label sets of innite magnitude, unlike most other proofs of the validity of Waltz

ltering. Termination of the algorithm is also dealt with. We suggest using two different epsilons
in rounding interval calculations, one to insure correctness, as suggested by Moore [1979], and

one to ensure termination, as suggested by Davis [1987], and briey describe how the size of the

termination epsilon affects termination time.

We then develop a method of working with operands some of which are intervals and others

of which are probability density functions. Pilot work has applied this to an M-of—N problem in

dependability analysis. The pdfs are discretized into a set of intervals and combined using the

“numerical combination of random variables” (or “histogram discretization”) method popularized
originally by Colombo and J aarsma [1980]. The histogram discretization method is extended to the

case of some operands being intervals, by treating the interval as a pdf discretized as a histogram
containing one bar.

Describing the results in the general case requires using the concept of rst order stochastic

dominance, but in the context of nding the probabilities of qualitative behaviors, interval bounds

on those probabilities may be found instead.



STEP-SIZE REFINEMENT:

A NEW INTERVAL ALGORITHM FOR

FLEXIBLE SIMULATION OF ODE’S
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By preprocessing an ODE with qualitative simulation to describe its qualitative behaviors, each
behavior may be further simulated by inserting quantitative time points between the qualitative
time points. This approach leads naturally to measurement interpretation, in Which not only time

point values but values of other variables are inserted into the behavior description. As simulation

proceeds7 the quality of the inferences increases. Unlike most methods of numerical simulation, this

approach will not produce worsening results with excessively small step sizes.



WHEN SOME INPUTS ARE PDF’S
AND OTHERS ARE INTERVALS

Daniel Berleant
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Monte Carlo simulation is well—established for applications in which all uncertain inputs are

pdfs, and for applications in which all uncertain inputs are intervals. However, dealing with situa—
tions in which some inputs are pdfs and some are intervals is difcult using Monte Carlo techniques.
We attack this problem by histogram discretization of pdfs, in which the domain is partitioned into

intervals [Ingram et a1. 1968; Colombo and J aarsma 1980]. The result is many subproblems, each

dealing with interval inference only. Recombination in general requires use of rst order stochastic

dominance to describe the results, however, if our interest is in bounding probabilities of qualitative
behaviors, recombination can instead give us intervals bounding the probabilities of those behaviors.

We show these ideas in the context of a simple example. While scaling up to larger problems leads

to computational complexity problems, simple problems are also of widespread applicability, and in

fact Klir [1991] argues that simple models are often better than their more complex counterparts.



WALTZ FILETRING IS CORRECT
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We use program verication techniques to prove that an AI technique called Waltz ltering is

correct. A proof of this sort brings into sharp relief the assumptions that must be made for Waltz

ltering to be correct. These assumptions are that constraints must not be time varying and that

shrinking the label set at one node must not result in expanding the label set at another node.

With interval-valued label sets, the magnitude of the label sets are innite, and termination becomes

an issue in the Waltz ltering settling process. Davis (in his 1987 paper in Articial Intelligence
Journal) and Moore [1979]propose changing bounds only if the change exceeds some epsilon. Davis

addresses termination, Whereas Moore addressed correctness of inferences, in standard oating point
computer arithmetic. We suggest using 2 different epsilons, one for each purpose, and briey analyze
how time—to—termination depends on the epsilon chosen for this purpose.



SUB-DEFINITE CALENDAR SCHEDULING
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Situations when the time parameters for specic works cannot be specied denitely are typical
for practical calendar scheduling. If this is due to incomplete information about the time when
some work has to be fullled, then we shall call such scheduling to be sub-denite.

An approach to tackle this problem is based on the temporal logic (the so—called T—model pro—
posed by E. Y. Kandrashina) and the theory of sub—denite models (proposed by A. S. Narin’yani)
developed in the Russian Research Institute of Articial Intelligence. The T —model provides means
to specify the relations between individual events. Time is modeled as a straight directed line T.
Traditional notions such as time point (25—point),time interval (if—interval)and more complex ones
are included into the T—model.

Sub-denite model (or n—model from Russian “nedoopredelionnyj”) generalizes the notion of
a computational model. The inference process on the n—model is determined by a special kind of
a data—driven virtual machine.

In the case of the discrete T—model, the t—point is modeled by integer. The sub—denite
t—point can be presented by the interval of integers [(1,b], a S b.

To represent the event lifetime, the T—model introduces the notion of the t—interval. The
t—interval A is dened as a triplet of units (s(A),f(A),d(A)), where 3(A) and f(A) are non-
identical t—points, one being the start point of the t—interval and another being its nish point
respectively, and d(A) is the duration of A, which are bound with the obvious correspondence.

The start and nish points of the sub—denite t—interval A are sub-denite t~points and the
duration is sub-denite quantity. They are bound by the functionally interpretable n—relation:

d(A) = f(A) - 8(A)- (1)
The n—schedule is treated as n—model M = (X, R), where X is a set of sub—denite t—intervals

and R is a set of relations binding the sub—denite t—intervals of X. The sub—denite t—interval
models any activity that is continuously performed during some time interval. R includes the
relations (1) for every sub-denite t-interval of X and all relations binding sub—denite t-intervals.

The relations binding sub-denite t—intervals are n—extensions of relations binding t~intervals
in T—model. An example of such relations is:

(a) EMBEDDING(A1,A2) <—+ (3(A1) «— s(A2))&(f(A2) <— f(A1))
(b) SUCCESSION(A1,A2) <—> f(A1) e 3(A2)
(c) NON —

SIMULTANEITY(A1, A2) H SUCCESSION(A1, A2) V SUCCESSION(A2, A1),
where A1 and A2 stand for sub—denite t—intervals.

The inference process on the n—schedule results in the reduction gaps between the boundaries
of intervals of start and nish points and durations of sub-denite t—intervals. The lower boundaryof an interval cannot exceed its upper boundary. If this condition is violated, it implies that the
n—schedule is inconsistent.

The Time—EX system intended for elaboration, optimization and management of calendar
schedules was developed on the basis of this approach. The most important advantage of the
Time—EX system is that a user deals not with a particular explicit variant of the schedule but
rather with a n—schedule representing in compact and clear form all the schedules which satisfy
limitations. The user can ever allow the nal variant to remain sub—denite enough to ensure a
sufcient time lag to maneuver under changing conditions during the schedule implementation.
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A HIGH LEVEL LANGUAGE TO DEAL WITH MULTISETS:

DISCRETE ANALOG OF INTERVALS

Daniel E. Cooke

Computer Science Department, University of Texas at El Paso, El Paso, TX 79968

If a physical quantity can (in principle) take arbitrary real values, and we do not know the

precise value, then usually, possible values form an interval. For example, if we measure voltage
V with precision s, and the measurement result is equal to V, this means that the actual voltage
belongs to an interval [V ~—

5, l7 + 8].
One of the main objectives of interval mathematics is to analyze the following situation. Sup—

pose that we know the interval of possible values X1, ...,
X n for several quantities 331, ..., run, and we

know that some other quantity is related to an, by a formula 3/ : f(a:1, ..., If we take different

values at,- E X,, we will end up with different values of 3/. How to describe the set Y of possible
values of y? The existing methods of interval mathematics work pretty well in this situation.

A similar problem appears when the set of possible values of w,- is discrete. For example, we

may know that takes only integer values, but we are not sure what the value is, so there are

several possible values. Such situations occur in quantum physics, where many variables (spin,
angular momentum, charges, etc) can take only the values from some discrete set (spectrum). In
this case, if we know the approximate value of 50,-, and know the precision, then the possible values

of ac,- form an (ordered) nite set.

If we know the nite set X of possible values for x, and we know that some other variable y
is related to a: by a formula y = f (av),then we would like to determine the set of possible values Y

for y.

Of course, for every such situation, we can write a special program that computes this set Y,
without inventing any new formalism. But, just like in the case of interval analysis, we would like
to be able to do the following: to have a software tool that, given an expression for f(:r), and the

description of X, would generate the set Y. Such a tool is proposed in the present report.

This tool works along the same lines as interval computations: the algorithm that computes
f can be represented as a sequence of elementary arithmetic operations (+, —, *, etc.). As results
of these steps, we get functions f1(:1:),f2(:c), ..., (where n is the number of computational
steps). For example, for f(x) = a: — x2 we have n z 2, f1(:13): cc * x, and f(:L') = f2($) =

a: — f1(m). We want to apply the same operations, in the same order, but to nite sets, and not

to individual numbers. We start with the set X that is somehow ordered (X = {$1, ..., On
k—th intermediate step, we want to compute the set of values X}, : {fk(:v1),f;,(:c2),
This can be done, if we extend operations with numbers to elementwise operations with sets, so

that, e.g., {(11,a2, + {b1,b2, = {a1 + ()1,a2 + ()2,

We propose a special language BagL, in which the user can write down any expression he

wants, and the computer will automatically apply the same expression to numbers, sets, whatever.
An interpreter for this language is written in PROLOG, and we are currently working on an

independent (and more efcient) interpreter.

We are currently working on other potential applications, including processing satellite data.

For many problems, the programs in BagL are easier to write and comprehend, and they do
not require xing a datatype.

10



HOW To DESIGN AN EXPERT SYSTEM THAT FOR A

GIVEN QUERY Q, COMPUTES THE INTERVAL OF POSSIBLE VALUES

0F PROBABILITY p(Q) THAT Q IS TRUE

Luis Cortes

Computer Science Department, University of Texas, El Paso, TX 79968

The main objective of my research is to develop a method that for every knowledge base, in

which uncertainty of the'statements is expressed by probabilities, estimates the probability that a

given query is true.

Since probability that a statement is true is known only approximately (corresponding error

estimates can be determined by statistical methods), we must be able to generate not only the

probability p(Q) of a positive answer to a query Q, but also the error estimate for this probability.
In other words, since the initial probabilities are not known precisely, we would like to generate an

interval [p —

5,1) + 8] of possible values of the probability

So, the methods must take as an input:
0 a knowledge base, i.e., a nite set of rules and facts E,, with associated probabilities p, and

error estimate 8,- for these probabilities, and

o a query Q, and from this data, we must produce:
0 the probability p( Q) of a positive answer to this query, and

0 an error estimate 5 for this probability.

I have outlined an algorithm that gives such estimates, and currently I am working on imple—
menting this algorithm in Prolog. The idea of this algorithm is that by means of random simulation
we generate several random “worlds” (we organize a random simulation in such a way that each

of the initial statements E,- is true or false with probability 1),). In each of these worlds there are

no probabilities any more: it is just a knowledge base that contains some of the initial rules and

facts Ei. Given such a world and a query Q, we can apply Prolog to nd out whether Q is true

in this particular world. After we repeat this procedure several times, we can estimate p(Q) as the

fraction of the worlds in which Q turned out to be true.

This idea works if we know the probabilities pi precisely. If we know only approximate values

15,of pi (and also know the precision 8,- of these estimates), then in order to nd the resulting error

in p(Q) we must:

0 repeat this procedure several times with different simulated values p, = 13,-+ 1/5,- (where 1/ is

a simulated random variable), thus calculating several different estimates 13((1)for p(Q), and

then

0 apply well—known methods of mathematical statistics to estimate the condence interval for

the true probability

One of the advantages of this Monte—Carlo method is that it is easily parallelizable, because
each simulation can be done on a separate processor. Therefore, if we have sufciently many

processors, we can essentially decrease the total computation time.
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MODELS OF FUZZY QUANTUM SPACES:

WHAT IS THE QUANTUM ANALOGUE OF AN INTERVAL?

Anatolij Dvureéenskij
Mathematical Institute, Slovak Academy of Science

Stefanikova 49, CS—814 73 Bratislava, Slovakia

One of main reasons why intervals are important in image processing is that they represent
uncertainty of the measurements: if we measure an arbitrary physical quantity a and get the result

5:, then because of the possible errors the actual value at may be different from at. The only thing
that we know about a: is that it belongs to an interval [xi — s,at + s], where 5 is the maximal

possible error of this measurement device. This number 5 must be provided and guaranteed by the

manufacturer of this device (if arbitrarily big errors were possible, then for any given at, arbitrary
value of It would be possible, and therefore, this measurement would give us no information at all

about the actual value).
These arguments are applicable to classical physics, where the value of each quantity is a

number. In some cases, however, we have to take into consideration quantum effects. In quantum
mechanics, the value of a physical quantity in a physical state is in general non—deterministic, and

can be only represented by a probability distribution. The state itself can be represented as a

so—called wave function (in the simplest cases, it is a complex—valued function).
Quantum measurements are also not precise. So, if for some observable a: and some state 3,

the quantum measurement lead us to a probability distribution ,0, what can the actual distribution

be? In other words, what is the quantum analogue of an interval?

In the present talk, we describe the quantum formalism that describes not only the uncertainty
caused by measurement errors, but also the uncertainty of experts’ estimates. For real values (that
correspond to measurements in classical physics), this second type of uncertainty can be represented
by fuzzy logic. Therefore, we called our models fuzzy quantum (F-quantum} spaces.

The standard model of quantum mechanics is the one in which the states are represented by
vectors in a Hilbert space, and yes-no observables (i.e., observables, that have two possible values

“yes” and “no”) correspond to closed subspaces of a Hilbert space. For quantum eld theory, this

model is not sufcient, and it has been generalized to so—called quantum logics.
For our purposes, we use a model introduced by P. Suppes. This model is called a quantum

probability space and is dened as a pair (9, Q), where Q is a set, and Q is a collection of a subsets

of 9 that so closed with respect to countable disjoint unions and complementation. Generalizing
this notion, we introduced an F-quantum probability space as a pair (9, M), where M C [0, 1]9 is a

set of fuzzy subsets of the universe 0 that is closed with respect to countable disjoint unions and

complements. More precisely, 19 = 1 E M; if f E M, then 1 — f E M; if for a sequence {fi} 6 M,
min(f,,fj) S 1/2 for all i 75j, then Uf, = sup f, E M; and, nally, 1/2 g M.

We dene a state m as a mapping m : M ——> [0,1] such that, rst, m(a U at) = 1 for an

arbitrary a E M, and, second, if min(a,-,aj) S 1/2 for all i 75 j, then m(Uiai) = An

observable an analogue of a random variable) is dened as a mapping a from the set of all Borel

subsets of R into M such that, rst, m(R — E): 1 — x(E), and, second, if E,- U Ej : <15for i 75j,
then =

Our main result is the representation theorem that allows us to describe arbitrary states and

observables. Crudely speaking, states are in 1-1 correspondence with measures on K (M ), and

observables — with measurable functions from K(M) to R. Here, by K (M ), we denoted the set of

all subsets A Q Q for which there is an a E M with {w : a(w) > 1/2} Q A Q {m 2 a(w) 2 1/2}.
These results enable us to introduce the calculus of observables.
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ERROR ESTIMATES FOR THE RESULTS OF

INTELLIGENT DATA PROCESSING, ESPECIALLY NEURAL NETWORKS

S. Gulatil, L. Gemoets2, K. Villaverde3
1Neural Computation and Nonlinear Science Group

Space Microelectronics Device Technology Section, Jet Propulsion Laboratory
4800 Oak Grove Drive, Pasadena, CA 91109-8099, email sgulati@jpl—cray.jpl.nasa.gov

2Department of Computer Information Systems,
University of Texas at El Paso, El Paso TX 79968

3Department of Computer Science

University of Texas at El Paso, El Paso, TX 79968, email karen©cs.ep.utexas.edu

In data processing, it is vitally important to estimate the error of the result. For traditional

algorithms of numerical mathematics (like numerical integration of differential equations, numerical

solution of integral equations, etc), there usually exist methods of error estimate that have been de—

veloped inside numerical mathematics, and that give reasonably precise error estimates sufciently
fast.

Traditional methods work well when we analyze well known physical situations, for which

sufciently precise models are known. But this is often not the case in the situations like space

exploration, where we do not have enough data to determine a precise model. Instead, we have

to rely on experts’ knowledge and/or simulated experts’ experience (e.g., on articial neural net—

works, that simulate the human brain). For these intelligent data processing methods (just like for

traditional ones) the errors with which we measure the input data m1, ..., cc”, lead to an error Ag in

the result 3/. Unlike traditional data processing methods, however, for intelligent data processing,
there are no known methods that would estimate the resulting error Ag. So, we have to use general
methods of interval mathematics.

These methods are often too time-consuming. 'Besides, e.g., neural network methods can

be easily implemented in hardware and thus made faster (at JPL, we developed hardware that

simulates millions operations per second), and if we apply interval algorithms, we must do it in

software and thus considerably slow down the entire data processing. In the current report, we

discuss the methods that would allow, crudely speaking, to make neural networks perform interval

computations. The resulting methods allow us to implement both the data processing and its error

estimates in hardware, thus saving much time.
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FAST INTERVAL ERROR ESTIMATES FOR THE RESULTS

OF NON-LINEAR LEAST SQUARES METHOD:

APPLICATION TO PAVEMENT ENGINEERING

C. Ferregutl, S. Nazarianl, K. Vennalagantil, ChingChuan Chang2, V. Kreinovich2

1Department of Civil Engineering and 2Computer Science Department
University of Texas at El Paso, El Paso, TX 79968

One of the main applications of interval mathematics to engineering problems is as follows: we

want to know the value of some characteristic 3/ that is difcult to measure directly (e.g., lifetime

of a pavement, efciency of an engine, etc). To estimate 3/, we must know the relationship between

y and some directly measurable physical quantities x1, From this relationship, we extract

an algorithm f that allows us, given 93,-, to compute y: y = f(.r1, So, we measure 50,, apply
an algorithm f, and get the desired estimate.

Usually, we know the precisions with which we measure all the :13,- (i.e., the intervals of possible
values of The problem is: how to estimate the precision, with which we know y (i.e., the

interval of possible values of y)?
Standard techniques of interval mathematics require that we decompose the algorithm f into

elementary operations, and then apply interval operations instead of usual ones. An operation with

intervals consist of 2 or 4 operations with numbers. Therefore, by applying interval mathematics,
we increase the computation time at least 2~4 times. In addition, the error estimates that we attain

this way are often “overshoots” (i.e., much bigger than the biggest possible errors).
In the frequent situations, where the errors are relatively small, and thus we can neglect terms

that are quadratic in errors, we can apply Monte-Carlo methods and sensitivity analysis. These

methods also require that we run the algorithm f several times, thus drastically increasing the

running time.

In order to diminish the total running time, let us recall where the relationships between ac,- and

3/ usually come from. Usually, there exists a model of the physical phenomenon, that has several

adjustable parameters zj (that are usually not directly measurable). In engineering language, a

“model” means that we have (rather simple) formulas that, given zj, allow us to compute all

physical characteristics, including cc, and y: :23,- : and y = G({zj}). Therefore, when
we know x,, we rst determine the parameters zj by model tting (i.e., by solving the equations
m,- = E({2j})), and then use these values zj to compute y. This 3/ is f(m1, ...,

The most time-consuming part of this algorithm is computing zj. Since the functions F) are

usually highly non—linear, this is done by non-linear least square methods.

In the case when one can neglect quadratic terms, we can therefore simplify error estimation
as follows: Here, Ax,- = 21(6172-/8zj)AzJ-. The “forward” functions F,- are easy to compute, and
so are the derivatives. So, as soon as we know zj, we can easily compute the derivatives, invert

the matrix, and get the expression for Azj in terms of Am. Substituting these expressions into

Ag 2 Ej(6G/52j)AzJ-, we get the expression of Ag in terms of Art), from which we can easily get
the desired estimates for Ag.

Since the most time-consuming part of the algorithm f is repeated only once, we get the
estimate with practically no increase in total running time.

As an example of this methodology, we give pavement lifetime estimates.
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QUASIORTHOGONAL DIMENSION AND

CLASSIFICATION BY NEURAL NETWORKS
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The majority of classication methods are based on the following idea. We choose a set of

characteristics. To every object, we put into correspondence a vector 3?formed by the values of these

characteristics m1, ..., (En. Thus, each object is represented by a point in an n—dimensional space. If

the characteristics are properly chosen (i.e., they are independent, and their scales are compatible),
then the Euclidean distance (1(5,37)= «2020,- — y,~)2becomes a reasonable measure of similarity
between the objects that correspond to if and 37. If they are similar, then this distance is small;
if they are radically different, then this distance is big. In this representation, the classication

problem can be formulated in the following way: We have a set of points in an n—dimensional

space. How to divide this set into classes so that points within each class are close to each other

and points from different subsets are far away from each other. There exist many methods of

solving this problem, from simple statistical ones (that try to nd linear hyperplanes that separate
the classes), to neural network models, that can (in principle) successfully solve the classication

problem for classes of arbitrary shape. In all these methods, when n increases, the computational
complexity rapidly increases.

We wrote “in principle”, because the big problem with these methods is that for large n the

computations time of these algorithms increases very fast, and these algorithms become practically
non-feasible.

In the present paper, we show that this computations time can be drastically decreased if we

take into consideration the fact that the measurements that give the values 11:, are only approximate.
Therefore, for each object, we know only the interval that contains the actual value 30,-. In view of

that, the distances between different points are also only approximately known.

It turns out that this fact can be used to drastically reduce the dimension of the space of objects
(and thus reduce the computations time). Namely, we can map an n—dimensional space into a

space of fewer dimensions in such a way that the distances d(f(:E’), between the images are

close (s—close) to the distances d(f,37) between the original points. So, if we know the distances

only with precision 8, we can apply this mapping and get a new representation of our original
problem with a smaller value of 71.

To design and analyze such mappings, we introduce a new notion of quasiorthogonal dimension.

In Euclidean space, dimension n can be dened as the biggest number of mutually orthogonal unit

vectors 51,...,é’n (i.e., vectors, for which (3’,--€, 2 0 ifz' # j). In our case, we must look for unit

vectors 5,- that are only approximately orthogonal, i.e., for which é;- - 5,- 6 [—5,5]. The biggest
number N of such vectors is called a quasiortogonal dimension. This value N can be much bigger
than n, thus allowing to map an N —dimensional space into n—dimensional one. that (forming a

baSe).

Using graph theory techniques, we derive lower bounds on the growth of N, and show that for

xed a, it grows exponentially with n. For example, for 5 = 0.05 and n = 10, 000, N 2 1, 700,000.
These interval—based estimates lead to a considerable reduction in complexity for neural networks

used in classication tasks.

A few other applications of this new notion of dimension will be discussed.
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INTERVAL-VALUED INFERENCE AND INFORMATION RETRIEVAL

IN MEDICAL KNOWLEDGE-BASED SYSTEM CLINAID

Ladislav J. Kohout], Isabel Stabile2

1Department of Computer Science B—l73
Florida State University, Tallahassee, Florida 32306, USA

2Academic Unit of Obstetrics and Gynaecology
The Royal London Hospital College, University of London, UK.
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In a series of papers and a monograph [1],we have described the conceptual structures as well as

the basic architecture of knowledge-based system CLINAID. Its architecture is aimed at supporting
not only diagnosis but also other types of clinical activity and decision making in diverse clinical

and/or hospital environments. In general, CLINAID generic architecture is aimed at support of

knowledge—based decision making with risk and under uncertainty. Such a system has to operate
in a multi—environmental situation and make decisions within a multiplicity of contexts.

The basic architecture consists of the following cooperating units (basic shell substratum):
Diagnostic Unit (comprized of several parallel cooperating centres)
Treatment Recommendation Unit.

Patient Clinical Record Unit.

Co-ordination and Planning Unit.99°F”?
The majority of extant medical expert systems deal with a limited medical context, the largest

domain of knowledge being just a single medical eld, e.g. Internal medicine in CADUCEUS. The

inherent limitation of such medical expert systems is in its essence conceptual and logical: their

knowledge bases and inference engines cannot mix easily the knowledge from several elds without

some adverse effects. CLINAID deals with this problem by introducing a multi-centre architecture

in the Diagnostic Unit. The medical data and knowledge of each medical specialist eld exhibit

different logical properties. This in turn leads to the several kinds of many-valued logics on which

the relational inference and data manipulation is based. The semantic justication of these logics
is provided by a theoretical device called the checklist paradigm [2] which gives an epistemological
justication for the interval—valued inference as well as for knowledge and data retrieval techniques
utilizing information structures with interval credibility weights.

As CLINAID attempts to be a comprehensive medical consultation system, its knowledge has

to contain a large amount of medical expert knowledge. The Diagnostic unit of CLINAID deals

with a number of body systems In this paper we shall use the cardiovascular and reproductive
body systems to demonstrate the need for interval based methods of inference and information

retrieval. In particular, we shall pay attention to the question of how the character of medical

knowledge, and the nature of the retrieval or inference task inuence the choice of the base logic
for the interval-based inference.
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DECISION MAKING AND GAME THEORY

IN CASE OF INTERVAL UNCERTAINTY

Olga M. Kosheleva

Computer Science Department, University of Texas at El Paso, El Paso, TX 79968

In traditional decision making, to each possible outcome (1 there corresponds a value u(a) called

its utility, so that if an alternative 33 leads to the outcomes a1, ..., an with probabilities p1, ...,pn,

and alternative y leads to a,- with probability q,, we choose as over y if Zipiui > qiui (here
we denoted u,- : u(a,~)). The values of utility are determined by asking the experts to compare

hypothetic outcomes with different probabilities 1),- (such hypothetic outcomes are called lotteries).
Traditional utility theory is based on the following idealization: we can ask the expert’s opinion

about arbitrarily many different lotteries, and for every two lotteries, he will give us a precise answer:

either that the rst one is better, or that the second one is better, or that they are absolutely of

the same value to him. In such a case, we can dene all the values of the utilities uniquely modulo

an arbitrary linear transformation u(a) —> u'(a) : ku(a) + 1. Therefore, if we x two outcomes (10

and a1 such that (10 < a1, and assume that u(a0) = 1 and u(a1) = 1, then, in this ideal setting, we

can uniquely determine u(a) for all outcomes (1.

In real life, we can ask an expert to compare only nitely many pairs of lotteries, and for some

of these pairs he may say “I don’t know”. With this information only, we cannot determine u,

uniquely. The corresponding nite set of inequalities denes a convex polytop in an n—dimensional

space of possible vectors 1? = (ul,...,un). Therefore, for each outcome (1 (2 a1,...,an), we get
an interval [u‘(a),u+(a)] of possible values. This interval can be computed by applying linear

programming methods.

How to make decisions if we know only intervals for utilities? Let us rst consider the simplest
case, when we have to choose between 72 outcomes (11, ...,an, for which only intervals are known.

We want to choose an outcome at for which u(a) —> max, where u(a) E [it—(a),u+(a)]. For different

functions u(a), maximum may be attained for different (1. So, what are the possible best choices?

In this case, the answer is as folIOWS: a is a possible best choice iff u+(a) Z maxb u_(b), where max

is taken over all outcomes b.

A more complicated case is when we have a zero-sum game, in which the rst player has it

pure strategies 1, ...,i, ...,n, and the second player has m pure strategies 1, ...,j,...,m. Zero—sum

games are. easy to solve if we know precisely the values of utilities uz-j when the players choose

strategies 2' and j. Then each player has to use a maximin strategy, i.e., choose i—th strategy
with probability 310,-, where mingu(f,37) —> maxi (here we denoted u(f,37) : EU xiyjuij). In

real life, we know only intervals for payoff values. Depending on what uij form these

intervals we choose, we get different optimal (maximim) strategies. How to describe the set of

all strategies that can be optimal? The answer is as follows: a strategy 3? can be optimal, if

mingu+(:i',37)Z manmingu‘(27, Therefore, the set of possible values of the game coincides

with the interval [maxi mingu‘(f, 3]),me mingu+(f,
We also describe how intervals inuence the notions of solutions of a cooperative N —person

game (Shapley value, Nash’s scheme), and for optimism, pessimism, Laplace and other criteria for

the case of complete uncertainty.
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Closure-phase and closure—amplitude imaging are methods for reconstructing a radioimage
from the results of approximate measurements.

The specic feature of very distant objects is that, although they may be physically large, due
to the enormous distance their angular (visible) size on the sky is extremely small. For example,
quasars have details of milliarcsecond size (0.001 of an arc second). Normal telescopes are unable
to see such tiny details, because their angular resolution A¢> (ability to distinguish nearby points) is
limited. A good approximation to this resolution is given by: Agb w A/D, where /\ is the wavelength
of interest and D is the diameter of the telescope. Thus, in order to improve the angular resolution,
it is necessary to increase D. But to distinguish details of distant radio sources (A z 21cm) we

need D equal to several thousand kilometers. Of course it is technically impossible to build such a

big telescope.

We can overcome this difficulty if we take into consideration the fact that in actual antennas
the signal is received by several parts and we observe the superposition of the signals received by
different parts. So, although we cannot build a single large antenna, we can simulate one if we

place several antennas at different locations, collect the signals, send them to one place and there
simulate the superposition by using a computer. This is called a Very Long Baseline Interferometry
(VLBI).

As a result of this simulation, we have a signal that simulates what we would have received
from a single large antenna. This signal is sinusoidal (with frequency equal to the frequency of

observations) and can therefore be characterized by its amplitude and phase. These values are

related to the function that describes the brightness I of the source that we are observing at

point f (this function is called an image, or a brightness distribution). In the idealized situation,
when we neglect noise and measurement error, the measured amplitude is proportional to the

—¢

absolute value A( : |F(I of the Fourier transform F (I ) of the desired image I, where I; is

equal to the projection of the vector 1?between two antennas onto the plane that is perpendicular
to the source. Likewise the phase 0(1))equals the phase of the (complex) Fourier transform. So in
this case, if we observe the same source on different pairs of antennas with different If,we obtain
both the amplitude A and the phase 0 of F(I), and thus reconstruct the complex value of F(I) for

every l; as Aexp('i0). By applying the inverse Fourier transform, we determine the desired image I.

To avoid additive errors, instead of using the measured phases, we form the “closure phases”
0(5) + 0(37)— (9((E’+3]),and from them reconstruct 0.

If we know the measurements precision (i.e., the intervals for the measured values), what is the
precision of the result of this reconstruction? This problem cannot be solved by standard interval
methods because one of the measured quantities, the phase, takes its values on a circle, not on a

real line.

In the present paper we give the desired estimates. The main result is that if we measure

the phase with precision 8 (so that the closure phase is known with precision 35), then from
these measurements we can reconstruct 0 with precision 65. Similar estimates are given for closure
amplitude.
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INTERVAL, MEAN VALUE, STANDARD DEVIATION, WHAT ELSE?

GROUP—THEORETIC APPROACH TO DESCRIBING UNCERTAINTY

Vladik Kreinovich
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Traditionally, probability theory is used to describe the uncertainty of the measurements.

The reason for that is very simple: for an arbitrary measuring device, if we make sufficiently
many measurements, and compare them with the values measured by a standard, we can get
the probability distribution on the set of all possible errors. In real life, for the majority of real

measuring devices, we have no time and no money to perform such a long experiment, so usually,
we make a few measurement (typically about 40). From these measurements, it is impossible to

determine the precise probabilistic distribution. What we can determine is some characteristic of

that distribution. In probability theory, zillions of different characteristics are known. However, in

real measurements, only three of them are widely used: mean value, standard deviation, and the

interval of possible values. If we know the errors 61, ..., en, then these characteristics are estimated,
crudely speaking, as E = 72—1 6,, a : Mn—l 21.03,-— é)2, and [min e,,max 6,].

The fact that interval is among these basic characteristics is the main reasons why interval

estimates are so widely spread, and why interval methods are so useful.

The question is: why only these three? Has there been a rather arbitrary choice, negotiated
later into ISO and IEEE standards, or intervals are really better characteristics in some sense?

To answer this question, we formulate what a characteristic can be, and what “better” means.

A characteristic can be viewed as a means to store the results of z 40 different measurements

in one number. To simplify computations, it is therefore reasonable to act as follows: after m

measurements, we have some preliminary value 60”) of this characteristics, that compresses the

values 61, ..., em. After we make a next measurement and get the value em+1, we should use the

compressed value em) only, and not drag along all m measurements. So, on each stage, we deal

with two numbers only; em) and em+1. So, to dene a characteristics, it is necessary to dene
a binary operation 1: that transforms em) and em+1 into the next estimate e(m+1). It is also

reasonable to assume that the resulting value of a characteristic should not depend on the order of

these measurements. From this we can conclude that a * b = b >|= a and a * (b * c) = (a =0:1))* c, i.e.,
that * denes a commutative semigroup.

We assume that on the set of such semigroup operations an ordering is dened (whose meaning
is that the characteristic that corresponds to one operation is “better” in some reasonable sense

than the characteristic that is obtained from using the second operation). We demand that this

ordering chooses the unique “best” characteristics, and that the ordering should not be change
if we change the unit in which all the measurements are performed (i.e., use inches instead of

centimeters). Our main theorem is that for such criteria, the best characteristic coincides either

with max 6,, or with min 6,, or with one of the momenta E, e? for some 1) (so, as particular cases,
we get mean values and second momenta). If we add invariance with respect to some non-linear

transformations, then the only optimal characteristics are the interval ones min and max.

A similar result explains why in multi-dimensional case, ellipsoids turn out to be the best

approximation for uncertainty domains.
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INTERVAL ESTIMATES HELP TO MAKE INTELLIGENT CONTROL

MORE EFFICIENT AND RELIABLE

Bob Lea

NASA Johnson Space Center, Houston TX 77058, USA

email blea©gothamcityjsc.nasa.gov

In case we do not have the precise knowledge of a controlled system, we are unable to apply
traditional control theory. Such situations occur, e.g., when we are devising a control for a future

Martian rover, or a control for any other space mission into the unknown. In such cases, we often

have a skillful operator who is known to make good control decisions in uncertain environments.

This operator can communicate his skills only in terms of natural‘ language rules. There exists a

methodology called intelligent control that enables to translate these rules into an actual control

(see, e.g., [1—4]).
This methodology is extremely successful in various applications, ranging from controlling

appliances to controlling trains, cars and space missions. However, this methodology encounters

several problems related to the fact that it generates a numeric value of the recommended control,
and does not specify with what precision we must follow this recommendation (i.e., does not give
an interval of possible controls). Therefore:

0 it is difcult to choose the necessary precision of the controlling devices;
0 in case the recommendation is close to a 0 (no-control) value, it is difcult to tell whether we

need to apply any control at all;
0 in case we have several alternative rule—based controls, it is difcult to decide Whether their

recommendations are in good agreement (thus increasing the reliability of these recommenda—

tions), or they contradict to each other, so in this situation, we cannot rely on our automatic

systems.

For all these purposes, we need to know this interval precisely: e.g., in the last application, if we

underestimate this interval, we will sometimes erroneously reject close (and thus reliable) controls,
and thus not utilize all the possibilities of an automated control system. If we overestimate this

interval, we may erroneously accept the unreliable recommendations.

We give the precise estimates for the interval of possible controls, and show how to use these

estimates in order to increase the efciency and reliability of intelligent control.
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IF WE MEASURE A NUMBER WE GET AN INTERVAL,
WHAT IF WE MEASURE A FUNCTION OR AN OPERATOR?

Joe Lorkowski, Vladik Kreinovich

Computer Science Department
University of Texas at El Paso, El Paso, TX 79968

Why are intervals appropriate for describing measurements? Suppose that we measure a

physical quantity x (e.g., length l). The actual value of this quantity is an arbitrary real number.

But there is no way to design an ideal measuring device, that would always give a precise value of

m. The result :3 that is produced by a real measuring device is always approximate. This is well

known, and the producers of measuring devices supply them with the precision estimates. In other

words, they give a value 6, and they guarantee that the difference .70 — : between the actual and

the measured values does not exceed 6. So, if we apply a measuring device, and get 5%as a result,
then the possible values of the physical quantity 1: form an interval [57— 6, 50 + 6].

Suppose now that we know that a physical quantity y is a function of the physical quantity
as, in other words, we know that y = f for some function f(:1:), but we do not know what this

function is. How to determine this function? Again, we can measure only nitely many values,
with nite precision, so, after nitely many measurements, we get a set of possible functions f
This set can be called a function interval.

The rst person to consider function intervals was R. Moore himself in his pioneer papers.

Since then several different denitions of a function interval have been proposed.

The situation can become even more complicated. For example, if we analyze how physical
elds evolve, then in addition to functions, we must describe functionals and operators, i.e., map—

pings that transform a function (current values zz?)of the physical eld) into a predicted future

value of this eld. Again, since we can perform only nitely many measurements, in any moment

of time, our measurement results are consistent with the Whole bunch of different functionals. So,
at any moment of time, we have a set of functionals: a functional interval.

This problem is especially important for quantum mechanics, where to describe even a single
particle, we need an entire eld (called a wave function).

Even more complicated mathematical structures naturally appear in quantum eld theory and

especially in quantum theory of space— time.

One can apply different ideas to describe function intervals, functional intervals, etc. But it

is desirable to develop a general formalism that would allow us, given a natural denition of an

interval for the sets X and Y, to design an appropriate denition of an interval for the set YX of

all the functions from X to Y.

We propose such a denition, and show on several examples that it is physically natural. As a

basis of our denition, we take the theory of semantic domains that was developed by Dana Scott

as part of his description of efciency in mathematics.
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ZONE LOGIC FOR MANUFACTURING AUTOMATION:

INTERVALS INSTEAD OF OPTIMIZATION,
GOALS INSTEAD OF ALGORITHMS

Roger Lovrenich

Teramar Technologies, 211 Teramat Way, El Paso, TX 79922

The performance of the existing automated plants is far below the original bright expectations.
Can we improve it by applying mathematical optimization techniques? They work well for a single
robot whose state can be described by a few parameters. But there is no known way to optimize the

performance of an automated plant, where dozens or hundreds of automatic robots and machines
are performing complicated tasks. There are even results that show that such optimization problems
like task scheduling are intractable (NP—complete).Does this mean that we can abandon all the

hopes to drastically improve the efciency of the existing automated plants? Hopefully, not.

The main reason why the automated plants are not that efcient as we want them to be is not

because the trajectories of the robotic arms are not precisely mathematically optimal. The main

reason is that about half of the time the entire system is down, and needs restarting. And when

the system is down, then usually the metal parts moving in the wrong directions crush into each
other and create a mess (that takes a long time to clean up).

We have developed a new approach to manufacturing automation that we called a Zone Logic.
In this approach, there is no optimization involved. Instead, two things are done. First is to avoid
crushes. For every parameter of every machine, we use the experts’ experience to divide the set of

its possible values into reasonable intervals (that correspond to different stages of the manufacturing
process). For each pair of potentially interacting robots or machines, we give the list of possible
combinations of these intervals that are still OK (they are called “zones”). The values of these

parameters are constantly monitored (or, to be more precise, the local processor attached to each
robot is constantly checking what interval does the current value belong to), and if the current

combination of these parameters is outside the permitted zones, both robots stop, and a signal is

sent to the operator.

As for manufacturing itself, instead of describing an algorithm (who does what), we describe

the goal of the system, i.e., we describe which stages are permitted after which (e.g., after the
robot that applies a crude cutting the object can go to ne polishing, but not vice versa). The

system chooses the rst available next permitted zone, and if none is permitted, stops the system
and sends a message to the operator.

This description of goals and not algorithms is similar to the one used in languages like PRO-

LOG, and our algorithm is somewhat similar to the methods that are used in PROLOG compilers.
These are just two basic ideas. There are several others that make the Whole system workable,

efcient, and fool-proof. '

As a result, we get a working systems. It was implemented in several automotive plants, and

lead to a drastic increase in efciency.
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INTERVALS OF PRECISION
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Coordinate Measuring Machines (CMMS) coupled with computers have pro

capabilities in the eld of manufacturing quality control.

When a nite set of measurements is made on a surface of interest, no infOJ
about the rest of the surface. The coordinates of these points are only a sample
which the size and form of the workpiece are to be estimated. At present it is s

regard the sample as the workpiece itself So the calculated parameters of t

derived from the Whole surface of the workpiece but only from a set of points [
It is therefore desirable to get an estimate not for the measured points OIllj

of the entire surface. In mathematical terms, our goal is to provide a thin “sand
between which the actual surface lies.

For such an objective, the following questions arise:

1) What is the optimum sample size for each standard geometric elements

cylinder, cone, etc), given a desired specic condence level?

2) Where and how should measurements be conducted to measure these poi]
Should the sampling be complete random, randomized block or equal spa

pling? Which is better?

3) What is the condence level of the sampled data representing the innite 5

There is no standard or guidance for CMM users as to how many points are

adequate condence that the sample parameters are consistent with the paran
surface being evaluated and where and how to make these measurements.

The present report gives the answers to the above questions: we describe ‘

and pattern are optimal for various standard geometric elements, and what alg
use for reconstructing the “sandwich”.

It turns out that among the existing surface reconstruction algorithms, In

nation [2] (the best known algorithm for computing tolerance zone for sam}
underestimates the intervals for the entire surface. On the other hand, the lea
with proper sampling strategies on CMMs leads to the true tolerance zone of the
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CONSTRUCTIVE PROOF OF KOLMOGOROV’S THEOREM,
NEURAL NETWORKS AND INTERVALS
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David Hilbert announced, in 1900, a list of 23 problems as a challenge for the 20th century.
One of them (No. 13) was to prove that not all functions of several variables can be represented as

compositions of functions of 1 and 2 variables. This problem remained a challenge until 1957, when
(rather unexpectedly) Kolmogorov proved that an arbitrary continuous function f(:c1, ..., $7,) on

an n— dimensional cube (of arbitrary dimension n) can be represented as a composition of addition
and of functions, 9,-(2), of one variable.

This result was a purely theoretical, there were no thoughts of possible applications. Moreover,
Kolmogorov’s proof was a pure existence proof. Because the proof used indirect methods, it gave
no hint of an algorithm for the construction of the needed functions. Thus one cannot plot their
graphs. At that time, computers were still in their infancy, and it was not practical to compute
many functions. So the nonconstructive nature of the proof was not viewed as a serious drawback;
especially since there was no use for such a decomposition.

The rst possible application of Kolmogorov’s theorem was discovered, in 1987, by R. Hecht-
Nielsen, who noticed that Kolomogorov’s theorem proves that an arbitrary function can be imple—
mented by a 3—layerneural network (with neurons whose in-out characteristics are the functions

Because of Hecht—Nielsen’s observation, the nonconstructive nature of Kolmogorov’s proof
is a serious drawback.

We know that such a network exists, but we have no idea how to design and / or to train such
a network.

The design problem is somewhat simplied by the fact that manufacturing is always non—
precise. Therefore, even if we know the functions 9,-(2) precisely, we can only guarantee that
the actual in—out characteristics of the manufactured hardware neurons belongs to the interval
[9,-(2)— 6, + 6], where 6 denotes the manufacturing precision. In view of this, we see that
for a given design, and for a given manufacturing precision, we will only be able to approximate a

given function f(:v1, ..., (En)to within some precision 5. In other words, for each set of input values
3121,...,xn, the set of outputs that correspond to different manufacturing implementations of the
gi-neurons, form an interval [f(rc1, —

5, f($1, + 8].
It was proved, in 1988, that for every interval of this type, one can produce a design of a neural

network (with the appropriate ideal functions g,(2)), and precision 6 such that the implemintation
of this design with this precision, the result will t into the given interval of output values.

In the idealized settinf of Kolmogorov’s theorem, we have for each function f(.r1, ..., $7,), there
is a design that ts exactly (5 = 0). The problem is that there is no way to nd this perfect design.
In the 1988 constructive result, for each 5, we can produce a design algorithmically, but for different
5 we get different designs.

While we gain constructability, we lose elegance. Is this necessary? Is is possible to nd an

algorithmic design that would work for all a?

Our answer is “yes”. We give a constructive proof of Kolmogorov’s theorem, and thus prove
that we can construct a design that serves for all 5.
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NE-FACTORS: DIFFERENT PRAGMATICS OF AN INTERVAL
IN KNOWLEDGE REPRESENTATION

A.S .Narin ’yani
Russian Research Institute of Articial Intelligence,
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Intervals have several known and clear applications in knowledge representation: e.g., in ge—
ometry, in time models, etc. Less clear are the applications of intervals to modelling such basic
features of the real world as imprecision, uncertainty, subdeniteness, fuzziness and some others.
In my previous papers these features, which are antonyms to precision, deniteness, etc. of formal
objects in the traditional mathematics, were named NE— factors from the Russian negative prex“ne—” being the equivalent to “im—”,“in—”,“non—”,“un—”in English.

It is necessary to stress that NE-factors are not formalization of semantics of the corresponding
lexemes of natural language but rather these lexemes are labels for some particular characteristics
of real world models. To be included in the knowledge techniques, these characteristics should be
distinguishable and accurately dened.

Because of the fact that the notions fuzziness and uncertainty have been investigated rather
intensively, we try to introduce informally the remaining two NE—factors:

imprecision is a natural feature of every real parameter: when an interval represents an im~
precise value, it means that any smaller interval has no physical meaning in this situation, because
of the very nature of the corresponding parameter.

sub~deniteness expresses an approximate estimation of a value up to our information about it
(due to rough measurement, incomplete data, etc.); in contrast to the previous case the sub—denite
interval can become smaller when additional information is provided. I need the above introduction
to use the rest of this one—page abstract to formulate the following three statements.

The rst statement is aimed at the AI part of the audience: there exists a general theory of
subdenite models that covers not only the interval representation for real numbers, but rather
different representations for all data types within any possible formal system: sub—denite integers,
sets, multi-valued logic variables, etc.

Another statement is aimed at those participants who are closer to computations: interval
mathematics is not limited to interval algorithms, it can be extended to more promising computa—
tional interval models covering both sub-denite and imprecise data types.

The third statement is addressed to both parts of audience: a powerful technology has been
developed by the joint team of Russian Research Institute of Articial Intelligence and the AI
Laboratory of Institute of Informatics Systems to construct wide spectrum of active data types, i.e.
sub—denite and imprecise ones, and to use them for building qualitatively new data/knowledge
processing systems, basing on highly parallel virtual data-driven machines.
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HOW TO CONTROL IF EVEN EXPERTS ARE NOT SURE:

MINIMIZING INTERVALS 0F UNCERTAINTY
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In case we do not have the precise knowledge of a controlled system, we are unable to apply
traditional control theory. In such cases, we can nd an expert who is good at control, extract as

many rules as possible from him, and try to transform these rules into the precise control strategy.
Zadeh and Mamdani initiated a methodology for such a translation that is called fuzzy control.

In order to apply this methodology, we must:

1‘) describe the expert’s uncertainty about every natural—language term A (such as

“small”) that he uses while describing the control rules; this is done by ascribing to every

possible value as of the related physical quantity a value ,LiA(a:)from the interval [0,1] that
describes to what extent this expert believes that a satises the property A (e.g., usmau(0.3)
is his degree of belief that 0.3 is small). The resulting function MA is called a membership
function;

2) experts’ rules contain natural-language words combined by logical connectives (e.g., “if at is

small, and :t is medium, then u must be small”). Therefore, we must be able to estimate the

experts’ degree of belief in A&B, A V B, -A (where -| stands for “not”) from the known values
of degrees of belief of A and B. In other words, we must describe the fuzzy analogues of &,
V, and -n to combine the original membership functions into a membership function uc(u) for

control;
3) nally, we must transform this membership functions into an actual control value by a proper

defuzzication procedure.

This methodology works ne if the experts are absolutely sure of what they are doing. But
in real life they are not that condent in their own controlling abilities. As a result, the degrees
of certainty that correspond to one of the same expert can differ drastically, and fuzzy control

algorithms translate these different degrees of uncertainty into different control strategies.
In such situation, it is reasonable to choose a fuzzy control methodology in such a way that the

resulting control is the least vulnerable to this kind of uncertainty, i.e., that the resulting intervals

of uncertainty for control values are as small as possible.

We show that this minimization demand leads to min and max for 85— and V—operations, and
to 1 — a for negation.
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ON THE NONMONOTONIC BEHAVIOR OF EVENT CALCULI
FOR DERIVING MAXIMAL TIME INTERVALS
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The Calculus of Events (EC) has been proposed by [Sergot & Kowalski 86] as a formalism for

dealing with time and actions. EC is based on an ontology of events (that are considered more

primitive than time) and of properties, i.e. descriptions of the world that are true over certain
intervals of time (intervals). These intervals are constrained by couples of events that affect them.
Also intervals open on the left have to be taken into account. Starting from a description of events

that have occurred in the domain (input data in a database context) Events Calculus derives
intervals where certain properties hold or decide Whether a property holds at a specic date. These
intervals are maximal and convex and we argue that they are the most informative result that can

be extracted from such a description.

Since it has been conceived in the framework of Logic Programming. EC can derive intervals

efciently by running its axiomatic denitions a PROLOG program (with few changes). The average
computational cost of deriving an interval for a given property is roughly 0(3n), where n is the
size of input, that is, basically, the number of events.

Our concern, however, is to make the systems able to derive the set of intervals that a human
reasoner would derive from the same description. To this extent, we are interested in deriving
intervals constrained by events that may or may not be time-stamped.

It seems a reasonable intuition that the degree of “orderedness” of the set of events E is a key
factor in determining the size of the set of intervals Ans that EC can derive. Ans depends on the

input set and on the kind of ordering over events: Ans(E, <,-).
We dene an ordering over orderings:

“ “

<5; with respect to E if for any X,Y from E,
X <0, Y —> X <1, Y. Our observation is that from “

<§’< “ <3!with respect to E, it does not

always follow that An8(E, < And(E,
This is also the case for the maximal order i.e., when < E, is totally ordered.

This abnormal behavior is in principle avoided in Event Calculus systems for database applica—
tions or in general applications, where a “no” or “don’t know” answer is preferred to a (potentially
incorrect) positive answer.

Nonetheless, we look at the interval in Ans(E, <,-) — And(E, as accounting for the non—
monotonic behavior of the human reasoner in the following situation: a person who is told a

narrative where events are partially ordered sometimes has to retract his /her own belief about the
actual sequence of events. The relation between these observations and the formal theory of belief
revision as developed, for instance, by [Gandenfors 89], has not yet been carried out.
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CONTROL PROBLEMS WITH INTERVAL RESTRICTIONS
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In many situations, the objective of the control is to keep the parameters of the controlled

system (plant) close to the desired values.

For example, once a trajectory of the navy ship is determined, it is necessary to deviate from
this trajectory as little as possible. On the other hand, from the viewpoint of the engine safety, it
is necessary to keep the changes in the number of revolutions per second as small as possible. The
values of the parameters that describe the control (like the amount of fuel injected) should also be
close to some initially ascribed values.

In such cases, the actual values of the parameters that describe a plant are close to the
desired (ideal) values fp(t), and the values of the control 27(23)should be close to the ideal control

values 17,,(t). In general, a plant is described by non—linear equations f(t + 1) =

But since w :E’,,(t)and 13(15)m 17,,(15),it is possible to restrict ourselves only to the terms that

are linear in = “(t) — @(t) and 170?)= 17(t) — 17,,(t),and thus arrive at the linear system:

X(t + 1) : XOU)+ (t)X'(t) + V(t)17(t),where X06) is a known vector, and (t) and V(t) are a

priori known matrices.

In these terms, the control problem can be formulated as follows: for a given initial state

X(0), nd the controls [7(1‘.)so that for all t and for all components of the vectors and [7(t),
|X,-(t)| S a, and [Uj(t)| g 6], where a, and 5]- are a priori given positive real numbers. In other

words, E [mm-(t)— 8,,ccpi(t) + 8,] and uj(t) E [um-(t)— 63-,rim-(t)+ 6,].
gFrom mathematical viewpoint, this problem is a particular case of the linear programming

problem, and therefore, one can apply both standard (simplex) and new (ellipsoid) linear program—
ming techniques to solve it. But even the newest algorithms require n3 computational steps, where
n is the total number of variables. Here, n is proportional to the total time T, so to compute what
to do in the moment T we need to perform T3 > T computations. In other words, we do not have
time to solve the problem precisely.

At rst glance, it may seem like the problem is not solvable at all. Maybe it is: if we take

8, and 6, as a must. But actually, the real demands are somewhat fuzzy: that the deviations be
small. So, the values that the experts give are the result of a (rather arbitrary) “defuzzication”,
and there will be no harm, if we violate these inequalities a little bit.

This remark prompts the following heuristic algorithm: we look for a control that minimizes
the quadratic functional

T

W) = ZZZ ZZ+ Elev?)
for some positive “weights” (1, and kj. Minimizing a quadratic functional leads to an easily solvable
linear problem. If the resulting control violates the above inequalities for X i, we decrease (1,; if it
violates he inequalities for U j, we decrease 16,. If after several iterations we still cannot t into all
the intervals, we ask the experts to loosen the constraints, and start the procedure anew.

This procedure was used to control Russian navy and civilian ships, and lead to an essential

improvement of the control. A similar procedure was applied to a more complicated problem of

controlling the chemical plant, and also lead to a drastic increase in productivity.
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NEURAL NETWORKS THAT ARE NOT SENSITIVE

TO THE PARAMETERS OF NEURONS
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For non—linear systems, it is often very difcult to design a control that satises certain given
goals. It is even more difcult to design a control that is optimal in some reasonable sense (e.g.,
uses the minimal amount of fuel, attains its goals in the shortest time, etc). One of the methods
that (in many cases) helps to design such a control is to train a neural network in such a way that
for a given input 96’,its output is close to the ideal control value u.

Sometimes this method helps, sometimes it does not. What is the reason? If after, say, 3000

iterations the network is still not appropriately trained, does it mean that it cannot be trained in

principle, or that we were not sufciently patient (and after more iterations, we would have got the

desired control)?
An answer to this question was given by several authors who proved that 3-layer neural net—

works can approximate any continuous function With any given precision (Hecht—Nielsen,
Cybenko, Funahashi, Hornik, Stinchcombe, White). These results are extremely valuable for con—
trol: they show that for a plant whose state can be described by nitely many parameters, for an

arbitrary control u(:E’),and for an arbitrary precision e > 0, we can implement this control with a

given precision using 3«layer neural networks. In other words, these results mean that in principle,
an arbitrary control can be obtained by using neural networks.

We said “in principle”, because these results are based on the assumption that we can design
neurons with precisely known in—out characteristics In reality, however, it is technically
impossible to design a hardware device whose in—out characteristics precisely coincides with a

prescribed function What we can guarantee is as follows: we can x a precision 6 ,> 0, and
the biggest possible signal X, and guarantee that the in—out characteristics of a manufactured

(hardware) neuron belongs to an interval — 6, 3(32)+ 6] for all an from —X to X.

Our main result is that with these non-precise (“interval”) neurons, it is possible for an arbi-

trary continuous function f, and a real number 5 > 0, to produce a design (scheme) of a neural
network and the necessary precision 5 in such a way that even if we build all the neurons with this

precision 6, the in—out characteristics of the resulting network will be 5—close to f.
Similar results allow us to build designs that are not sensitive to the parameters of the neurons,

to compute functionals (i.e., plants with distributed parameters, in which the state of the plant is

described by a function, and the control takes that function as an input). It is also proved possible
to train a network in such a way that it would take the description of a plant, and the desired

objective as inputs, and generate the appropriate control.
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In this report, we dene a set Is(R) of centered interval points of the kind [mg/,3]= ((1,1)),
where x = (a + b)/2, 1/9, = (b — a)/2. On this set IS(R), we introduce the concepts of a positive,
negative, and zero interval, as well as the linear order. We also dene on this set the operations
of addition, subtraction and multiplication which are equivalent to the operations of addition,
subtraction and multiplication from interval mathematics (i.e., dened on I Besides, we

consider the operations of absolute value, and p—th root. The metric on [3(R) is dened as

id([x,z/x],[y,z/y] : Ham/E]— [31,113,“.Based on this metric, we dene the concepts of an open

(closed) s—neighborhood, interval-open and interval—closed sets, interval Cauchy series, interval

compactness, etc. We proved that in this topology, the set IS(R) is complete, separable, and

connected.

Then we form an n—dimensional interval space I 5(R”) consisting of n—dimensional points
whose n coordinates are interval points from the space I 3(R). On this set I AR”), we introduce

operations of addition, subtraction, and multiplication by a number. With these operations, I 5(R”)
becomes a quasilinear space. We also dene a quasiscalar product on this space, that, in its turn,
allows us to introduce an interval norm and an interval metric that take values in I 5(R). We

show that the quasilinear space 18(R“) with this quasiscalar product is complete, separable, and

connected. We analyze geometric properties of this space I $(Rn) for n : 2 and n = 3.
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Standard logic programs consists of the statements of the type “if P1, ..., Pn are true, then

P is true”. In real life, the experts’ knowledge is often not that precise. For example, the experts
know that birds normally y. It does not mean “if X is a bird (bird(X)), then X ies (fly(X))”,
because we know that some birds do not y. One way to express this statement is to assign some

probability to it, say, 90% of the birds y.
In a few well—analyzed situations we can assign such a probability, but in the majority of the

situations the expert can only give crude estimates for that probability. For example, an expert
can say that there is an over 90% chance that a bird can y. This means that if bird(X) is true,
then the probability that fly(X) is true belongs to an interval [09,1].

So, in general, we must consider intervals as our estimates of the probability that some state-

ment Q is true. This interval description includes (as the particular cases) the situations when we

know whether Q is true or not, when we know nothing about Q, and when we know the precise
value of the probability of Q. Namely, if we are sure that Q is true, then the interval is [1,1]. If

we are sure that Q is false, then the interval of possible values of probability is [0,1]. If we know

the probability p that Q is true, then this interval is [11,p]. If we know nothing about Q, then the

interval is [0,1]. In general, we can get any interval I C [0, 1].

So, when we state the facts of the logic program, we state them in the form P : [(1,1)]e—,
where P is an atomic statement, and [(1,b] is the corresponding interval of possible probabilities of

P. Similarly, it is reasonable to consider implications between such facts as rules, i.e., consider as

rules statements of the type P : [(1,1)]<— P1 : [(11,b1],...,P,, : [ambn]. By a logic program we will

understand an arbitrary combination of such facts and rules.

The entire purpose of the knowledge is to be able to answer queries, So, suppose that we ask

a query Since we are not sure whether the facts and rules from the knowledge base are true or

not (we know only their probabilities), we, in the generic case, cannot hope to get the precise “yes”
or “no” answer to that query. The only information that we can get is the information about the

probability of Q. Since we do not know precisely the probabilities of the statements and facts from
the knowledge base, it is not reasonable to expect the precise value of this probability So,
we can expect only the interval of possible values of probability that Q is true.

So, two questions naturally arise: how to dene this interval? In other words, what is the

semantics of such logic programs? And, second, how to compute this interval?

As for semantics, we want to dene it in such a way that for the standard logic programs

(where the only allowed intervals are [1,1]) this semantics will turn into stable model semantics

(that we believe to be the most reasonable semantics for standard logic programs). To dene a

generalization of stable model semantics to generalized logic programs, we apply Dempster—Shafer
formalism that has formulas for combining uncertainty (and therefore, if we know that A <— B and

A <— C, and we know the intervals for B and C, we can compute the resulting interval for A). We

also show how to compute the resulting intervals.
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It has beem experimentally determined that experts use of linguistic connections AND, OR,

...,
IF THEN, etc, does not directly correspond to the well-known t—norms and t—conorms

(Zimmermann and Zysno, 1980). An interval—valued fuzzy set based on normal forms was proposed
to represent expert meaning of linguistic connectives AND, OR, ..., IF THEN (Turksen 1986).

Recently, it has been shown that “Compensatory AND” proposed by Zimmermann falls within

the boundaries of interval—values fuzzy sets proposed by Turksen. The fuzzy logics of interval—valued

fuzzy sets generate bounds on approximate reasoning. These bounds contain some of the point-
valued approximate reasoning results. Issues related to point-valued versus interval valued fuzzy
sets and logics will be reviewed and future challenges will be presented.
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It is well known that when in a numerical algorithm, we switch from real numbers to intervals,
the number of necessary arithmetic operations increases. So, on a single processor machine, the

running time increases as well.

This problem is not very crucial for simple data processing algorithms, but for algorithms that

come from Articial Intelligence, where runing time is often already huge, further increase may be

a disaster.

A natural way to decrease running time is to use several processors working in parallel. In [1],
we showed that in principle, parallelism can indeed decrease the running time drastically.

One of the main obstacles to parallelism is that if we use too many processors, then communi—
cations “eat up” the advantages of parallelism. As a result, when we use, say, 100 processors, and

the computations are completely parallelizable, we still rarely achieve a decrease in running time

that is bigger than 10 times.

In [1], we have developed and experimentally tested a computer architecture that allows the

users to achieve the biggest possible time decrease.

Unfortunately, the actual parallel computers are usually not tailored to the interval problems.
So, in the present report, we show how (and when) parallelizing helps to get interval estimates on

several different parallelization schemes.

In addition to theoretical analysis, we conrm the theoretical results experimentally: either on

real parallel computers, or on their realistic simulations.
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Abstract. The problem of locating local maxima and minima of a function from approximate
measurement results is vital for many physical applications: in spectral analysis, elements are iden-
tied by locating local maxima of the spectra; in radioastronomy, sources and their components are

located by locating local maxima of the brightness; elementary particles are identied by locating
local maxima of the experimental curves.

In mathematical terms, we know To numbers £1 < < an, and n intervals I, = [yi",y,7"],i=
1, ..., n, where y,” : y,-

—

E, 3/2?"= y,- +8, and we know that the values f(ai,~)of the unknown function

If 11);)"attltne'p'olnts at} o‘erong toT1,.mlne set”? 61 311"tne"run‘c't10ns"jury‘tnats'a'tlsry'thls property
can be considered as a function interval (this denition was, in essence, rst proposed by R. Moore

himself). We say that an interval I locates a local maximum if any function f E J: attains a local

maxima at some point from I. So, the problem is to generate intervals I1, ...,I;, that locate local

mamma.

Evidently, if I locates a local maximum, then any bigger interval J D I also locates them. We
want to nd the smallest possible locations I. We propose an algorithm that nds the smallest

possible locations in linear time (i.e., in time that is f C'n for some

Remarks.

1. By looking for the smallest possible location, we want an optimal interval estimate in the sense

of [R80] and [RR80] (see also [K86]).
2. There exist various algorithms that locate the global maxima of an intervally dened function

(see, e.g., [M79], [D883], [RR88], [M91]). For these algorithms, local maxima are. the main

obstacle that has to be overcome, and not the nal result, so we cannot apply these algorithms
to locate all local maxima.

3. Local maxima and mimima are also used in the methods that accelerate the convergence of the

measurement result to the real value of a physical variable, and thus allow the user to estimate

this value without waiting for the oscillations to stop [N88].
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Intelligent control is a methodology that transforms the experts’ rules (formulated in natural

language) into the actual control. As a result, for each set of parameters 921, ..., an that describe

a state of the controlled system (plant), we compute the value of the control u that is reasonable

to apply in this state. This computation is usually done in two steps: on the rst step, for every
real number a, we estimate the degree u( u), with which it is reasonable to apply a control a. On

the second step, we convert the resulting function ,a(u) (called membership function) into a single
value 17.. Usually, a center of gravity (or some similar characteristics) is taken for a.

In many cases, this scheme works pretty well. However, there are reasonable cases when it does

not work. Suppose, for example, that a robot is approaching an obstacle. It can either turn to

the left or to the right. Some experts would recommend turning to the left, some of them would

prefer turning to the right. If we place both rules into the initial set of rules that is used to develop
a fuzzy control, and apply a previously described procedure, then we end up with a membership
function for the controlled angle. We assume that this membership function reects the

experts’ knowledge correctly. In particular, since it is senseless not to turn, the value ,u(0) is either

equal t0 0, or close to 0. For big positive or big negative angles (corresponding to the angles that

are reasonable to apply) the values ,a(1:) are positive and sufciently big.
Since turns to the right (at > 0) and to the left (1' < 0) seem to be equally reasonable, it is

reasonable to expect that we will have a symmetric membership function, i.e., a function ,u(m)such

that = ,a(—x). However, in this case, the above-described center-of-gravity procedure leads to

the value 92' = 0. So, if we follow it, the robot will run directly into an obstacle.

Therefore, in addition to the membership function, it is necessary to take into consideration that

not all the values of u are possible: there exist intervals of forbidden values of u. In the present
talk, we propose such a method and show that it works ne.

The general idea was proposed in [1—3].We want to avoid the cases, when the value ,a(a:) for the

resulting control a“ is too small. So we must establish some threshold value p, and consider only the

values 51:, for which ,a(:r) 2 p. The above—mentioned paradox occurs, when the values at for which

,a(.r) 2 p form several disjoint regions. So in this case we choose a region that is most “probable”
(in some reasonable sense), then restrict the function ,a(a') to this region, and apply a usual (e.g.,
center- of—gravity)“defuzzication” to the result of this restriction.

We to choose a region with the biggest area f ,u(.r) da', therefore we call this method a Centroid

of Largest Area (CLA) Defuzzication.

The main reason for choosing area and not any other characteristic is that using area really helps
the robot to avoid the obstacles. Other (more theoretical) arguments in favor of this approach will

be given.
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