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PREFACE

Very lengthy numerical computations were performed until recent
years, just as the shortest computations, by hand or with the aid of
desk calculators.

In an hour's time a modern high-speed stored-program digital com-
puter can perform arithmetic computations which would take a "hand
computer"” equipped with a desk calculator five years to do.

In setting out on a five year computing project, a hand computer
would be justifiably (and very likely gravely) concerned over the extent
to which errors were going to accumulate — not mistakes, which he will
catch by various checks on his work — but errors due to rounding and
the replacement of integrals by finite sum approximations, etc. In
order to be able to guarantee the accuracy of his final results to a
preassigned number of significant figures, a substantial analytical

.effort will be required in choosing certain parameters such as how many
terms of a series are needed, in arranging the order of the work, in
deciding how many places should be carried, etc.

A complete a priori error analysis for an extensive numerical
computation can become a formidable task if it is to answer in advance
and in every detail all gquestions of the accuracy of approximations
to be made during the computation and their effect on the accuracy of

the final results.
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While he will do some of the analysis in advance, the hand computer
will leave a fair amount of it to be done during the course of the nu-
merical work — taking advantage of partial results occurring in the
specific computation at hand to sharpen bounds and simplify the analysis.

In order to take full advantage of the great speed of the automatic
stored-program digital computer it is obviously desirable to mechanize
as much as possible of the error analysis required for a computation
so that it can be carried out by the machine itself.

It is the intent of the present study to investigate an approach,

based on interval arithmetic, by which a stored-program digital comput-

ing machine can be made to produce rigorous error bounds during the
course of a computation — error bounds which, at least for some types
of computation, will be sharp enough and easily enough computed so that

automatic error analysis by the machine can replace the lengthy a priori

analysis otherwise required in advance of a computation if accuracy is
to be guaranteed.

The conversion of an automatic error analysis scheme to an auto-
matic error .control scheme is relatively easy (see Reference [7], for
example). In the end we can finally give the computing machine instruc-
tions similar to those we would give a hand computer. For example:
"compute an approximation to the solution of the following problem ... ,
accurate to ... decimal places, unless it would take longer than ...
hours, in which case get the most accuracy you can in that time."

Machine programs of this type have, in fact, been written (see
[6]1, [7]); however, the error bounds upon which those error control

schemes are based (in [6], [7]) are rigorous only if certain conditions
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are met which are usually very difficult to verify. In the present
study the methods based on interval arithmetic are much more general
and yield rigorous error bounds with only trivial conditions to be met.
Even these conditions can be tested by the machine. At one point, for
example, we require an interval which contains no poles of a given
rational function. We can choose some interval and ask the question:
Does the given rational function have any poles in the chosen interval?
Either the machine will succeed in computing a finite interval contain-
ing the range of values of the function for the given interval of argu-
ments or it will halt on an attempted division by an interval containing
zero. In the former case the question is answered in the negative. 1In
the latter case the question remains unanswered; but we can try again
with a smaller interval and eventually find an interval containing no
poles.

A rounded version of interval arithmetic provides a means for the
automatic computation by the machine of intervals containing the infinite

precision result of any computation of finite length with real numbers.
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INTERVAL ARITHMETIC AND AUTOMATIC ERROR ANALYSIS

IN DIGITAL COMPUTING

1. Introduction.

Computations by digital computing machines consist of finite
sequences of rounded arithmetic operations. Such computations are most
often performed as approximations to finite or infinite sequences of
exact arithmetic operations with real numbers.

A digital computation and an analysis of its error as an approx-
imation are necessarily viewed as separate processes when one is dealing
with real numbers. On the other hand, in the present study an interval
arithmetic is described which forms a basis for a concomitant analysis
of error in a digital computation. In this system computations with
intervals are performed and intervals are so produced to contain, by
construction, the exact numerical solutions sought. Hence, an approx-
imation and an error bound are obtained at the same time; choosing say
the midpoint of the interval as the approximation, the radius of the
interval becomes the error bound.

Earlier discussion of interval arithmetic can be found in Dwyer
[3], [4], Fischer [5], Sunaga [20], Moore [12], and Moore and Yang [13].

The theory of real valued functions of intervals has been developed
in connection with real integration theory: [11, [2], [16], and [17].

An integration theory for continuous interval valued functions has been



considered in [13] and [14]. An algebraic system more general than
interval arithmetic appeared in [21]. However, the emphasis there is
set theoretical rather than computational.

In the present study the principal results will be convergence
theorems for interval computations of: the range of values of a
rational function (Th. 4.1), the definite integral of a rational func-
tion (Th. 5.1, Th. 5.4), solutions to ordinary differential equations
in raticnal functions (Th. 6.8, Th. 6.15). The methods will be illus-
trated by examples. Theorem 4.1 and Th. 5.1 are generalizations of
results obtained in [13].

We first develop the theory for exact or infinite precision
interval arithmetic in order to obtain Ffinite computations which bound
the results of infinite sequences of computations. Finally, for actual
machine computations, rounded interval arithmetic is introduced so that
round-off errors are also taken into account. In fact, in this way
machine programs using rounded interval arithmetic and the computation-
al schemes developed in the following sections will produce with finite
machine computations rigorous upper and lower bounds to the solutions
of various analytical problems.

The widths of the bounding intervals can be made as small as one
pleases at the cost of the amount of computation required.

Numerical examples of actual machine work indicate that usefully
narrow bounds are obtainable, at least for some types of problems, in
reasonable computing time even with the straightforward first version
of the theory developed here. It is not unlikely that many improve-

ments in efficiency of the technigues can be made.



2. Interval Arithmetic.

Denote by [a,b] the closed interval of real numbers x such
that a <x < b. Let J\ be the set of all such intervals and let
Qi*- be the set of intervals which do not contain the real number O.

Arithmetic operations in <& are defined as follows, with I, J

in & and K in &*:

I+J = {x+y| xeI,yed) = the set of real
numbers t such
that t=x+y
for some x € I
and some y € J ,

(2.1)¢
I-J = {x-ylxel,yed,
W = {(xylxel,yed),
I+XK = IK = {x/y |l xeI,yekK).

We will use the usual "power" notation for self-products, i.e.,
X2 = XX, etc.

The real arithmetic operations are continuous and so map compact
connected sets and, in particular, rectangles onto compact connected

sets, that is onto closed real intervals. In fact, for [a,b], [c,d] €

N we fing that

[a)b] + [C)d] = [a.+ c, b+ al

[a -4, b - c]

(2.2) < [a,b] - [c,d]

[ayb] [C:d]

[min (ac, ad, be, bd), max (ac, ad, be, bd)]



*
and for [a,b] € tQ , le,f] ¢ tﬁ_ we have
[a,b] / [e,f] = [a,b] [1/f, 1/e] .
By the equality of two intervals [a,b] = [c,d] we mean, of
*
course, that a =c¢ and b =d. Alternatively, I =J iff-/ 1 C g

and J C I, regarding I and J as sets of real numbers.

For intervals of the form [a,a] we have

[a,a] + [b,b] = [a + b, a + b]

[a,a] - [b,b] [2 - b, a - b]

[a,a] [b,b] [ab, ab]

and if b £ 0

[a,a] / [b,b] = [a/b, a/b] »

so that interval arithmetic includes real arithmetic, identifying the
interval [a,a] with the real number a. We make this identification
henceforth and treat the real number field as a subsystem of the inter-
val number system.

Associativity and commutativity for interval addition and interval
multiplication are immediate consequences of the definitions (2.1).
The real numbers O, 1 (i.e., the intervals [0,0] and [1,1]) serve
as additive and multiplicative identities respectively:

*/

- If and only if.




O+1I I+0 = I

1T = 11 = I .

However, inverses do not in general exist and the distributive

law does not always hold. Indeed,

[a,b] - [c,d] = [a=-d, b-¢c] = 0, iff a=d, b=-c.

Since a <b, ¢ <d, this means that

1}
o'
I
0
1]
¥

[a,b] - [c,a] = O, iff a

Thus the only intervals having additive inverses are the real numbers.
Similarly, [a,b] [c,d] =1 iff [a,b] = x, [c,d] = x-l for a real
number x, 1l.e., x=a=Db=oc =d .

*
The distributive law fails, since—

[1,2](1-1) = [1,2]0 = 0O,

whereas

[1)2]<l) + [1)2](‘1) [112] + ['2)—11

[-1,1] # o .

*

—/ Rounded arithmetic with real numbers is also not distributive; in
fact, it is not even associative; see [15], p. 1031, and also
Section 7 below. g



Nevertheless, we do have the following law: for I, J, K ¢ f& B
(2.3) | (g+k) C 10+ .

This relation, which we will call subdistributivity, follows easily from

the definitions (2.1).
Some special cases in which IJ + IK = I(J+K) (i.e., distributivity

holds) are useful. In particular, if t is real, then

(2.k4) t(J +K) = tJ + tK

(This follows immediately from (2.1)); if JK >0 (that is, if

er’K———>x20), then

(2.5) I(J+K) = IJ+ IK .

To show (2.5), it is sufficient to show IJ + I (C I(J + K)

because of (2.3). Suppose x ¢ IJ + IK, then

X = tly+tz,

2

for some

tl,t e I, yed, z e K.

2

By hypothesis yz >0, so we have y + 2z =0 iff y =2z = 0. If

y=2=0, then x 1is clearly in I(J + K). Otherwise y + z 74 o,

6



and choosing

_ N z
t = tl ——— + t2 e e I,
we have
x = tly+2z) e I(J+K).

In order to study finite sequences of interval arithmetic operations,
the following relations are useful.

The elements of <& are partially ordered by set inclusion. In
fact, [a,b] C [c,d] iff c<a<b<a.

The arithmetic operations in <& are inclusion monotonic, i.e.,

if I, J, K, Le &, I CK, JC01L, then

I+3JC K+1L,
I-JC XK-1L,

7 C XL,

/7 C X/L, (0 ¢ 1)

These relations follow immediately from the definitions (2.1).

Together they have the important consequence that if F(Xl, Xy vee s Xn)

is a rational expression in the interval variables Xl’ X2, oee Xn’
i.e., a finite combination of . Xy s een s Xn and a finite set of con-

stant intervals in an expression with interval arithmetic operations, then



implies

1
(2.6) F(Xi, Xg', e x)) CF(xy, Xpp wee 5 X))

An interesting consequence of subdistributivity (see (2.3), together
with (2.5)") is the fact that 2 '"nested" interval polynomial is "contained

in" the corresponding power polynomials, i.e.,
A +X(A +X(A + o0 +XA)) oo ) C A +AX+ o0 + 4K,
Al 2 n o 1 n

Notice that a rational interval form is not usually representable

by a quotient of two polynomials. We cannot write

2
1 X° +1
X+g = X

for example, since as we have already noted X/X % 1. Indeed, let
F.(X) = X + = F (X) = 2=
1 X’ ?

then

1 1 3
Fl([l;Q]) = [1;2} + [1,2] = [1)2] +I:§: l] = {5: 5} P

whereas



[1,21° +1  [1,4]+1  [2,5]

FE([1’2]> = “—['l_,a"— = [1,2] = [1’2] = [1:5] .
The two expressions X + = zfli;&

7 X define distinct interval
F

valued functions F say, on the domain X > 0; i.e., D =

1’ e’

(I , xeI=x>0]. These functions do, of course, have the same

x24-l

X

*
real restrictionr—/ the real rational function given by f(x)

2
+
(x >0), since for real x, X +-§ = 5;3;—;. Notice that, if a rational

interval expression can be evaluated for a set of values Al 5 eee Ah

of its variables X Xn (which is to say that no division by

l,oo.,

an interval containing zero occurs), then it can also be evaluated for

any set of values Ai y eee A; of the variables Xl 3 eee Xn’
such that A C A s wee s A C A . We will call a set D of

n-tuples of intervals a regular domain if

1 1
(A, Ay -ee , A) € D and A C Ay owee s & Coa

together imply

Denote by ‘DA the set (A" | A" C A}, then a regular domain is a

union of sets of the form ‘§A ®<§A @@&A . We use X for
1 2 n

the Cartesian product.

*/

By the real restriction of a function on intervals we mean the
function restricted to the subdomain consisting of the special
intervals of the form [x,x], i.e., real numbers. The value of
the function may not be real even at a point of this subdomain.
For example, F([a,b]) = [0,1] for a <b, has real restriction
f(x) = F([x,x]) = [0,1].




We define a rational interval function F in n variables

X Xn to be a mapping f : D —acﬁ with regular domain D C <&r1

10 e
such that there is a rational interval expression in the variables

X Xn which represents the function F. We now have the follow-

10 e
ing. If f 1is the real restriction of a rational interval function F

with domain D, then

(2.7) U £(xys x5 . , x) C Fx, .o, X)),
with the union taken over X, € Xi’ i=1,2, «.. , n.

The computational significance of this result is illustrated by the
following application to the problem of bounding zeros of rational functions.
Suppose f 1is a rational function of a real variable ’x with real

coefficients. Let F be a rational interval function of X with real

coefficients such that the real restriction of F is £, 1i.e.,
F(x) = f£(x) , for x real .

Furthermore, let F' be a rational interval function whose real restric-

af

tion is f' = ax° I A =1[a,b] 1is an interval, such that

fla) = Fla) < 0 < F(b) = £(b)

and

10



then f' is bounded and has the same sign for every x € A and T
has a unique zero in A. By the mean value theorem if x, x + h € A,
then f(x + h) = f(x) + £'(x + 6h)h for some 6 ¢ [0,1].

Suppose x 1is the zero of f in A, and y is an arbitrary

point in A, then

for some 6 ¢ [0,1]

By (2.7), we have

If A 1is not too wide, then the interval

will be properly contained in A; and, in fact, the sequence of inter-
vals, each containing the zero of f obtained by iterating the process,
will converge to an interval of zero width which must therefore be the
zero of f. We omit the easy proof of this assertion and instead give
an example to show the mechanism of the procedure.
Denote by the mX the midpoint of the interval X; if X = [a,b],
a+hb

then mX = -3 - Let Ao = A, Yo = mA, and for 1i=1, 2, ... ,

define

11



A1 = Y5 T FAY

Ti+1 i+1

The midpoint y; was chosen for symmetry. We could Just as well use
any point in Ai' The procedure is nothing more than the well-known
"Newton's method” for finding zeros of a function modified to yield the

bounding intervals, Ai' The width of the interval Ai+ is roughly

1
proportional to the square of the width of Ai.

For a numerical example, take

flx) = x -2, A

I
o3
|
~—
)
-
N
.

1]
n
»d

FX) = ¥ -2, F(X)

Then the procedure gives

_ 12)1
Aiygg = vy ¥ <l -3 yi) £
Yitp = MAy
with
A, = [1,2] , v, = 1.5 .

Iterating a few times, we get

12



A1 = [1.375, 1.4375] , vy, = 1.40625 ,
A, = [1.41406..., L.41bkk1...] , v, = l.h1k2h. .. ,
A5 = [1.4142135 59..., 1.4142135 66...] , V5 = 1.4142135 63 ... .

17 AQ, A5 do in fact contain V2 =
-2

1.4142313562... and that the successive widths decrease like 1, 6 - 10 7,

Lo 10'”, 7 - 1077,

Notice that the intervals Ab’ A

A given real rational function f in n variables always has
extensions to rational interval functions simply by extending the real
arithmetic operations in a real rational expression; but never a unique
extension since, for example, we may add the expression X - X to any
extension and get another one with the same real restriction.

This corresponds to the fact that there are many equivalent real
rational forms which are not equivalent as interval rational expressions
because of the lack of distributivity and inverses in interval arithmetic.

There are, of course, extensions of a real rational function to
interval valued functions on intervals which are not rational interval
functions. For example, the real function defined by f(x) = 0, for
all x, has interval extensions of the form F([a,b]) = (b - a)[e,d]
with domain <& .

If [c,d] = [-1,1], then F([a,b]) = [a - Db, b - a] = [a,b] - [a,b]
and F 1is rational; however, if [c,d] =1, then F([a,b]) = b - a
and F 1is not rational.

To show that F 1is not a rational interval function, we can argue

as follows. If F were rational, there would be a finite combination

13



of constants and the variable interval [a,b] in an expression with
interval arithmetic operations representing the value of F([a,b])°
Now F is not a constant function since, in particular, F([0,1]) #
F([0,2]). But any rational interval expression in which a variable
interval X appears will produce an interval of positive length when
evaluated at X = [a,b] for a <b., Since F([a,b]) = b - a means
that F([a,0]) is an interval with zero length, i.e., a real number,
we can .onclude there is no such rational interval expression for
F(lz,0]).

Thus, an interval valued fuhction F may not be rational even if
the left and right end points of the interval F([a,b]) are both ration-
al functions of a and b. Indeed, we will consider certain such func-
tions arising from rational interval computation in the following sections
(without giving them any special name). They will arise as bounding
functions for sclutions to differential equations, for example. The real
restriction of a rational interval function F may be an interval valued
function; for example, when F is a constant function, say F([a.b]) =
[0,1] for all a < b,

We conclude this section with some further properties of interval
arithmetic.

We have the cancellation laws:

X+A = X+B, iff A

I
o

(2.8}

Il
td

Xe N 5ax = Bx, iff A



There are many ways to see the last relation above; for the sake
of variety the following argument may be used. Assume AX = BX; pick
a number a in A and let x run through X, then for each ax,
assign a pair b(x), 1t(x) such that ax = b(x)t(x) with b(x) e B,
t(x) € X. Choose x. € X, and consider the sequence defined by

1

= t(x.), then ax. = b(x.)x with x. € X.
i i i i

X. .
i+l i+1’

Since X and B are compact, the x5 have a 1limit point in X,
say ;c, and by the continuity of real arithmetic x will satisfy

ax = b(x)x .

By hypothesis x # 0, so a = b(x) € B. Similarly, B C A. There-
fore, A = B. Conversely, A =B obviously implies AX = BX.

If A C B, then there is an interval C such that B = A + C
and O e C. In fact, if A C B and D 1is any interval, then there

is an interval C such that

(2.9) B = A+CD.

15



3. The Continuity of Interval Arithmetic.

We meke <§ into a metric space with the distance function
P : <§2 —R (the real line) defined by P([a,b], [c,d]) = max (|a - c],

[v - al).

Theorem %.1.

The function P 1s a metric on :& .

Proof:
The positivity and symmetry of P are obvious. The triangle

inequality follows easily from the definition of P, as we now show.

If
Il [al’ bl] s I2 = [3»2.9 02] ) IB = [833 b5] e&,
then
P(I; I,) mex (lay - a,l , [o] - b,l)
P(IB, Il) + P(IB, 12)
= max (la5 - el fb5 - b )+ max (la5 -8l lb5 - b, 1)
= max (|a5 - a ] ¥ la5 -8l la5 - a |+ le - vl

le - bl[ + ]a5 - a2l , le - bll + o, - b |)

16



Now since [al - az['g [aB - al[ + [a3~- ?gf and [bl - bef < [b5 - bl[ +

[b - bgl, we have

3

P(Il, 12) < P(IE, Il) + P(IB, 12) .

Notice that we have P([x,x], [y,y]) = |x - y| and the correspon-
dence [x,x] »x 1is an isometry. Thus, the metric P 1is consistent
with our identification of [x,x] and x, i.e., the real line may be
regarded as a subspace of the metric space (<& , P).

If £ : I’—><&, is a real valued or even an interval valued func-
tion on a closed real interval I, there is a natural extension of f
to an interval valued function f on the regular domain ‘ﬂ'I consist-

ing of all the subintervals of I. In fact, f : QQI —>i§ is defined

by 1(x) = \UJ £(x).
xeX

The value of the function f at a point X din its domain, i.e.,
at a subinterval X of I is the union of the real numbers or inter-
vals in the image of X wunder the mapping f. If f is real valued,
this is sometimes written f£(X). The important distinction here is
that f is a single valued function. The range of T is the metric
space ;9\ whose points are intervals of real numbers. The function

T is called the united extension of f. (See [19], p. 552.)

More generally, if f : Il® 12® '“@In - <D\ is an interval
valued function on the Cartesian product of the closed real intervals

I, T

52 e s In’ we call T the united extension of f (see [19]1),

l)
with

17



defined by
f(Xl, Xys oo 5 X)) = Uf(xl, coo s xn) 5

with the union taken over

Theorem %.2:

If I, I, oo, I_ ed and r : LAOL,® @I, > Q s

1
continuous, then the united extension T 3.[ @ &I @ °°°®<9~I -
1 2 n

Q& is continuous.

Note: In [19] it is shown that if X, Y are compact Hausdorff

o

spaces and f : X - Y is continuous then the united extension f is

continuous. The topology used there includes ours for é;. See also

[18].

Proof (of Theorem 3.2):

Let ¢ be a positive real number and let Xi e I., X! € I. for

i’ 71 i
i=1,2, ... , n. Since f is continuous, there is a 5 >0 such
. ? € . . . 1 . .
that X € Xi’ X, € Xi’ i=1,2, «.. , n, with ,Xi - Xi‘ < &, implies
P(f(xl, c s X ) f(xi, ceo x'j) < €



Now P(A,B) < e if and only if for each t € A, there isa t' ¢ B

such that lt - t'l <€, s0

if and only if, for each

t € \v) f(xl, cee xn) ,

x.€X.
i i

. ' 1 1 . ot
there is a t ¢ XBE{;' f(xl, coe xn) with |t - t'| <e. Now
i i

t € \v/ f(xl, ceo xn)
X.e€X,
i~
implies that t ¢ f(xl, e xn) for some choice of X € Xi’ so
P(X,, X;) <8 (i=1,2, ..., n) implies |x. - x!l <5 (1=1, 2
.o+ , n), and therefore P(f(xl, ceo xn) 5 f(xi, cee xé)) < e for
X, € X,, x. € X.. Therefore, there is a t' ¢ £(x., ... , X') with
i i i i 1 n

x{ € Xi (i=1,2, ... , n) such that |t - t'| < e, and the proof

of Theorem 3.2 is complete.
Theorem 3.3:

The arithmetic operations in ;§~ are continuous except for

division by intervals containing zero.

19



Proof:

The continuity of the arithmetic operations

Y, Y) = Yy +Y, = (v vy, Ly ey, e 1)
-, Y = Y -Y, =y -y, vp €15 ¥ € I

. (YL’ 12} = Yl Yg = {yl s | ¥y € Il ) Vo € Ig}

= (Yl, Yg) = Y, Ty, = {yl/y2 | v €L 5y, €I, ¢ w&*}

for 1, I, € é& follows from Th. 3.2 with n = 2 by the continuity of
17 I2 is contained in the
/ *
interior of é;I (:) é§; for some Iiy Ié € (g and if 12 € <&v
1 2

real arithmetic. Any pair of intervals I

then Ié may also be chosen with O é Iéo Thus, except for division
by intervals containing zero, the arithmetic operations are continuous.
Obviously the constant functions and the "projections,” i.e., functions

of the type

with

are continuous. We conclude the following result using Th. 3.3 and

finite induction.
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Theorem 3.k4:

Rational interval functions are continuous.

*

We have already note&—/that the extension of a real rational function
to a rational interval function is never unique. The various ways of
writing a rational form representing a given real rational function are
equivalent in the sense of all defining the same function. For example,

2 1 1 2 . .
x(1 - x), x - x°, I- (§ - x)5, all define the same real polynomial
function. On the other hand, the interval polynomial forms, X(1 - X),
X - X5, % - (% - X)e, all define different interval polynomial functions,

since for X = [0,1] we have

[O}l] (l - [O:l]) [O:l] [O:l] = [O:l] 2

[0,1] - [0,2]% = [0,1] - [0,1] = [-1, 1],
T-G-0% - F--532 - 1-0-5 b - 04

Furthermore, while each of these rational interval functions has as
values intervals containing the range of values of the real polynomial
x(1-x) when x € X, none of them has exactly these values. For, in

fact,

(x(1 - %) | xel0,1]} = [0, 7] .

f/ See pp. 8, 9, 13.
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The question arises whether some rational interval function always
exists which computes the exact range of values of the corresponding
real rational function. We will show by a counter-example that this is
not the case. We will show that there is no rational interval function

which, for every interval X, has the value
{x2 | x e X} .

Theorem 3.5:

The function T : é& - lﬁ\ defined by f(X) {x2 | x e X} 1is

Il

not a rational interval function.

Let £ Ybe the polynomial function defined by £(x) = x2 for all
real x. Now a rational interval function F with real restriction £,
(F([x,x]) = f(x) = xg) must be given by a finite interval expression
in X. This expression must involve at least two occurrences of X,
otherwise it is clear that x2 will not appear as an F([x,x]). At
the same time, if any occurrence of X 1in the expression is replaced
by a new variable Y, +the new expression will define a rational inter-
val function G(X,Y) which has the property G(X,X) = F(X).

There are altogether a finite number of occurrences of X 1in the
expression for F, so there is a rational interval function
H(X

10 o5 eee s Xn), such that

H(X, X; v o0 s X} = F(X) 2
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and such that in the expression for H, each variable Xi occurs
exactly once. For such a rational interval function H it is clear
that the united extension 4 of the real restriction gives back the
function, i.e., h = H.

Now consider the real restriction h of H. It is given by a

real rational expression in x cee s X with each X, occurring

l )

exactly once and such that h(x, x, ..., x) = % and 'E(Xl: X2, cee Xh)=

H(Xl, Xy enee s Xn).

Assume that f(X) = {x2 | x € X) is a rational interval function
on z& . Then there are functions h, H as described above, such that
for X, ..., X e <§L,'E(Xl, TR I H(Xl, Xy +-+ , X ) and
for X e Q&, H(X, ... , X) = f(X). Observe first that h must be a

polynomial in x ooy Xn since H(X cee Xn) is an interval for

1’ 1’

Xl 3 see Xn € QSL.
This means that there is a real polynomial expression for

h(xl, x2, cee xn) in which each xi occurs exactly once and such

that for every choice of real values for x yoeee s X there is a

1

real number x such that

h(xl, Xps eee s xn) = x° .

But this implies that h(x cee xn).f O for all real values of

1? Xg:

X 5 eee s X - The expansion of h about O, 0, ... > O in particular,

14
tains a finite number of terms of order three and higher, and the sum

must have the form h(x, ... , Xn) = 2; ;5 ¥;%X; + T inwhich T con-
173

after renaming variables has the form c. x. X  + o« for

+
1 %1% ¢p *op-1%2p
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some lSpsg.SMw M%.“,x)=£ we can see by choosing

D
X, = x sufficiently smell for i=1, 2, «.. , n that 2: Cy = 1

- k=1
and some Cpr SBY ¢y is different from zero. Then choose X, = 0
for i >2 and look at h(xl, %55 05 05 oue 0) = ¢, x;%, + T. TFor

Xy5 x2 % 0 but small, T dis small compared to ¢y XXy, and

h(xl, X5 0y oo 0) takes on negative values. This contradicts

h(xl, soe 5 X_) >0, hence we have proved that f£(X) = € | x e x)

cannot Le a rational intervael function.

2k



4.  Refinements.

We enlarge the class of rational interval functions by introducing
a process we call refinement. The enlarged class of rational interval
functions and their refinements will serve as an approximating class of
functions for the united extensions of real rational functions and even
for the united extensions of real restrictions of rational interval
functions.

An example will serve to illustrate the simple idea involved.

The rational interval function F defined on ‘9[0,1] by F(X) =
X(1 - X) has real restriction f : [0,1] — reals, given by f(x) =¢

x(1 - Xx). The united extension of f is the interval function f on

‘§‘[O 1] given by T(X) (t | t =x(1-x), some x e X}. We have
)

F([0,1]) [0,1] (1 - [0,1]) = [0,1],

£([0,1]) = [O,'%] = (flx) | x e X} .

The united extension f of a real rational function f computes the

range of values of f for arguments of f running thrbugh the argument

intervals of Tt.

Suppose we write
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We see from this, in particular, that

converges to [0, 1/4] with increasing n.

The space §§i of intervals [x,y] can be visualized as a closed
half-plane in the Euclidean (x,y)-plane above and including the diagonal
y = x. The interval [x,y], which contains the real numbers t, x <t <y,
is represented by the point with coordinates x, y. If [u,v]<: [x,¥],
then [u,v] lies in the closed triangle ‘5)[x,y]’ consisting of inter-

vals contained in [x,y] as indicated in Figure 1.
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y-axis
[x,5] _ vyl =y

'u,v]

: [t,t] = t

!

[x,x] = x
X-axis
Figure 1

The width y - x of an interval [x,y] is determined by its
distance from the diagonal. Intervals of constant width lie on lines
parallel to the diagonal R.

Intervals whose midpoints are all a single fixed number lie on a

half-line perpendicular to R.

N fo—— = - x = const.
N y
\ /
N
Q < R
N
X + AN
M. cdRst. N
N 2 ~
N
AN N N AN
\,
N N {X,X]
AN N
N N

Figure 2
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The negative [-y, -x] of an interval [x,y] is the reflection of
[x,y] 1in the half-line Q consisting of intervals with midpoint O,
(i.e., Q= {[-x,x] | x>0, x € R}.

| T i = + +
The sum of two intervals [xl, yl] + [Xg, y2] [Xl X5 ¥p Y2]

is constructed graphically in the same way as vectors in the plane.

Figure 3

Ir Ted), denote by RI the union of the ray through O, O

and I and its reflection in Q (i.e., the ray through -I).

Figure 4
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For t e€R, Ic€ <&,, the interval +tI 1s a segment of RI.
Hence, the interval product JI, J € :& , Which can be written

JI = \\) tI, can be found graphically by constructing the smallest
ted

set ‘QiA containing the segment of RI consisting of the points +tI
for t € J. This turns out to be <9JI'

The construction is illustrated by Figure 5, where
J = [-1, 3/2], I = [1,2] .

The segment of RI in question is the set of points (intervals) of

the form

t[1,2] for t e [-1, 3/2] .

Figure 5

If X e éi

Suppose F 1s a rational interval function on <§ A

A
i.e., X C A and if
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with Xi € é§~, then we call

a refinement of F at X. In the geometric interpretation expiained

in Figure 1 the picture might look as in Figures 6 and 7.

The value of F at X is "refined" by the union of values of F

at the points Xi of a finite covering of X.

|

% L

A

Figure 6

Figure 7
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Since we already know that rational interval functions are continu-
ous, and since we can make the distance P(Xi’ R) of X; from the real
line (i.e., the diagonal in Qﬂ.) small for each 1 =1, 2, ... , n

with

i=

choosing n large and say choosing

Xi = [a+(i_l)b;a, a+j__(£_"_.a_):| ,

we might reasonably expect that a refinement of a rational interval

function F can be made arbitrarily close to the united extension T
of the real restriction f. We proceed to show that this is the case.
For convenience, we introduce the notation w(I) for the width

of an interval I. Thus, w([a,b]) = b - a. Also we write

So
l[a;b]’ = maX (,a, }) ,bl) .

Clearly w 1is a linear functional on tﬁ\ over the positive reals;

for a, >0, a, beR, I, Jce <&~, we have

w(al + bJ) = aw(I) + bw(J) .
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We also have

w(IJ) = max |ab - a'b!|
a,a' € I
b,bt € J
and
jab - a'b'| < lal o - 0] + [v'] |la-a'],
S0
w(1) < l1l wa) + [3] w(1)
Similarly,
w(1/1) < 11/11% w(1) | 1e N,
lT+a < Izl + |5l ,
and

lax] = lal 1],

w(al) la| w(I)

We will now show that there exists a positive real number K
depending on F and A such that for every positive integer n and

every
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we have

n
U F(x,) = T(x) +E_,

i=1 n
with O ¢ E_ and W(En) < K max W(Xi) (i =1, , n).
5
n
In particular, this implies that T(X) C F(Xi). In fact,
i=1
we prove the following more general result.
Let F Dbe a rational interval function with domain 'JQA C) <&JX 5@
1 2
‘~-<:)<§ - Let f be the real restriction of F; thus, for x €A,
Am P p
f(xl, cee xm) = F(xl, cee xm). Let f De the united extension of

f; thus, for Xp C A.p (p=1,2, ... , m), we have

?(X(l), cee X(m)) = (f(x

10 e s xm) l X, € X(P) (p=1, 2, ... , m)J.

Subdivide each of the intervals X(p) so that

ngm _ (®)

Theorem 4.1:

There is a positive real number K independent of the method of

(m)

subdivision of the intervals X(l>, «ee 5 X7, such that

n
\_/ P, Ly s s D) ey g ,
1,001 =1 11 T o
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with O e E  and W(En) < K max w(X.%7).
- p,1i

Proof:

We need only show the convergence part of the statement; the rest

is merely restatement of previous discussion. That is, we must show that

w(E_ ) < K mex W(X§P>> .
- p,1

It is clear that for the united extension f we have

n
=/ -1 m - 1 m
f(X( ), vee s x )) = \\/) f(Xg ), cer s xg ))
' ii,...,im;l 1 m
and we already know that there is an Ei 5 such that
IEEEEVE
1 m - 1 m
F(Xg ), cee Xg )) = f(Xg ), cee s X4 )) + E; ;o
1 m 1 m 1" ™m
with 0 e E, ;- If E = UE, ; » ‘then !Enl = maxlEi
NEERETE IERREYE 12
and W(En).f elEnl, so it is sufficient to show that
1 m = 1 m
|E. PR - P(F(Xg >, cee %! )) , f(X( ), cer x! ))>
1 9000yl 1 1 1 1
m 1 m 1 m

(4.1)

< K max W(X§p>) .
p,1

In the expression for F(X(l>, oo g X(m)) each variable X(p)

i

occurs only a finite number of times (possibly zero). In each occurrence

substitute a new variable Xép), Jg=1, 2, «c. , JD°

3k



After substitution of the wvariables Xgp) we obtain a new expres-

sion which we will call H(Xil), cee Xél), Xﬁg), e Xgm)). There
1 m
are also a finite number of interval constants Cl 3 eee Cq in the

(D )y

expression for F(X'™/, ...
For each choice of real numbers Cl s ser s cq from the intervals

Cl 93 see g Cq with c, € Ci’ there is a real rational function which
we will denote by hc for c¢ = (cl, ... , c_) and whose values satisfy

Kv} hc(xgl), cee xgl)) = E(xil), cee xgm)) where h 1is the united
c m m

extension of h, the real restriction of H, with the union taken

over all c¢ = (cl, cee cq) with ¢, « C;» 1=1, ..., g. The set
of rational functions hC is uniformly bounded (i.e., for c,; € Ci)
and has a uniform Lipschitz constant, i.e., there is a real number K

independent of ¢ such that for all c¢ with c; € Ci, i=1, ..., q,

and for all x<p), xgp) ex(P), D=1y eee ,m =1, ... , J,

l hc<?(l),..., x(l),..., x(m),..., x(m)>

1 Jl 1 Jm
(L.2)
- h <%(l),..., x(l),..., x(m),..., x(m)> | <K max lx(p)-x(p), .
¢ - J,p J
Now
e D e S JUUIP O BN C. UM C N

~( (1) (1) (m) (m)
= n( yeen, I yeees )
x(ch(p) E 71 E U
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7, L, @y o osE®, L e R NN O
and
. R L) )y
L2 () 4@ 7
J J

Therefcre, substitu-.rg X§p) for X(p> in (4.2), we get (L.1),

m
O

P(F(X(l>, oo X(m)) s E‘(x(l), e, X(m>)> < K ma.xw(Xgp)) .
p,1

This completes the proof of Theorem 4.1.
In the special case of m =1, n =1, and for real valued real

restriction f, we have
F(X) = f(X) +E
with
w(E) < X w(X)
and, since f satisfies a Lipschitz condition in A, we have the result:
Theorem 4.2:

For any rational interval function with (regular) domain QQA. and

real valued real restriction there exists a real number K such that
XC A implies w(F(X)) <X w(X).
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5. Interval Integrals.

If £ 1is a real rational function, then the indefinite integral
ny-f(x)dx can be expressed in terms of elementary functions of y by
fa:toring the denominator of f and using the partial fraction decompo-
sition of f. For an actual numerical evaluation this requires, of
course, the determination of the roots of the denominator polynomial
of f.

We consider in this section a more direct approach using interval
computations.

Suppose F : Q&A'-e éi is a rational interval function with real-
valued real restriction f = FIA. Then f is a bounded real rational
function on the interval A.

If X = [a,b] C A, then f(x) ¢ F(X) for all x ¢ X, and
b
Jr flx)dax = f(a + 6(b - 2))(b - a) ,
a
for some 6 e {0,1]. Therefore,
b
f f(x)ax ¢ F(X)(b - a) .
a
Now suppose Y = [a,y] ( A; define

NS i]———-—(y;la)

i J



By the additivity of the integral, we have

[.Y f(x)dx e § F(an)) (L-I-l—i)- [interval sum] .
a i=1

More generally, if an), i=1,2, ... , n, 1s a collection of

intervals such that

and

then
v n
f f(x)ax e 5 F(Y(in)) w(an))
a i=1

The intervals do not all have to have the same width. From

y{n)
i
Theorem 4.2, it follows that there exists a K such that for X C a4,

we have

Y CE F(an)) W(Y§n>)> < (y-a K max W(an>) 5

1

i=1, ... ,n,
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and we have proved that

Theorem 5.1:
(5.1) , i F(an)) w(Y(in)) - Ly f(x)dx + E
with O ¢ E, and

w(E) < (y- a) K max W(Y(in)) .
For an illustrative example, consider
Iny = jy & s y>1,
1 X

and take F(Y) = 1/Y for Y >1 (i.e., ye Yoy >1). Let

an)=l+[i-l,i]—(y—;-£)-, i=1,2, ... ,n
then
(n)y _ 1 _ n n
£y )-l+[i-l, 1] (y;ll)' n+ily-1)’n+(i-1)(y-1)

If a>1, then

w(F([e,0])) = wll/o, 1/a] = 222 < wlav],
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so we can take K =1 in (5.1) and obtain for n =1, 2, ... ,

Inye In(y) and W(In(Y)) < y- 1
From (5.1), it follows that
(5.2) / F(an)) W(Y(.n>) = fy f(x)dx .
;i a

We have so far in this section considered only rational interval
functions F whose real restrictions are real valued. If we drop this

requirement we can still form the sums
n
n
E f(Y (Y§ o

and we can regard (5.2) as a definition of the integral on the right
hand side. Again, using Theorem 4.2, we can prove (5.1) for interval

valued functions F satisfying
xt* C x - Fx') C FX)
and
w(F(X)) < K w(X)
in a regular domain (see [13], [1Lk]).

The difference between this and the previous interpretation of

(5.1) should be made clear by some examples.
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Let F be the rational interval function given by F(X) = (A + X)A
for some constant interval A and say for X ( [1,2]. Subdivide the
interval [1,2] so that

n)

Yg = 1+ [i-1, 1] % for i=1,2, ... , 0,

and consider the interval sums

n
= i§1 F(an)) w(an))
= nl(A+l+[‘ l‘]-]-')A
= i{:la 1 - s 1 o .

Now the real restriction of F is f =F | [1,2]; so f(x) = F([x,x]) =

(A + x)A for x e [1,2], according to (5.2)

2 N el 1
f (A+x)Adx=[\ EE(A+1+[i-l,i]E)A.
1 n=1 i=1

It is clear that the set of numbers

2
j (a + x)a dx = a(a + 3/2)
1

for a e A, 1is contained in the interval

2
f (A + x)A ax ;
1

however, if A = [-1, O], then f{a(a + 3/2) | a e [-1, 0]} = [-9/16, 0],

whereas
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i=1
n
1 ( i-1 i >
= o 1+ = [_l o]
i1 B [ ? n] ’
n
1 i
= Z - -l°—; O
i=1 " [ ]
5 n
=-J;lo,}::(n+i) =-—l§[0,n2+n(n2+l)]
n~ = K
31 ]
- t- 2- =, oJ
and
) ~ 3 1 3
J( ([-1, o] + x) [-1, Olax = [_ 2.%,0 ] _ [_ 3,0 ]
1 n=1

Of course, by refining the constant A, we can approach the correct

set of values for

2
Jr (a +x)adx | aca
1

that is, for

we will obtain

- 2 ( ro
};{ .j; (Aj + x)Aj ax - i:/; (a+x)2dx | aca )
Lo



for

max w(A,) - O, j=1,
j d

In the example following (5.1), we had

2 (n) (n)
myel(y) = 3 FY;V(@) w,V(y) ,
i1
with
F(Y) = %
and
an)(y) = 1+ [i-1, 1] y;l,

where we found that

e
]
|_l

W(I_(Y) <

[n]

Recall also that

w(F(Y)) < w(Y) for Y >1.

The interval valued functions,

L3



of the real variable y can be extended to rational interval functions

on Y' >1 in the obvious way

Clearly, {(Iny | ye ¥') C IH(Y') and

f nydy e I (Y') w(y")
Y "

Suppose Y' = [y, y'] with y > 1. Let

ng) = y+[j-1, J](L"I_n—y_))

then

and

= (m)
_}j W(ij) = w(y")
j=1

Now In(Y') is a rational intervel function of Y', so by Theorem 4.1
there exists a pcsitive real number K such that

Ly



U I (Y(m) = Ttn(Y') + B

. (y' - ¥) : y-1
with O e E and W(Em)‘f K ~——==. Since W(In(y))_f —, and
Iny e In(y), we have

—- v -1
I(y) = U I(y) C Uny|yey)+[-1, 1] .
n . n n
yeY
Therefore
m
UIW(m)) = nylyexy)+E _,
\ n'"J n,m
J=1
' [
with 0eE , wE )< K w(¥') + 2y l). It is also easily
n,m n,m’ — m n

shown that there are positive real numbers K, K', such that

m
> In(Y(.m)) W(Y(.m)) = f fny dy + Er'l !
j=l J J Yx J
with O e E' and
n,m
1 2 1 1
w(E' ) < Kw(y) + K {w(¥")]} + 2 w(y')(y' - 1)
n,m’ - m n

Thus by iterating and composing the processes of refinement and
interval integration we can obtain, by finite computations with intervals,
sequences of intervals containing and converging to the range of values
and the integrals of real valued functions such as the logarithm which

are not themselves rational but which are integrals of rational functions.
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We consider now some more rapldly ccnvergent procedures for bounding

ith interval computations.

F(l) F(k> are rational interval functions on

<X p  Sueh that the corresponding real restrictions are real valued

4 f(r-l)(x)

/
rational functions £\%) = §iT) | A with f(r>(x) o

J

r=1, ... , k. That is, the {f(r)} are the successive derivatives

up to order « of =2n ordinary rational function with real coefficients,
.,\’ C'\,‘l . _;,( O> ~ .

namelv i = 7. Turthermo—2, T 1s bounded on A. In fact,

“(A). Consider the real integral

b
j f(x) ax ,
a

with [a,b] ( A. Subdivide the interval [a,b] so that

x ¢ A implies f(x) € F

n
[a,b] = U X. 5
=1 *

with

(0).

and write X, = [Xi-l’ Xi] and f = f The Taylor theorem with

remainder asserts that for each t ¢ [O, W(Xi)],

k-l)( \

X )
i-17 k-1, _(k), ..
-7 ¢ *Ri(Y)

X

vt) = 200y

1) * f(l)(xi-l)t e

=y

with
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i

(r)
k-1 £ 7/ (x. .) w(X.) w(X.)
f £(x) ax = ) AL f T gt + j * R(ﬂ(t) at
0
and the last integral exists since all the others do. We can write

h h
fo g(t) t°at = —p= fo g(t) a(t™™) ;

therefore,

(x,)
IV 1 R(il_{i(t) at

0
- .13_' fOW(Xi) f(k>(xi_l + 6, )5 at e TETITF F(k)(Xi) {W(Xi)]k+l .
Since
fOW(Xi) T oar - r_Jlr_—l_ {W(Xi)}ml ,

we have finally the result that

b n k-1 f(r)(xi_l) i1
fa f(X)dX € 2 E —m [W(Xl)} + En,k

i=1 r=0

with

n
Bk T Zk—i_lﬁ i‘é\l F(k)(Xi) Gr(x,) e
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Since there is a Kk such that for all X, C 4,

e (F9mp) < x o
it follows that

+
}kl

TE) S rmroyr (b - e) mex ()

izl, oua’no

Now define I n,k > 1, by

n,k’

n k-1 Fr)(

l r-!-l 1 k+l
(5.3) In,k = iEl 20 W {w(Xx, )} W 121 F( )(X ){V(X )}
We have proved that
Theorem 5.4 :
b
f k>1
«[a (X)d'ern,k’ n,k>1,

and if w(Xi) <h for i=1, .. , n, then

(5.4) | W(In,k> < m (b -a)n .

The formula (5.3) gives a (k+1) St order method in the sense of
(5.4) for each positive integer k. In case k = O, delete the double
sum on the right hand side of (5.3) and the first order method expressed

by (5.1) results.
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For an example, consider

Tet Xi=l+[i-l,1]—r—ll,1=l,  n. Ve nave £9(x) = £(x) =
1
_}E, SO
r
T -1 r!
f()(x)—(:)p+]_ b) r=0,1,2,
Now take
r
r -1 r!
F()(X)=(——%—+l—, r=0,1,2, ... ,
X
then

W<F(r)(X>) - r!w<;{%_—l>

If X =[2,b] C [1,2], then

and

W_( 1 > _ 11 = (b - a) (p* + + 2")
Xr+l ar+l bI'+l ar+l br+l
r+ 1
I W0 5 (e D) w)



Thus we can use Kk =(k+1)!, b-a=1, h= % in (5.4) to obtain
2 ax
— e I )
1 X n,k
with
1 k
(5.5) I < G
where
- -r- +
n k-1 (_l>r ;-1 r-1 1.7 1
In k r+ 1 1 (E)
’ i=1 r=0 \
(5.6)
n -k-1 k+1
1 k . L1 1
1 b (1) (l+[1—l,1]5> () .
i=1
Call y. = = ; then (5.6) can be rewritten as
i n+i-1"7
n k-1
1 (-1)
- + - = 4 e 4 e )
T,k P yi<l Y5172 yi< k ) )
i=1
(5.7) (-l)k n . . _]-k—l
fxwT L ri-Lingd *
i=1
We now give a heuristic discussion of the "efficiency" of this
formula. 1In the final section after rounded interval arithmetic has

been introduced we will reconsider briefly the problem of efficiency
from the point of view of actual machine computation.

Using (5.7), the computation of i requires roughly 3kn
J

k

additions and multiplications of real numbers (ignoring about n + 2
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divisions). Looking at the bound (5.5), suppose we wish to make

then

In S
€

in n

The quantity Cn = 3kn measures the amount of computation required

bk

) < € it is sufficient

to evaluate I . In order to achieve W(In ) S
J

n,k

(2nd in order to guarantee it, it is necessary) to use any positive

integer n together with kn, the smallest integer k satisfying

in %
ko2 nn
Then the amount of computation required will be Cn x = 3kn n or very
2
n
nearly
)« 1
¢(n) = T o

The function C(n) has a minimum at n = 3 for positive integers n,
so the most efficient choice of k, n indicated by this argument is

n=>53, and k the smallest integer satisfying

in
In

m |

k>

W

in which case we find that the amount of computation required for
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is very nearly

i
c(3) = (8.19 ...) In <
-10 i 10
If =10 for example, we choose n = 3, k =21 >‘—Zﬁ—5*~ = 20.9 ...
and using (5.7) to compute 15’21 we would have 05,21 = 189, and

3
; 1 . L 1=22
w(Iy o) = W(é@ iz?l [3+1-1, 35+ 1] )

|
- 2 {572« w16,572) 4 (15,6778 )
J
22
- (@ - @F) < 07

as claimed. Suppose we arbitrarily choose a value of k, say k = 4.
Then, to guarantee W(In 4).5 ZLO-:LOA9 with this 4™ order method we
J

need to take n according to (5.5) such that

or n > 317 and in this case C =3% - 317 - 4L = 3804k. Or, in

- 517;4
other words, this choice requires about 20 times as much computation as
our previous choice, n = 3, k = 21.

The method defined by (5.3) was based on a local expansion of the

integrand f(x) in Taylor's series and was iantroduced mainly as a
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straightforward illustration of the derivation of "high order convergent"
procedures for bounding definite integrals with interval arithmetic.

There are, of course, many other rational expressions approximating

jfb f(x) dx

such that the error can be bounded by rational interval computations.
A highly efficient procedure in widespread use is the so-called

Gaussian quadrature technique [11]. We write

[a,b] = Ki) Xi

with

n
jéﬁW(Xi) = b -a

with the same assumptions on f as in (5.3). Then X, = [xi_l, xi]

and the Gaussian method has the form

b n k
(5.8) f fax = 3 (wlx) e, ol 0 u, () b+ B
i=1 r=1 ?

a
where
- \)4' n
! +
(5.9  E , - ) () 12T 238D (g
’ [(2k)1]7 (2k + 1) i=1
for some gi € Xi i=1,2, ... , n.
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The numbers g.. and u, (r=1, 2, ... , k) are the weights and
argument spacings of the Gauss "k-point formula" [11]. They are associ-

ated with the zeros of the Legendre polynomials

k
p(t) = L (7 - DF
at
and are tabuleted to 15 decimal place accuracy for k =1, ... . 16 in

[10].
Using Stirling's inequalities for n! we find that for positive

integer values of k:

oK 1,2+, kel 1,28+,
% 11 2t (f) < > < 2n (f)
[(2x):]° (2k + 1)
Since f(gk)(gi) € Fkgk)(Xi) for a rational interval function F(zk)
with real restriction f(EK), we can write (using (5.9))
n fw(x)\2EL 2Ry
E e on |2, 1| D = — .
n,k 2k + 1 ° el Iy (2k) -

We now define an interval version of the Gaussian method by the formula

a n k
- ( o . N
In,k zzj w(X,) r,:l g, flx; | + u, w(X,))
(5.10) 2k+1l  (2k)
- n (X ) (%)
MR e R izz?l Ty

For this method we have

o G
=3 T °
j; f(x) dx € Tk

5h



for X (C A, there isa K, such that w(F29(x)) <K, w(X), and

2k 2k

putting h = max W(Xi)’ i=1,2, ... , n, we have
i

2k
-G 21 h

(5.11) w(ln,k> S?\W (b - a) {'E Ko ™ m—gl—{lj—l-/v IF(QK)([a,bD, ()I)

Proof of (5.11):

Recall that w(AB) < [A| w(B) + |B|] w(4) and w(ah + bB) = |a| w(a) +

(

o] w(B). Thus,

2k+1 ng(b - a)

G h
W(In,k) o <E) T
n W( X, ) 2k+1
L : (2k)

(2x + 1)(2k): £;L< 41 > |F (Xi)l

Now
n w(X.) ok+1 -
— (2k 1 ,h (2k)

E;L < i > |F )(Xi)l < i (E) ;éi |F (xi)l w(x.)

and

n
bl ] wx) < 192 (a0 (b - )

Putting these inequalities together we obtain (5.11).

Returning to our example

put
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H2) ) L1 (o)
g - DR+1
X
as before. We can take ng = (2k + 1)! and by direct computation we
find that
2k
122 ((1,e))] = (2w
. 1
So with w(X.) = = we have
i n

with (5.10) becoming

& _ 21 i . 1
nk i=1nr=1r1+l;ll+ur?ll
(5.12)
¥ 2“[21«:»%1’1}11?_ () ., k1

and (using (5.11))

; L (=)

1
(5.13) WLy o) < 2m(gn (2k + 1) + gy

Counting a division as 3 multiplications, the number of multipli-

cations and additions to evaluate Ii OV (5.12) is roughly (ignoring
J

n additions)



) < e it is sufficient to take n, k positive

In order to achieve w(I
n,k’ -

integers such that

1 1 1 2k
21 E(Qk"'l)"?‘m <-rn) S €

If e = lO_lo, we can choose n =1 and k = 10, 1in which case

C? 10 = 48. This is evidently the most efficient choice of n, k in
-J
G

n,k

Recall that our best choice of n, k¥ for In X with the same value
J

) < 109 ana ¥ < 48, then n=1, k=10.

this example; if w(I nk =

for € was n = 3, k = 21, in which case as 189. In other

5,01 ¥

words, it takes about a fourth as many arithmetic operations to evaluate

J, ¢
lX

. G . . . .
using In as 1t does using In to achieve guaranteed ten decimal

»k »k

rlace accuracy.
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6. The Initial Value Problem in Ordinary Differential Eguations,

In this section we are interested in the problem of computing

bounds on the solution to the system of first order ordinary differential

2cuations,
| ay
(6.1) T fJ-(X: Y12 =e0 ym) s J=1 5 «o0 ,m,

which satisfies the initial conditions
(6.2) v.(x) = vy, , =1, «eo , m -

For brevity, we will sometimes use the vector notation y for

(yl§ cen ym) and £ for (f., ... , fm)° For example, we can write

l)

(6.1) in the simpler form
a .
(6.3) o = fxy

and {6.2) can be written y(xo) = ¥, We will use the metric ly - z| =
max {[yi - Zl, 5 oo s ]ym - zm,} for m-dimensional vectors y, z, f,
ete.

It is well known that when f is continuous on Df = [xo, al C)
B, ®B, ...®B,  with a >x, and y,  in the interior of Bj e d

(=1, ... , m), and when f satisfies a Lipschitz condition on Df

(6.4) l2(x, v,) - (=, v)| < Koly, - w0
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for some non-negative real number K then there exists exactly one

f’

solution to (6.1) and (6.2) in [xo, x*¥] for x* such that, for all

(x,y) € Dy, we have

Vio (x* - x ) fj(x,y) € B, (3=1,2, ... , m .

We will suppose throughout this section that Fl 3 see Fm are
interval valued functions on the regular domain D_ = & @ :& @
F [xo,a] Bl
oo @ &B » satisfying the following conditions for j=1, 2, ..., m:
m

1) Fj is continuous, and Fj restricted to
D, = [xo, a]@(}B_.L s e ’®Bm is a real valued function
fJ., i.e., Fj(x, Yo ee s ym) = fj(x, Yir wee s ym) for

(%, Yy coe ym) € Df ;

2) Fj is inclusion monotonic, i.e., X' (C X, YJ'_ C Yo een s
' . 3
Y C Y  implies

Fj(X', Y]'_, cee Yn'n) C FJ.(X, Yoo eee s Ym) 3

3) There is a real number K, such that W(FJ_(X, Yoo een s Ym)) <

K, max {w(x), W(Yl), cee W(Ym)}.
Notice that in case F is a rational interval function on DF

with real restriction f on D, then the conditions 1), 2), 3) are

satisfied by F and also by f, the united extension of f.
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The conditions 1), 2), 3) above imply (6.4). To see this, let

Y, = [yll’ y12]’ cee s Y= [yml’ yﬁg] or in abbreviated form Y =

(vy5 v,]. Assume w(Fj(X, ¥)) <K max {w(X), w(¥)}. Then

s
EA
Vi

ko

Ax, Y5 < Kp w(Y) for real x ¢ [xo, al. Since f. 1is, by defini-
J ot

. N L e /7 ~r
ticn, the real restriction of Fj’ we have fj(x,y) e F.ix, v) whenever
o

_ - _ / _ .
v ¢ Y. Therefore fj(x, yl) fj(x, yé) € Fj\x, Y) Fj(xj vi. Now

[a,b] - [aslb] ['l) 1] W(La)b]) P

SO

lfj(x, yp) - £5(x vl < w(Fs(x, ¥)) < Kply, - w4l
and therefore
2%, ;) - £(x, ¥p)| = max !fj(x, yp) - £5(x )l < Kply, - vl

J

We notice incidentally that KF _serves as a Lipschitz constant for f.
We conclude that conditions 1), 2)s; 3) guarantee the existence and
uniqueness in [XO, x*] of a solution to (6.1), (6.2) when fj is the
real restriction of Fj°

If y. € on for on rroperly contained in Bj then the

Jjo
equation

+ * (D) =
on (Xj xo) Fj\Df/ Bj
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has a solution X? with w(Xg) >0 for each j=1, 2, ... , m. By

F.(D.) we mean, of course, Fj(D@) = Fj([xo, al, B

, B ). Define
j m

l’
N P A - AT AT

In this way we can compute an interval, namely X", in which existence

and uniqueness of a solution y to (6.3), (6.2), is guaranteed.

The First Order Method.

(n) _(n) (n) by

. Let n Dbe a positive integer and define Xi 5 yji > Psg
n .
yjo = yjo and, for i=1, 2, ... , n,
(n) _ | (n) (n)| _ : 1 w(X*)
X = %10 X = x_ [i -1, 1] ”
(n) _ _(n) 5 w(x¥)

In vector notation, dropping the superscript (n), writing h for

x* i
Zﬁ?rl » and writing S = [0,1]h F(Df), we simplify the writing of
(6.5) to
X, = x_ +[i-1,1i]ln,
by = Vi, tS,
yi = NS 1 +h F(Xiﬂ bi) 2



so that for 1 =1, 2, ..., n, we have
y- = yi_l + h F(Xi} yi_l + S)

This recursion formula expresses, in its simplest form, our first
crcéer interval method for ordinary differential eguations.

The solution y to (6.3), (6.2) clearly satisfies y(x) €V<Xi_l)-+s
for x €X; (that is, for each Jj=1, 2, ... , m, yj(x) € yj{ki_l) + Sj’

te. i
etec.), and if y(xi_l) € y;_ys then

v(x) = y(xi_l) + Jf fxt, y(x'))ax (x € Xi)
*i-1

so y(x) e viq t (x - Xi-l) F(Xi’ viq ¥ S) whenever x ¢ X,. Further-

more, writing W(yi) = max w(yji), etc., we find that
w(yi) < w(yi_l) + h K max {h, w(yi_l) + ¢ h}
where c¢ = w([0,1] F(Df)); therefore
Kp(xi-%o)
(6.6) w(yi) < (max (c, 1)) (e -1lh .

Replacing the superscript, (n), we define for n=1, 2, ... the

functions y(n) for all x € X*, noticing that X* =

(n) i=1

{4
difining y' ™ (x) for x e X",

€ 50 =5« (o f)efy o (- e

The functions y(n)(x) are well defined since at xgn), the common end

- (n) (n)
point of Xi and Xi+l’ we hage
2



(n) (n) (n) (n) (n) (n)
- + - = .
In fact, the functions defined by (6.7) are obviously continuous interval
valued functions and are piecewise linear in x; that is, for 0<t<1

we can write

(n)
i-1

(n)

i

°

y(n)((l -t)x; vt x) = (1-4t)y

i-1 Tty

n) _

(However, since y(n) is an interval we do not have (1 - t)yg_l

i-1
(n) (n)
viip - by, for t> 0.)

We have shown that the interval valued functions ygn>(x) defined
by (6.5) and (6.7) contain the corresponding components of the solution
to (6.1), (6.2); that is, for n=1, 2, ... , and for j=1, 2, ... , m

we have, recalling (6.6),

Theorem 6.8:

yj(x) € ygn)(x) for xe X',
and the sequence of interval vector valued functions y(l>(x), y(g)(x),

y(B)(x), ... converges uniformly to y(x) for x e X'. Furthermore,

there is a real number X such that for x e X%

(6.8) max w(y M (%)) <
F =

sIx

B jJ=1,2, ... , m.

The following example will serve to illustrate both the geometric

and the computational significance of the above result.
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Consider the equation

dy . .2
dX - y J
and the initial condition
y(0) = 1.

The rational interval function G : <§ - éi defined by G(Y) = Y2
has real restriction G({y,y]) = f(y) = yg° In order to use the same
notation as developed for the general case, we define F : tQ[O,a]Q@
‘93_’& by F(X,Y) = G(Y) so that D = ‘&[o,a]@) &B and T
restricted to [O,a] @B is f and Df = [O,a](:)Bo We assume B is
an interval of positive width containing the initial value y(0) = 1 in
]o

its interior, e.g., 1e[0,2 > and that a > 0. The function F

clearly satisfies conditions 1), 2), and 3).

= F{[0,a], B) = B, Call X¥ +the solution of (compare

Now F(D 7

\
f/
(2.9))

1+ (X?E)B2 - B.

Since y(0) € B, we will always have O ¢ Xio Set X = [O,a]{ﬂ\ X;o
Then we can be sure of the existence and unigueness of a solution for

x e X7, Figure 8 illustrates the geometric significance of the process

for determining X*.
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Figure 8

The shaded rectangle is X (X) B. Let B = [1/3, 2] and a =1, for
example; then the lines y = 1+ (1/9)x and y = 1 + Lx bound a wedge
in X* X B containing the solution v(x) of y' = y2, y(0) = 1;
that is, for x e X* = [0, 1/4] we have y(x) ¢ 1 + xB° = 1 + x[1/9, 4],

since in this case we have

1l

1+ Xi [1/9, 4] [1/3, 2] ,

x*l‘ [1/9, 4] [-2/3, 1],
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or if X* = [c,d], then since O e X¥, we have c<0<d4d and
[c,a][1/9, 41 = [kec, k4al,
so we find lLec = -2/3, 4d = 1 or Xi = [-1/6, 1/4] and
x* = [0,a] () XX = [0,1] (") [-1/6, 1/4] = [0, 1/4]
Next, we determine for this example the functions y(n), defined

by (6.5) and (6.7). We find that w(X*) =1/4 so h = ﬁ; and, using

B=[1/3, 2], a =1, we determine that

F(D,) = B° = [1/9, 4],
s = [0,1]1n B° = [0,1] %
Xgn) = [i-1, i] i% - [xg?i , x§n)} ,
p(m) yg?i + [0,1] % s
SREE R
and therefore
@A g (el e d)

for i=1,2, ... , n, with ¥y
The intervals y§n>, i=1, 2, ... , n, can be computed using (6.9)
(1’1)(

x). According to (6.7), we have
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. 2
y(n)(x) = y(lﬂ + <x - —r—(l - D) <y§ﬂ + [0,1] %) s

n

(6.10)

for x e [i -1, i] ﬁ%

Evaluating (6.6), we find that

(¢
1]

w([0,1] F(D.)) = w([0,1] [1/9, 41])

W([O;u]) = L4 b)

and if Y = [yi, y2] C B=1[1/3, 2], then

w(F(X, V) = w(v®) = wlly, y,1%)

= w([yi, yg]) = (y2 - Yl)<y2 + yl)
= (v +y,) w(¥) ,

and we can take KF = L4 in order to obtain w(F(X,Y)) <K w(Y) for

(X,Y) € Dy = 49[0’1](:) ‘3[1/3,2]° Meking these substitutions in (6.6),

we obtain

(6.11) W) <1, (i=1, 2, ... , n)

Figure 9 illustrates the construction of the functions y(n)(x)
geometrically. The small rectangles are the bi for 1i=1, 2, ... , n,

while the small dotted triangles are translates of y, + (x - x) F(Df)

67



T

T > B = [1/3, 2]

/
'
- |
//

\

X" = EB; 1/4]

Figure 9

to the intervals Y593 that is, they represent the interval valued
functions of x ¢ X, bounding the solutions y to %g = f(%,y) ' which

pass through x. ., Viogc If y(xi_l) € ¥y, 1> then v(x) e Vi1 *
(x - x5 4) Fng) for x e X,
The choice of the interval B is seen to affect the width of x*

and the numbers c¢ and Ky in (6.6). The bound expressed by (6.6) on

(n)>

the size of W(yi was derived in order to prove the convergence of

the functions given by (6.7) to the solution of the differential equation.

On the other hand, we only need the function F in order to compute the

(n)

v;_ ] Wwhich determine (6.7) and we will automatically have y(x) e y<n)(x);

;

so that the interval valued function ykn)(x} gives upper and lower

bounds to the solution y(x) at each x ¢ X*. For example, setting n= 10
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in (6,9), we find by interval arithmetic computation that ygéo) =

[1.321..., 1.399...] so W(ygéo)) = .078... which is about 1/4 as big

as (1/10)e  (compare (6.11)). The exact solution to %% = y’2 with
y(0) = 1 is, of course, given by y(x) = T % ~ and from (6.10), setting
i = 11, we find that y(lo)(l/h) = ygéo> = [1.321..., 1.399...]. Thus,

y(1/4) = 4/3 = 1.33... ¢ y(lo>(l/h) as promised.
(n)

Now having computed vi

for i1=1, 2, ... , n we can choose

y(n>

n as a new initial condition at x = X the right hand end point

of the interval X' . Select a new interval B containing yin)

in its

interior and a new real number a, or perhaps use the same a - X, as

=Yy -y +3B . If the rectangle so determined

before and set BneW n o 518

still lies in the domain of F, we can proceed as before. In this way
we can construct continuations of the functions y<n)(x). To illustrate,

we will extend the y(n>(x) obtained for the example we have just treated

above. See Figure 10.

> new B
/] s

L

/
/]

1

N\
T

old Bﬁ ///

I
|
[
|
|
[
1
l

N ~

|

new a
fe— 013 X* —>L—new X*‘»’

Figure 10
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) n),
If we choose the new B so that B = [1,4], with 4 > y( )(l/h),

then F([1/4, a], B) B - (1, d2] and the new X* is determined by

NCTE (X?f' >[1, F1 = [1,4],

Fl-

and therefore

eo-x OEae| -3

T y(n)(%) = [yl, yg], then a* is found from

l) d2

y2+(a*-g = 4, d>y2)

or

a - yé

d2

Clearly, 4 = 2y2 maximizes a*; in fact,

|
1
4=
<

Since Yo >>%, then a* <-£%o We can again choose a positive integer
n and compute the intervals ygn) bounding the solution over the new
*

X". In fact, for any 0 <3 <1 we can find a finite monotonic sequence

of consecutive a¥*'s such that the last one is in the interval [L-%, 1

[—

by & finite repetition of the extension procedure. Then the constructed
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bounding functions y(n>(x) will converge uniformly on [0, 1 - 8]

with increasing n to the solution y(x) = and for each n and

1 -
each x e [0, 1 -3] we will have y(x) € y(n)(x).

The method we have been discussing is a first order method in the
sense of (6.8); that is, the widths of the intervals y(n)(x) for
fixed x are O(n_l). It should be clear that in the example above,
applying the method to the equation y' = yg, the intervals y<n)(x)
do not satisfy w(y(n)(x)) = o(n-l) for fixed x > 0. We will now turn

to the investigation of a class of methods such that for each positive

t
integer k, there is a k b order method for constructing interval

y(k; n) (

functions x) of the real variable x (for x in an interval

X*) which are related to a solution y of (6.1), (6.2), by

y(x) € y(k’n)(x) for x e X¥

(k,n) -k . .
and such that w(y (x)) = 0(n 7); in fact, for each k there will

be a positive real number Kk such that for all x € X*¥ and for all

positive integers n,

The Methods of Order k > 1.

We will derive a kth order interval method for each integer
k > 1 based on local expansion in a Taylor series in a fashion similar

to the development of In in Section 5.

,k
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To avoid notational complication we will assume k is a fixed
integer, k > 1, 1in the rest of this section.

let F = (Fl, e Fm) satisfy conditions 1), 2), 3) stated in

(2
the first part of this section. Furthermore, let F. >, J=1, 2, «o. ,
. o

my £ =0, 1, ... , kK - 1, Dbe interval valued functions also defined

on D. with real valued real restrictions f§£> such that f;z> =

F
a .(£-1) . i
i fj on Df, that is,
. el 4-1) el 41
(2) J : J
T = + f £=1,2, ... ; k- 1)
3 o ;g& ——552—— v ( Y 5 ) s
\
with £.0 - ¢
J J
Assume Kéﬁ), £=0,1, ... , k- 1 are positive real numbers

such that ng) satisfies conditions 2), 3), with

(6.12) W(F(z)(X, Y

X y) . . .
; ., Y )) < (£) max (w(X), W\Yl), coe 5 wW(Y_))

1’ m'/ =

(£)

For example, if Fj s J=1,2, co. ,my £ =0,1, ... , k-1,

are rational interval functions on DF then all these conditions are

L) ‘
/" has real restriction fgz), a real rational function

(e) _ _a (4-1)

satisfied if Fg

on D

£ satisfying fJ =% T o
, , A
Using vector notation again we have F(z) = (Fiz), coo F;Z’)y
/ ’ 2
Y/ 4
e ey ate.
m
We define the function A(X, x, ¥) = (4(X, x, ¥), ..., A (X, x, Y))

on '[Xo,a](:>DF with Y = (Y, ..., ¥ ) by

T2



k-1 _(2£-1)
A% x,Y) = Y+ 3 F z(.x’ 0 (x - 0t
£=1 :
+ _....___f_ (X - X)K .

k!

The function A will play a role similar to that of 1 + xB2 in

Figure 8 and the dotted triangles of Figure 9.

Let B = (B

1 ..,Bm) and C = (C

10 e s cm). Then by C(C B

we mean Cj C Bj’ j=1, ... , m

Recall that Dy = ix,0]® &Bl y e 5 ® &Bm with y,  in

the interior of Bj’ J=1, ... , m. We wish to determine an X*  such
that w(X¥) >0 and X* C [x, a] and A(X", x, y)) C B. The

widest X* satisfying these conditions is determined by the equations

A (X%, x

3 o Y = B, j=1, ... , m

J

(which are not linear in X¥ for k > 1). Rather than assume a solution
for X* we proceed as follows in order to determine a suitable X¥ by

a finite sequence of evaluations of A. Choose a positive integer p.

(o) = A(

o *
Compute A [xo, al, x, yo). If A( ) (C B then set X = [xo, al,

e}

otherwise find the smallest positive integer g, such that

A(q) = A([xo, x + 2™ %q - XO)], X

:YO)CB°

(e]

(1) (@)

This is done by computing A s +.o Successively until the first

g for which A(q) (C B. Such a q exists by the assumption that yjo

3



is in the interior of Bj’ j=1,2, ... , m. If p =1, then set

) G [xo, X+ 27%(g - xo)]. To get a slightly wider X* we can

choose p > 1 and determine successively p - 1 binary digits,
Dy oo 5 bp (i.e., each b =0 or 1, s=2, ..., p) such that
_q_l

-q-p+
+ oeee + p 47P l, we have

for  6=1-2%+p .02

A([XO, X + o(a - XO)], X5 yo) C B.

For every positive integer n, define

_ w(x™)
n n ’
Xgn) =x +[i-1, iln = [ngi , xin)] , i=1,2, «o. , 10
so that x(n) = x_ and x(n) =x + w(X*) for all n. Define y(n)==y
o o n o ) o
for all n and for i=1, 2, ... , n; define for x € X§n>,
ﬂn’( ) = A(
yi x) = Alx, XO’ y0>
(£-1),_(n) (n).
‘ (\ (n) . kel F (Xi-l ’ yi—l) ( (n)>£
(6.14) yiia*t L 7! S |
£2=1
<k-1>( (1) y(n) () m)
. F X0 A<X1 s *5.12 1-1) (x - X(n)-) \
! % E
then



(n)

i

gn)) = y(n> for i=1,2, ... , n and (6.14) defines,

- (n)

so call y (x

P . . . ;. %
by finite induction on i, a function ¥y on x € X" for each n,

(n)

5 The quantities ygn), 1=1, ..,

by y(n>(x) = ygn)(x) for x € X
n are each determined by a finite number of evaluations of the F(z);

)
substituting xgn’ for x on the right hand side of (6.14), the left

hand side becomes y(n) (X§n>) = y(n),
i i i
Recall that we are using vector notation, so that the quantity
ygn), for example, is the m-tuple of intervals (y§?), cee yég)).

And W(y(-n>) = max w(y(.r.l>), ete.
1 J Ji
It is not hard to show that there is a positive real number M,

such that for all positive integers n and for all x ¢ X*,

¥\ K
(6.15) Wy V) < M(W‘X )

n

From (6.12), (6.13), (6.14) one derives an inequality of the form

w(ygn))_f (1 + hnK) W(yg?i) + c h§+l. Then (6.15) follows easily.

In the present situation w(yon)) = 0. More generally, (6.15) holds

k
provided W(yén)) < NC%) for some N > 0. This fact will permit the

continuation of the functions y(n) to a new X" without losing the
inequality (6.15) on the union of the new X* and the old X¥,.

Instead of assuming a solution y to (6.1), (6.2) we will give a

proof of the following assertion:

Theorem 6.16:
The equation

y(x) = m 7™ (%) ; xe X",
n=1

5



defines a function y e Ck(X*) satisfying (6.1), (6.2).

Proof':
First, we wish to show that for every x ¢ X* and for each pair
(n,)
2f positive integers IR the interval valued functions ¥y L B

{n,)
v , defined above, have non-empty intersection at x; i.e..

(n ) (n )
y : (x) [\\ Ng 2 (x) is non-empty.

In fact, we will use (6.15) to show that for some positive integer
No and for every x € X*, n > No implies

(nn n,) (ng) (n,)
(6.16) y T oy YNy 2.

It is sufficient in order to demonstrate (6.16) to show that for

any n, there is a large enough No such that n' > No implies

1
(n'n.) (nl)
y (x) Cy (x) for all x e X*.

From the definition of y(n)(x) it is clear that y(n>(x) C
3

’

Alx, X yo) for x e X*. Furthermore, y(n)(x) is non-empty in Xin

Since
(£-1),_(n) (n)
k-1 F (x; > Vi ) W\ k
A<x’ X(ﬂ ’ yiﬂ) REREE ﬂgl T (X i Xiﬂ)
(k-1),
F (Df) () k
¥ K] (X - Xl-l)

and
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(Xgn): A(X](_n): XO’ yo)) C Df s

it follows that the expression in brackets for i =2 on the right hand

side of (6.14),

#2-1)( (n) _(n)
(n) , &2 (Xl ’ yln> [x - «m)?
Iq 4=1 s ' i
+ F(k-l)<xén): A(Xén), Xgn), y§n))> (X _ X(n))k
k! '

(n) (n)
1 2

We claim that for n sufficiently large,

(n)>

is contained in A(x, x. 7, vy

for x € X

A<X p) X](_il_-)j_ ) YE_?])_) C A(X: XO’ yo)

(n)

for x e X7/, y(n)

. . (n) (n)
and therefore (x) is non- empty in Xl Kj X2 \J}

=

kj Xgn). Proceeding in this way for 1 = 2, 3, ., n, wWe

finally have that y(n)(x) is non-empty in X¥.
(n'n

() )
Imitating the above argument with y (x) (\\ y (x) in

place of A(x, X yo) (ﬁ) { **= } on the right hand side of (6.14),
we have for sufficiently large

N that n' >N_ implies
o o

Thus, for each x ¢ x*

integers n n e n
g 1’ ) > By

*

for all x e X

and every finite collection of positive

we have that

r



P (n)

Ny Y@

q=1

is non-empty and contained in B. By the finite intersection property

i the compact set B this means we can define a functicn ¥ on X

0

y(x) = (ﬂ\ y(n)(X) .

n=1

For each x € X*, yv(x) is non-empty; in fact, it is clearly a
real m-tuple. By (6.15),
w(x®) *

mm<WyJXD = wiy(x)) < M= i j=1,2, ... ,m,
J

for all n; hence, w(y(x)) = 0 for all x e X*, that is, yj(x) =

[yj(x), yj(x)] or yj(x) is a real number. DNotice that y(x) € y(n)(x)
for all n and all x € X*.

We claim that y satisfies (6.3) with y(xo) =y, that is,
y(x) = (yl(x), cen yhﬁx)) with {yj} satisfying (6.1) and (6.2).

For large enough n we have, for i=1, 2, ... , n,

(n) _ _(n)
o= vy éé; Z By
(6.17)
(o, ), ) )
* k! by
where h = Kigil, as before.
n n
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Recall that x(n) =x_ * (i - l)hn. Now fix x(n) then x§n) =

i-1 i-1°

xgni +h and let n be large enough so that (6.17) holds, then

(n) (n)
yix;Too+ hn AL (
g hn> B (L) 63
(6.18) < h—l w<y(lfl:>L +hy F(O)<X(iﬁ , ygil)» + w(ylil)
n
(1) (k-1)

Since k > 1, then by (6.15) and (6.18) we have

() - o, o)

In fact, with a little refinement of the above argument it follows
that for x e X, %%(x) = f(x, y(x)) and y e Ck(X*). The differenti-
ability of y follows from that of f.

We will now illustrate the computational aspects of the kth order
procedure for k >1 with an example. We consider the same example
used to illustrate the first order method above, namely

= ¥y = flxy) , y(o) = 1.

gle

Thus, let

9



F<O)(X) Y) = Y2 B
F(l)(X, Y) = oy” 5

g vy = x 1

- 2

and let D, = [0,11X)[1/3, 2], as before. From (6.13) we £i:d that

k

-1 )
A, %, Y) = Y+ 3 Yz -0t + (15, 205 (x - 0)F

p=1

First we need to determine an X¥ such that

w(x*) > o,
x* C [o0,1],

A(X", 0, 1) C [1/3, 2]

Using the procedure described following (6.14) we find that

k-1
A([0,1], 0, 1) = 1+ ¥ [0,11% + [1/3, 215 [0,11% ¢ [1/3, 2]
=1
So we compute
: k=t 2 k+1 k
A([0,1/2], 0, 1) = 1+ [0,1/2]" + [1/3,27" = [0,1/2) % [1/3,2]
£=1

until the first g, for which
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A(lo, 2791, 0, 1) C [1/3, 2]

It turns out in this example that

k-1 k
A([0,1/8], 0, 1) = |1, 1+ () + oo + (P« (@ | C /321,

for all k > 1. So we can use X* = [0, 1/4]. If k =4, for example,
we could also use X* = [0, 7/16]. Setting p = 3, we find that for

2 3 -y
A[O,Z +o, - 27+ p, - 27, 0, 1) C [1/3 2],

with b2 = b5 = 1.

We will use X* = [0, 1/4] with all k > 1. Thus,

X:(Ll’l> = [i-1, 1] % { g?i , X(in)] ,
so that
Xgn)=z;iﬁ: i=1, 2, n
Now
A(Xgn), xifli : ygﬂ) = y(?i + jzi <y§?3>2+1{0’ El?lr o, (gi)k
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- k+1 X
Alx, 0, 1) =l+x+°-°+xkl+[l/5,2] x .
So from (6.14) for x € X§n>, i=1,2, ... , n we have
i
. - . .
yg_n/(x} = 1+ x + o.e—é—XKl%-[%—-’ 2k l] XK

(n) , 5 ()P (n)\?
A+ 2 () (- =)

(6.19)

(n) k-1 (n) 2+1 { l}z 5 +1

) <y 1 <y1'l> R (2n)k]
Wk
b ]

with xén> = 0, yén) =1, and y§n> = ygn)(x§n)).

The results obtained assert that for each kX > 1 there is an

M_ >0 such that for all x e [O, 1/4] and all n

@) = () 7V - 2 e P
n=1
and
.\k
M) < mfE)
with Y(n)(x) = ygn)(x) for x ¢ Xgn) = [1i-1, 1i] ﬁ% where y( >(x)

is given by (6.19).



We will verify these assertions. Call h = ﬁ%. From (6.19) with

(n)

i=1, we have for x € Xl B

- - + k
(6.20) y§n>(x) . [1, 1+h + -+ + Rty ot hk]x

-

We prove by induction on i that

T } < € ygn)(x) for X € Xgn)

For any k >1, we have for x ¢ X* = [0, 1/4],

- - k
= e k-l X sel+tx+ e e (1, 4/3] x ,

therefore

1
1-x

€ A(x, 0, 1) for xeX

Now for X € Xgn) = [0,h], we have

therefore

‘ k
1 . .. k-1 .. k-1 [0,h] k
T~ % € 1 + x + + ¥ + <} + [0,n] + + [0,h] + T- 0% X

since n > 1, we have
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L - 1, —2— | C 13, /3]

T-1[0,n T
- 4n
By (6.20), we therefore have
1 (n), (n)
— ¢ ¥ (x) for x e X
Assume for some 1 >2, that
1 (n) (n)
T € yi_l(x) for x e X
We want to show that it follows that
1 (n) (n)
T € ¥; (%) for x e X7 .

By the inductive hypothesis, we have

I
e

1 ¢ n) (n) (X(n)>
N (o) Yio1 i-1 \%i-1

And we have already shown that

T } < € Alx, 0, 1) for x e X
_ (n) __ 1 . (n) _ (n)
Call t =x - Xi—l and u = m , then for x ¢ Xi = Xi-l +
i-1

[0,h], we have

8l



1 = L = ull + tu + + (tu)k-l + (tu)
1- x (n)
1-x -t
-1
(6.21) = u+u t+ b gt
k
+ (ut)k <P +u t+ + uk tk_l + gut) >
- X
Now call
k-1 4+1 2
c- e L) Peaf g
£2=1 (2n)
then

1 -

Putting these relations together, it follows from (6.21) and (6.19) that

— ¢ y(n)(x) for X €

Therefore, by induction on

85

x(®)
1

. *
i, we have for x ¢ X7,

t

9



Next, we wish to show for x € x* that

k
w<y(n>(x)> < Mk (ﬁ) for some Mk > 0.

From (6.19) and the fact that ygn)(x) C [0,2], it follows that

k-1 £-1 .k -
w(y(in)) = W(y(iil%_) 1+ él?l zgl (4 + 1)(53_;_1) + fé};;&i zglz(_g_%) j

k+1 k
o) (k1) | —2— + T ()
en (on)*t z’go

It follows from this inequality for x € X*, that there is a Kk

such that

(6.23) Wy M) < k(D)

and in particular, for n >k+1, we find that

. k
Wy M) < e &G

and for large enough n, we find that

dr M) < e L)

Since we have already shown that for all positive integers n and for

*
all x e X,
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and since we now have W(y(n)(x)) —» 0 with n -»®, we can conclude
that

[¢e)

s = ()5Ve - rig

This, together with the inequality (6.23), completes the verification
of the assertions made above.
The number of arithmetic operations required to evaluate yén) for

i=1,2, ... , n, is roughly nk°. If we wish to minimize nk® by a

choice of n, k such that

(7™ ) < 10
) (n) ) ) 1.5
say, then assuming w(y ~’(x)) is proportional to (k + l)(EE) we are
led to the choice k = 12, n = 5 for which the number of operations is
about 700, which must be reasonably close to the best choice. By direct
verification using (6.22), we find that for k = 12 and n = 5,

W(Y(S)(X)) < 113: . 10710,

Comparing this with the first order method, k = 1, discussed earlier

we see that using (6.11) we would have to take n > 1079 . e to guaran-
tee W(y(n)(x>) < 1071% with the first order method. The number of
arithmetic operations then would be (compare (6.10)) roughly 10tt which

is, to say the least, much larger than the 700 required for k=12, n=5.
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The methods of this section apply to any differential system (6.1)
with k - 1 times differentiable functions fj on a rectangular region
Df in m+ 1 dimensional Euclidean space, taking in particular,
pl =?§.Z>, £=0,1, ... , k-1,
with fgﬁ) the united extension of féz), This fact can be exploited
computationally.

For example, in Section 5 we found interval valued functions In,

such that (Uny | y e ¥'} C In(Y). Recall that, for Y > 1,

N w(li-l, i]Yl:Il>

I.(Y) = ) ,
N i1 1+ [1-1, 4] I3
N
. M . 1 wlY
and for Y = [yi, yé], with Yg ) _ vy ¥ (3 -1, 3] —érl, we have
Y L
M .
IN,M(Y) = UIN(YJ' ) = {tmy | yEY}+E1\I,M’
J=1
with
. . K w(Y) 2(ly| - 1)
O ¢ Fyyo Wi < T ¢ N
Let £Zn be the united extension of #n so that
InY = {myl|yev}, Y >1.

Then Zn Y (C In(Y) and if the function 4n appears in a system (6.1),

for example,
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(6.24) y, = 4n v, + &lx,y)

then computations paralleling the EEE order method with a particular
choice of n for F(O)(X, Y) =n Y + G(O)(X, Y), F(l)(X, Y) = % +
G(l)(X, Y), etc., can be carried out (assuming D, is such that Y > 1)
instead with F(O)(X, Y) = IN’M(Y) + G(O)(X, Y), F(l)(X, Y) = % + G<l)(X,Y),
etc., yielding functions y(n) bounding the solution to (6.2L4) for a
particular initial value problem. With N, M large enough the widths
of the bounding intervals ygn) to the solution can be made arbitrarily
close to those which result from using In Y.

Alternatively, since the function 4#n itself satisfies a rational
differential equation,

(40 y)" =

v

We can add a new equation to the system (6.24) of the form

and replace /n yi wherever it appears by ym+l, using the initial
condition
yﬁ+l (Xo) = 4n Xo

Similarly, other non-rational functions such as exp, J_—, sin, etc.,

can be handled in differential systems using the methods of this section
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either by replacing them directly by finitely computable interval
functions, or by adding rational differential equations to the given
system so that the augmented system is rational.

If a differential system (6.1) is given in which certain parameters
kl 3 cee Xp occur rationally we can find at once bounding intervals
to the components of families of solutions corresponding to invervals

Ll s eee s Lp of values A xp, simply by using interval coef-

17

ficients L Lp in place of A ey Xp during the computations

IEEREER 1
of the first or EEE order methods, k > 1, described above.

Also, bounds on the components of a family of solutions to a differ-
ential system corresponding to intervals of initial values yjo € on
can be found in a similar way.

The following remarks, however, indicate a computational limitation

of such a scheme.

Consider the differential system

dyl ) dy2
x - Y2 ™ T Thiv

and suppose we wish to compute by a finite number of interval operations
bounds on the set of values at each x 1in some interval of the family

of solutions passing through

y20 € Ygo = [152] o
Since the solution y = (yl, yg), corresponding to a particular Y50 €
[1,2], 1is obviously given by y(x) = (y2o sin X, y,, cos X), then the

set of values of y at x = % is the segment
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(see Figure 11.)

y
Io lA +
2 1 _ _ _ _ _ o _
/2
e yén)(%)
ey
= 4---- o
I1

Figure 11

On the other hand, the bounding interval valued functions yin)(x),

Yén) (x)

produced by the first or by the kth order method yield rec-

tangles at each x with sides parallel to the Yy and yé axes which
: . 1 2 .

must contain the entire rectangle, ([1,2]75 , [1,2] 7 ) in the P

yé plane.

o1



The difficulty can, in principle, be dealt with by the methods we
have developed. 1In order to describe a non-rectangular set more accur-

ately with rectangles, we could resort to refinements. If we write

[112] =

i
I =
=

(l , [r -1, r] %)

then we can find separately bounding intervals, yé?% (%), r=1, 2,

5 N, corresponding to the intervals of initial values e 1+

Y20
[r - 1, r] é, In this way Figure 11 is replaced by Figure 12, in which

the segment T gets bounded by

L - —  — - — — - -

il

-
)
|
[
|
!
t

O S
=

Figure 12
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However, for an accurate description of a non-rectangular set in m-
dimensional Euclidean space the number of small rectangles required may

be very large even for reasonably small integers m.
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7. Digital Computing.

In [12] a formal description of a stored program digital computer
is given. The "automatic™ or sequential operation of such a machine is
discussed. t is shown that a computer progrém written for a finitef/
aigitalfi/ interval computation will produce, as results, sets of digital
intervals, each interval containing the exact result of the corresponding
real arithmetic computations.

The computational procedures of the previous sections in particular
can be easily modified to teke into account the finite precision of
digital computers. It is essentially a matter of rounding down left end
points and rounding up right end points of computed intervals to the
nearest digital number.

Suppose, for example, the machine arithmetic we are using in a
particular program is fixed-point, signed, N-decimal-digit arithmetic
with no rounding in addition or subtraction, and with rounding away from
zero by one in the Nth place for multiplication and division if the
(N’-*«-]_)SJC digit of a result is five or more. More precisely, the machine
product x(:)y of the signed N decimal digit numbers x, y (fx], fyf < 1)
is

N1 . -N
x ® vy = sgnlxy) [.‘xyl - 10 +-2—J - 10

—/ A finite computation terminates after a finite number of "steps,
i.e., elementary machine operations. (See [12], page 4.)
**/

—' A digitel interval is one whose end points are digital numbers,
i.e., are represented by machine words in some particular repre-
sentation. (See [12], Section 3, and pp. 51ff.)

ok



where [x] stands for "the greatest integer less than or equal to x."
(See [12], Section 4.) Also, sgn(x) = +1 if x >0, sgn(0) = 0, and
sgn(x) = -1 if x < 0. If we are trying to do interval arithmetic on
the computer and xy is supposed to be the right hand end point of an
interval, then we will certainly have
(7.1) xy < x ® y+ 10V,
Hence, the digital number x ® y + lO_N will serve as right end point
of an interval containing the desired interval. (See [12], Section 7.3.)
Actually, in practice it is unnecessary to always round up or down; by
examining the contents of the arithmetic registers and making sign tests,
more accurate rounding procedures can be programmed. For example, if
the (N+1)5% digit of xy is five or more and xy > 0, then (7.1)
can be sharpened to xy <x ® y.

What we obtain, then, is a "digital" or "rounded" version of inter-

val arithmetic which can be carried out by the machine and which produces

intervals I ® J, I O J, I ® J, I ®© J with the properties

I+ C 1 ®J

I-3C 1Q7J
(7.2)

T CI®J

/0 C 16 7.
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The quantities I \JJ J, I [\ J, w(I), |I| can be programmed
and the relations I ( J, I<J, etc., can be verified by the machine.
(Ssee [12], Section 7.)

The digital interval arithmetic to be used on a machine can be single
precision, multiple precision, or any combination of these. It can be
fixed point or floating point. Again the important thing is the satis-
faction of (7.2). 1In this way we can write machine programs for carry-
ing out in digital interval arithmetic the computational procedures
developed in the previous section of this paper. The resulting digital
intervals will contain the intervals defined by those procedures and
hence will contain whatever quantities lie in those intervals, since
XeI and I (C T together imply x e I.

There are finite computations with real numbers which are of inter-
est in themselves. For example, the evaluation of real rational functions
and the inversion of matrices by so-called "direct” methods (i.e., finite
methods such as Gaussian elimination). For these also, corresponding
computations in digital intervals contain the exact result. In this way,
rigorous bounds on accumulated round-off error are obtained for any fin-
ite machine computation provided the corresponding digital interval com-
putation can be completed. It is possible for a miscarriage to occur if
a division by an interval containing zero is attempted. In this case the
digital interval computation will not proceed further, even though the
corresponding computation with digital real numbers might not produce a
zero divisor.

In order to study in some detail the growth of interval widths due
to rounding we will choose a particular form of digital arithmetic which

is essentially normalized floating point binary arithmetic except that
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we shall ignore problems of so-called "underflow" and "overflow." In
practice it is possible to program the machine to halt a computation if
the exponent of a floating point result of an arithmetic operation falls
outside a specified range.

Let N Dbe a positive integer. We will assume we can represent on

the computer numbers of the form

b N -p e
(7.3) (—1)°<2 b v 2 ) -
p=1
where each b is either zero or one and e 1is an integer. Furthermore,
either bl =1, or else bO = bl = ere = bN = e = 0. That is, except

for the number zero, every number of the form (7.3) has bl =1. As a
result the representation is unique. Let S be the set of numbers of
the form (7.3). We will denote the~elements of S by barred symbols
when it is necessary to distinguish them from arbitrary real numbers.
Since we have placed no restriction on the exponent e, it is clear -

that S contains all the integers n, such that lnl < QN. We define

arithmetic operations in S. If

x = (-1) ( b -2 P) . 2f%¢eg
p=1 P
with bl = 1; then call
m(x) = (-1) Z: b .27
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and e(x) = e. Define m(0) = e(0) = O. Thus, m(x), e(x) are defined

for every X e S and x % O 1implies

For x, y € 8, consider

. oe(¥)

Clearly, either x + ¥y = 0, or else x + y is uniquely representable

as
a— -— b r® _.\ e
(7.4) x+y=(-l)ok2b 2P L2
p=1 ¥ /

o

for some integer e and with each op e {0, 1} for p=0, 1, 2, ...,
such that bl = 1 and such that infinitely many of the bp are zero.
In fact, every real number is uniquely representable in this way. That
is, 1f x 1is a real number, then there is a unigque integer e such

. e-1 e . ; .
that 2 < x| <2 > sc x 1s of the form (7.3) for N = », with
the bp satisfying the stated conditions. Call this integer e(x)

and write
(7.5) x = m(x) 22(¥)

Thus (7.5) defines m(x) for every real number x. In particular,
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Finally we define a sum in S by
- - - = - = N -N+e(x+y
T ® 7T - sea @4y [z +7)) - 2N - Mrelxty)
and a difference by

xQ v = x @ (-y)

Similarly, we define a product in S by

F®7 - sen G () - 2N . oTNel)
and a quotient by (assuming y # 0)
QT - s Gm(FF) - 2N . 2T

It is clear that the numbers, x ® 5, x O v, x ® v, x © ¥,
are again in S and can be computed by the machine. (See [12].)
Furthermore, we have the inequalities

-N+e(x+7y)

x ® v - &+yl 2 ,

IA

x ®7v-(x-y < g e(x-y) ,
F®7- @ < oWl

5@ 7- @ < 2 WG (3 # 0)
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e(x
Since x # 0 implies % < Im(x)| <1 and therefore 2 (x) _

Ff%j <2 lx, we can also write
. =

@ 5- G+l < 2 k7

A
o

X0 7- -9 < 2™z _ 7
F® 7- @ < 2" 5,

50 7- @D < 2™ R4, (v 40) .
y) = e(x +‘§), etc., we can write

And again, since e(x (@

@ y- G+l < 2z

< ®

x0 7-G-»l < 2™z o 7,

x®7-@ < 2™ x@ 7,
e 7-@ml < T x e, (y # 0)

Equalities occur in (7.7) and (7.8) only when both sides of an

inequality are zero.

The erithmetic operations we have defined in S are not even
associative. For example, let N = 3, x = +(.111) 20, v = +(.101) 2~l,

z = +(.110) 2'2, then

x ® y = +(.100) 2T and (x® y) ® 2z = +(.100) 27t s

whereas
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y ® z = +(.100) 20, x® (y ® z) = +(.101) ot .

From the above inequalities and definitions it is clear that

EOY) @ OV < 3.3 < Goy @ TV,

IA
%
+

e

7 © OV L1 3 < zep @ WOV
(7.9) _
(% @3’) o 2—N+e(x® ¥)

IN

T < Gey ® 2 ¥y

AN

@7 @ 2@V . 15 < Gey @ £ WIEEY) |

(y # 0) .

IA

Thus, the quantities in the middle are bounded above and below by
quantities which can be computed and represented by the machine.

Using the inequalities (7.9) and the formulas (2.2) and, recalling
that the computer can verify the relation x < §r and hence can compute
max (;c, ':?r), we see that digital interval operations can be programmed

which not only satisfy (7.2), but also (because of (7.7))

WI®JI) < w(I+J) +2 V2 145,

WIOJ) < wI-J3) +2 V2 1.3,

(7.10)

WI®J) < wIr) + 2 V2 17|,

W(I® ) < w(1/7) + 2 V2 |1/5] (0 £ J) .

From the inequalities (7.10) and Theorem 4.1 it is clear that for any

finite digital interval computation corresponding to the evaluation of
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a rational interval funection F with real valued real restriction f
that an interval IN is produced whose width for any given point in

-N
Df which is digitally representable is bounded by K - 2 Y for some

number K. Therefore, the width of IN can be made arbitrarily small
for large enough N. Put in other words, 1if we start with a set of
intervals of zero width and perform some finite sequence of digital
interval arithmetic operations beginning with the given set of intervals,
then the digital intervals obtained will have widths of order E_N.

That is, if the same computation is performed with various values of N,
then the width of each resulting interval will be bounded by some con-
stant independent of N times 2_N.

It also follows from (7.10) and Theorem 4.1, more generally, that
the excess in width of a digitally computed interval over the width of
an interval resulting from a finite interval arithmetic computation us-
ing exact real arithmetic to obtain end points is also of the order 2_Ne

The significance of digital interval arithmetic is further clarified
by its application to some particular computational schemes.

The so-called Gaussian elimination procedure for solving a system

of linear algebraic equations

n
z: a.. x., = b., i=1,2, c0 , 0,
5=1 13 73 i

consists first in transforming the given system to an equivalent one in
which the matrix of coefficients of the Xj is made zero below the main
diagonal. This is done by forming linear combinations of the given equa-
tions. Then the resulting system can be solved directly for the Xj’
starting with X and regressing to Xy -
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The procedure is described formally as follows:

/
2{ 2"
1dJ

o2

1.

()
ip

a(p5

) = b.

define

/
a\p)
pJ

Define

,(i: N n)

i
? n>i, j>p+1l.
(1) (D) SANNE
ptl D ip i)
bl = b b
i i azpj p
PP

Then

and

for p=n-1, n-2, ... , 2, 1. By reordering the components of the

solution vector it can be arranged that

5

120 5 1.2
P = oJ

for J > p. Should aég) = O for some ©p, then the given matrix has

zero determinant and the procedure fails.
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Given intervals Aij’ B, (1<1i, j<n) we can compute X5 X 55

coo s Xg’ Xl s as defined by the procedure above interpreting the
arithmetic operations as interval arithmetic operations. Providing the
intervals A(p) so computed do not contain the real number zero for

p=1, 2, .. 5, n, This scheme will produce intervals ij g=1, 25, o0

n, such that

with aij € A..; Db, eB,;, 1<1i, j<n implies xj € ij j=1, 2,

For machine computation, we replace exact arithmetic operations by
their corresponding digital (or rounded) versions and the digital inter-

val version of the procedure which results is described by:

={1) =(1) AN
Aij DAij, B :)Bi, (i, 3 =1, 25, oo- 5, 1)

(the initial coefficients Aij’ Bi may not be exactly representable

digitally, e.g., A5 = [1/3, ]) and for p=1, 2, ... , n-1

s(p+1)  _ =(p) ~(p) =(p) =(
A3 iy O <Ai§) Apﬁ) ® %Y

]—3:(LP+1) - 3 o (ﬂp) ) K(p)> ® B |

i ip

Then

>l
[
t

n,n
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and for p=n-1, n-2, ... , 2, 1,

>l
i

p) o @: -(p) ®)_(j o -Ag) ’

J=p+l

where Eg stands for digital interval summation. The evaluation of
(7.11) affords an opportunity to explain the use of mixed precision
computations with digital intervals. Just as is common practice in

real digital computing, we can sum or "accumulate" the products,

_(D) ® X using double precision (digital interval) arithmetic with

a resulting reduction in the width of the interval sum. If O € Eég)
for some 1 < p < n, then the machine will halt, unable to decide
whether a zero determinant can occur for some set of aij € Eij' Other-
wise, i.e., if O ¢ Zég) for p=1, 2, ... , n, the procedure yields
intervals ij with Xj € ij for every set of Xj’ jg=1, 2, ... , n,

such that
n
> a,.x, = b, (1<i, j<n)

for some set of a.., b, with a.., € A.., b. € B, .
ij? i ij i3’ i i

If w(’Aij) =w(B,) =0, 1<1i, j<n, that is, if the initial
coefficients are all intervals of zero width, and if O é Eég), p =1,
2, «.. , n, then we know that there is a number K such that w(ij).f

-N ,.
K27 (J=1,2, ... , n). Therefore, with high enough precision, i.e.,
for large enough N, the digital interval procedure will produce inter-

vals ij of arbitrarily small width. Notice that O é Zég) for a

particular value of N implies O é Eég) for all larger N, by
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inclusion monotonicity of interval arithmetic and by virtue of the fact
that fx ® vy - xyf, lx (:) yw-x/y[, etc., are monotonic decreasing
as N 1increases.

Actual machine computations were made inverting matrices using
digital interval arithmetic and an elimination procedure similar to the
above described one. The binary equivalent of about 8 decimal places
was the machine precision used (N = 27). Some 14 x 14 matrices were
inverted with resulting intervals containing the coefficients of the
inverse matrix of relative width about 10'1, This was a loss of about
seven decimal places, so to speak. The exact values of the coefficients
of the inverse matrix were known and it turned out that the mid points
of the computed intervals were much closer to the exact results than
indicated by their width. It is not clear at present whether this was
an "accident" or whether there is a tendency for this particular digital
interval matrix inversion procedure to grow intervals fairly symmetri-
cally about the infinite precision result. There is some reason to sus-
pect the latter since interval subtractions and divisions reverse the
roles of the end points of a given interval. (See (2.2) and also
pp. L12ff below.)

Another comment on the numerical results quoted is in order. Von
Neumann and Goldstine ([15], pp. 1023), speaking of a direct method which
is & slight variant of Gaussian elimination (assuming, however, fixed
point arithmetic rather than the floating point arithmetic which was
used in the numerical work qucted), summarize the result of their round-
off analysis with the statement, "Matrices of order 15, 50, 150 can
usually be inverted with a (relative) precision of 8, 10, 12 decimal
digits less respectively than the number of digits carried throughout.’
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Since most computers employ 8 or 9 decimal digit relative precision
in standard single precision floating point operstion, they should be
able to invert "most" matrices with satisfactorily small interval width
using double precision digital interval arithmetic in connection with a
direct elimination procedure such as described above. And in any case,
the computed intervals, narrow or wide, always contain the exact solu-
tion to the given linear system.

We have already seen (pages 8 and 13 above) that rational interval
functions can have as values intervals whose widths exceed the widths
of the corresponding values of the united extension of their real restric-
tion. And we have seen (pages 21 and 22 above) that the excess has
something to do with the multiple occurrence of one or more variables in
the expression for the rational interval function.

The technique of refinements allows the diminution of excess inter-
val width. However, it is clear that it would be hopelessly inefficient
to make extensive use of this device in practice in connection with
digital computations involving a very large number of independent vari-
ables — for example, in matrix inversion. The device will be useful
in digital computations only when there are few variables which have a
large number of occurrences.

We will illustrate these remarks by considering some computations
involving "contraction" mappings.

Suppose F 1s a rational interval function with domain ‘&A. and
that F is a digital majorant with domain :&vz 5 A (C A; that is,
f(i) is expressible in digital interval arithmetic as a function of X
with X C X implying F(X) C F(X). If there is a real number k <1,
such that for X C A we have F(X) C F(4) and
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w(F(X)) < kw(X) ,

then F is said to be a "strong contraction™ mapping and from X C A
it follows that F(X) C F(A), by inclusion monotonicity of F. Define

G(x, 0) = X, and, for n >1, define G(XO, n) = F(G(Xo, n-1)).

W(X) p)

w(G(X n)) < k 5

so that for every X C A we have G(XO, n) C G(A, n), and there

is a real number y e F(A) such that for every X C 4,

lim G(XO, n) = y = 1lim G(4, n) .

n—-ow n —cw

The number y satisfies y = F(y) e G(4A, n). By previous discussion,

the digital majorant F will satisfy
w(F(X)) < xw(X) + k' 2

for some k', which is independent of X (by virtue of the compactness
of &-A)o Call G(%,, 0) =% and G, n) = FG(X_, n-1)). Then

Theorem 7.1:

W(G(Xg, n)) < k w(X)+=—=%x"-2"" .
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Now F 1is also inclusion monotonic, so if F(A) ( A, then there is

a digitel interval Y (C TF(A) such that for }"co C A, we have

lim E(io, n) = Y = lim G(A&, n)
n —w n —»
. - k' -N .
with w(Y) < T- % * 2 . Notice also that for each n we have

Y C G(a, n) .

As an example, consider the rational interval function F on

J

[1,2] defined by
F(X) = 1+7 i %
We have
F([1,2]) = 1+ L
1+ [1,2
= 145

and for X C [1,2], we have

2

w(F(X)) < w(X) < fowx) .

1
1 +X
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So we find in particular, that for
X = [1,2], X = F(X) ,
we have
w(x) < (),

and so the intervals Xn converge to; and each of them contains, the

fixed point of f on [1,2] which is the number +2, since x = 1 +

4 /

i 7 Ed T T + = -I 3 °
T implies (x (L +x) =1 or x 2

Using % place decimal digit arithmetic for the digital infterval

version it can be shown that

X = [1,2], X = 10 1e(eX)]

e] n+l1

implies that the intervals in converge to [1.41, 1.42]. ‘In fact,
X_ = {1.kl, 1.k2] for n > 3. We show this by direct computation.
For n =1, we have

}—cl = 1 ® 1@ (1& [1,2])]

- 10 1el23])

1 @® [.333, .500] = [1.33, 1.50] ;
for n =2, we have
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X, = 1 &® 1e(1®[1.33, 1.50])}
= 1 ® {1 ®I[2.33, 2.50]}

= 1 & [.koo, .430] = [1.h0, 1.43] ;

for n =3, we have

\541
1t
—

@

(1@ (1@ [1.40, 1.43])}
= 1 @® (1®[2.40, 2.43]}

= 1 & [.k11, .417] = [1.41, 1.42] ;

and for n >3, we have Xn = [1.41, 1.42], since

>l
[

1 ® (16 (1® [1.41, 1.42]1))

1 & (1@ [2.41, 2.42])

1 ® [.413, .b15] = [1.41, 1.k2]

The real restriction of the function F in the above example is

the real function f given by f(x) = 1 + with x e [1,2].

1+ x

Notice that f 1is also a strong contraction, i.e., f maps the inter-

val [1,2] into itself and

£2(x) - £(x) | < T lx, - %,

for x,, %, € [1,2],

2
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On the other hand, the real rational function g as defined on

[1,2] by

is a strong contraction since g maps [1,2] into itself and

lx - X

le(x)) - alxy)| < 1

POl =

whereas the interval extension G as defined on :9
\ 1
G(X) = (X/e)+ % ,
is not a strong contraction. While G([1,2]) = [1,2] (C [1,2],

happens that w(G(X)) < k w(X) for all X C [1,2] implies

In fact, if X = [xlj x2] C [1,2], +then

szl 1
&(x) = 2 N [x x|
1 %
L1
3
2 x2 2 Xl

(notice the mixing of end points), and

(7.12) w(a(x)) = (xg-xl)<—;—'+xlx> = <%+ = >W(X)

172

In particular, for X, =1, any X of the form X = [1, xg]

X, € [1;,2] fails to satisfy w(G(X)) < w(X).
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Ir é is the united extension of g, that is, if

{g(x) | x e x}

- X 1
g(X) = {§+§,X€X
then

w(E®) = mex  lalx) - alx)] < 5 w(x)
Xl,XEGX

The technique of refinements allows us to approximate -é by

refinements of G. For X ( [1,2] with X = [xl, x2], define

X, - X
n . . 2 1
N U -

then the refinements G(n) of G are defined by

™ - ) el

i=1

o(n)

For each n, is an interval values function on g[l 2] also
)

having g as its real restriction. In fact (see Section 4 above),
- n
5x) C &Py

for all X ( [1,2]. Now G(n)(X) C 6(x), so

¢"(11,21) C (1,21 = o(1,2])

Furthermore,
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n
W(G(n) (X)) < E

By (7.12), we have

i=1

w(a(x{®yy |

1

2
.o(n) 1 1 w(X)
W(G\Xi ) 5 " (n) n
X~:
Now
n 2
>l < f 5 & < o)
i=1 X X_w(X) X 5 w(X)
n
so
i\ 1 < 1
i | %) 1,2
i (1-=
n
and therefore
weW(x)) < ¥X (o, 1
n 2 1 2
(1-2
n
) 1 1
< W(X) é‘ + 5
n(l - -ITI)
Now
1 1 1
- < ,
. 1 2 n- 2+ = no- 2
n(l - ?l) n

so if n >4, then

11k




W™ () < kW),

with

1

k= =+ < 1.
n 2 1 2
l’l(l--l:'l)
/n)
Therefore, the refinements G of G are strong contractions for
nlz'h and, in particular, we can iterate say, G(M) to obtain
(4), -
X, = [1,2] , X4 = G (xk) 5 k=1,2, .c. ,

with the result that for each k = 1, 2, ... we have V2 ¢ Xk and
W(Xk) — 0. Actually, convergence of W(Xk) to zero is also obtained
for n=2 and n = 3.

The failure of W(Xk) to converge to zero for n = 1 cannot be
remedied by starting with a smaller XO contalining /2. For we find
that, choosing €, €5 >0 (according to (7.12)), we have for X = V2 +

L-el’ 62]

w(a(x)) = El+ \l )W(X) s
(V2 - el;(VE + 62)

so that, for every small we have

€10 €po

1
<Al +;7"; (€l - €2> + °°°> W(X> B

and w(G(X)) < w(X) only if € < &, However, for very small e

w(G(X))

l?

€ we also have

2)
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(e, + €.) (e, + €.)
1 2 1 2 oo
(B + [-e, €))) = JB |- e R B
i1
and €l<e2 implies
(el+e2) -
- 2 1’

SO
(/2 + [-el, 62]> ¢ 2 + [-el, 62] .

For a numerical example of the digital version of iterating a
refinement, we will choose N decimal place floating point arithmetic

again and define, for X C [1,2],

3% - F@2) ® 10 .

If X =I[x,, x.], then we could define }_an) by

treating even the digital numbers X5 ';cg, n as digital intervals.

We would have }_C](_n) D! Xg._n)a But a better way of constructing fign)

is to prevent overlap. To this end, we define

O [;(gn) ) ;_gn)}

with
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- =(n =(n .
b4 = X , x(i_i_%_ = yi) 3 i=1,2, oo 3y n-1,

=(n) _ = =) _ 20 & 3z AT e
for 1 =1, 2, oco , n-1. We assume that the number of digits N 1in
the digital arithmetic used is large enough or, equivalently, that n

is small encugh so that

For example, if n =2, and N = 3, then we compute as follows:

Let ?{O = [1,2], and define

e - 3 (W)U s ()

We find that |1 ® {(2@1)& 2} = 1.5, so
@) - 15, @) - s, e,
and
G([1, 1.5]) = [1.16, 1.75] , G([1.5, 2]) = [1.25, 1.67] ,
so
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"}El = [1.16, 1.75] .

Then

[1.16 ® {((1.75(0)1.16) @2} = 1.L6,

Sle)

%)\ = 1116, 1.86] (% _ [1.46, 1.75] ,

and

G([1.16, 1.467)

[1.26, 1.60] , G([1.46, 1.75]) = [1.30, 1.56] ,

SO

X, = [1.26, 1.60]
Similarly, we find that
§5 = [1.32, 1.51] , '}?:4 = [1.36, 1.47],
?(5 = [1.38, 1.45] , ?{6 = [1.39, 1.4u4] ,
?c7 = [1.39, 1.43] , 5—(8 = [1.LO, 1.43] ,
3'<9 = '}'clo = = [1.kO, 1.43] .
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Compare these computations with those on pages 109-118 and with
those on page 12. We have three interval arithmetic computational schemes
producing convergent sequences of intervals all containing the number,

/2. (In the case of the digital arithmetic computations the convergence
is to an interval of positive width.) These three schemes appear very
similar but turn out to be quite different with respect to efficiency.

At this point it should already be clear that machine programs can
be written for generating digital intervals containing the range of values
for the commonly used functions such as /E, exp X, #n x, sin x, etc.,
when the argument varies over a digital interval X. This can be done
efficiently using interval computations based on quickly convergent real
approximations. The excess widths of the resulting intervals can be held
down using special properties of the functions concerned. For example,
|sin x| <1, sin(x + 2¢) = sin X, Vx is monotonic, etec. And, of
course, by resorting to multiple precision the excess width can be made
arbitrarily small.

In Section 5 above we discussed two families of kth order interval
methods for computing definite integrals. One was based on local expan-
sion of the integrand in Taylor's series and the other was the Gaussian
procedure. In both cases the interval method was made possible by the
appearance of the real approximation method as a finite sum of functions
derivable in an appropriate way from the integrand.

In Section 6 we presented but a single family of kth order inter-
val methods, k =1, 2, 3, ... , for the solution of systems of ordinary
differential equations of first order. The methods were based on local ex-

pansion in Taylor's series and required in addition to the given functions
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dyj

fJ-(X) MK °°°:ym) = 3=
. (2) th

the functions fj , £=1,2, ... , k-1, for the k order method.

Recall that

a _(2-1)
dx fj

£2) ,
The possibility of using local Taylor expansion to approximate the
solutions to ordinary differential equations with ordinary real computa-
tions has been noticed already, of course. It has also been noticed
([8], page 66) that the expressions for the functions fgz) increase
with £ 1in complexity. Actually, for rational fj’ the computer can

(£)

be programmed to generate values of fj by use of recursion formulas

so that one need only supply the functions fj’ themselves. For example,

=

if

then a value of

f(z>(xs Y> s £ >1,

can be generated from the numbers x, y, f(x, y) by computing succes- -

sively

Dz, v) = 2x+y 2z 3) ,
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P,y = 2+ y D, 3+ (2, 9)2
)
SR O R L (z) e, ) e, e,
r=0 T
with f(’l)(x, y) defined by f("l)(x, ) = v,
and f(o) (x, ¥) defined by f<0> (x, y) = flx, y) .

(ﬂ)(x) Y)

One need never actually write down an expression for T
in terms of x and y. In fact, a general prog8ram can be written for

generating values of functions

(2) a*
f. = —Tf. 5
J ax~ d
from the coefficients of the rational expressions for fj(x, Iqis voe s yﬁ),
j=1,2, ... , my and the numbers x, Yy eee s Yo fl(x, Yo ee s xm),

coo fm(x, Yo see s ym)e

Instead of using Taylor expansions one could develop interval methods
of kth order which bound the solutions to ordinary differential equations
based on almost any real finite sum approximation method with a suitable
expression for the local truncation error of order k (in powers of the

stepwidth).

Euler's method, for example approximates

e+ 8 =y + el yx0) + 26 f e, ww))
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t e [x, x + 1]
oy

) _ : . .

with a local truncation error of order 2 {in powers of h), namely

1.2 (1) .
Ti = —2-h f( '(tﬁ Y(t)) )

for some

+ o
t € [xi, X, h]

The general process we have in mind produces out of this particular
method exactly what we obtained as our 2nd order method based on Taylor
expansion, i.e., read (6.13) and (6.14) with k = 2. We see from this
that the extra work paid out in evaluations of the local truncation ex-
pression in interval arithmetic (over the rectangular boxes constructed
as part of the interval method; see Figure 9, page 68) buys bounding
intervals whose widths are of the same order in powers of the step size
as the local truncation error of the real method upon which the interval

method is based. In this sense, our first order interval methodf/ can

jf/
See page 61.
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be viewed as an interval method based on the ridiculously simple real
method defined by Vi1 = yi with a local truncation error expressed
by T, =h f(t, y(t)) for some t ¢ [xi, X, * hl.

Of course, not all interval methods so derived from real methods
will turn out identical with some member of our family of "Taylor made"
methods. For example, the local truncation error for the well known
Runge-Kutta method is not a total derivative of the function £, but
rather a certain combination of partial derivatives of f. (See e.g.,
[8], pp. 127-13%2.) Furthermore, the approximation formula involves a

sum of values of f alone; to wit,

=y +%1(k + 2k, + 2k, + ),

Vi1 i 1 2 3
where
ko= flxg, v,) o,
k, = f(x.+—yyi+121kl)
ks = f(xi‘Lg’YiJ’gke)
k4=f(xi+h,yl+hk5)o

This, as many other real methods do, has the form

Y(x) = a(x, Xis Yo XKy g0 Yyq0 vee s Xyl

with x = Xy + h for some fixed non-negative integer s, with a local
truncation error of the form T(ti, ui) hk for some integer k with
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t, = t(x, x,

. PR X. .
32 ylﬁ ) > ¥ ) P

u, = ulx, x;

for some (ti, ui} € Dfo
We will outline here a possible approach for these methods. Pro-
ceeding as in Section 6, we choose a rectangular domain, [xo, al 69
Bl() °°°(:)Bm , called Df in which the functions fj (occurring in
(6.1)) and also the functions Tj (the components of T) are continuous.
Assume interval extensions a and T of a and T can be found which

satisfy conditions 1), 2), and 3) of page 59 above. Call p; = (xi, yi)

and g, = (ti9 ui)j then replace (6.13) by

~ ~ K
Alx, Pis ooe 5 pi_s) = a(x, Pis coe s pi-s) + T(Df)(x - xi)
and (6.14) by
(nj,_q
I3 (x) = A(x, Dgs oo s P_s)
(} a(x, Dy g5 o0 s pi-s-l)
~ (n) (n) é}
+ T\Xl s A(Xl 5 ‘i-—‘_ﬁ °o° 3 pi-S—l) (X - Xl_l)j

We turn finally to the discussion of the digital version of the
. th ; . . . .
family of k order methods discussed in Section 6 above (essentially
defined by (6.13) and (6.14)). We assume digital interval arithmetic

operaticns (H, O, @, @, as described earlier in this section.
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It is sufficient for our purpose here to consider the special case of

a singie differential equation of first order,

y o= f(X: Y) P)

with initial condition y(0) = V5 1.e., x_ = 0. Suppose now that F,
a3 -1

F(*), ceo F(k *>, satisfy the conditions of pages 71 and 72. In

varticular,

£)

dF D x, 1) < &9 max (wx), w1)

£)

with K( >0 for £ =0,1,2, o0o. , k=1. Recall that F(z)(x, y) =

f(ﬂ)(x, y) for (x, y) € Dp. Let ﬁ(z) be digital interval majorants

to F(z), £=0,1, ... , k-1, such that F(z)(i, Y) C?(z)(i, Y) and
wFE, ) < wrPE, ) £ 70 2T,

for some ‘E(z) independent of X, Y in DE C DF' This is possible,
for example, for rational F since DF is compact.

The interval polynomials in (6.13) and (6.14) could just as well
have been defined in nested form (see Section 2). We chose in Section 6
not to do this for reasons of conceptual simplicity. It is clear that
the results of Section 6 are essentially unchanged with this modification.
For computation purposes, the nested evaluation of interval polynomials

produces intervals of smaller width generally than the sum of powers

evaluation (see Section 2).
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Define A on <£L[o a](z> DF by finite induction as follows:
P

3 - f“{'”@) )

where

Then

A%, %, ¥) = P -

If DF = é§[o;§}<> gﬁﬁ , then D = [0, a] x B. Using A in place
of A and B in place of B, suppose X* is determined by the process
described in Section 6, so that X C [0, a] anda A(XY, o, §b)(:'§,
with y ey . Call w = w(XF).
o} o
The digital arithmetic we are using is binary based. We will make
the simplifying assumption that the integer n, denoting the number of

slices to be made out of i*, is of the form 2° for a positive integer

s, and that the intervals Xgn), defined by

sl

X§n> = [i-1, i]
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are digitally representable. This will be the case, for example, if

a 1is a power of 2 and n = 2s and if we take the integer p on
pages T3-74 above, such that p <N - s. In order to guarantee this
inequality we will assume that N > s + p. This done, we can define

;én) = 36 and for i =1, 2, ... , n with x e S (digital numbers)

—(n)(z)

7 A%, 0, 1) () { TRECIDR <§>},

§(in) = S'r(in) (x

)y,

i
where agn)(x) is defined by finite induction as follows:
= =(k-1 n) — .(n n —(n
Q = F( ) (xi ), A(X( ), x(..) y(i i)) s

O i B

and for j=0, 1, ... , k-1,
K .
i = (@G O x-3)) ® (E@xgli)j @ ) (), )y
again with
?<-l>(x§n>, ;(in)) _ =(n)

Then

-Q(in)(X) = Q -

127



(£)

For rational F » Tthere exists an M > 0O such that for all

xe X (by (6.15) and the discussion of this section),

FHE) < vy PE) v T ™ @ - @)

-N

k

l) + nM_ Q_N), where -§(n)(§> = §§n)(§> for

(assuming w(y ) < MO(E

o
x € Xgn)(ﬁ\ S. The quantities M and M depend on k and on the

functions ?(£>, F(Z), £=0,1, ... , k-1. For fixed k, the inte-

gers n and N can be chosen large enough to make w(?‘n)(x)) arbi-
trarily small for all x e X'.
Choosing particular values for k, n, N, the digital interval

version of the kth order method will produce, by machine computation,

intervals §§n) containing values of the solution to y' = f(x, y),

y(0) = y, &t certain values xgn), i=1,2, ... , n, of x. In fact,

n —(n .
y(x§ >) € ¥ ) s i=1,2, oo , 1.

For intermediste values of X, We have

y(x) e y(n)(X) = y§n>(X) s X € Xgn) s

with ygn)(x) given by (6.14). Together with the relations

i=1,2, ... ,n,

e §(in) ,

1
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this serves to bound y(x) for all x € X', since we may replace
yg?% by '§§?i in (6.14) and the resulting function on X§n>(-{x§n)g
(n)

bounds ygn)(x). (With loss of continuity at the points X

, however.)
A final question of importance in practice and difficult to answer
in a simple way concerns an efficient choice of the integers n, k, N.
For the infinite precision interval methods, we found for the
equation y' = y2 with the initial condition y(0) = 1, that to main-
tain W(y(n>(x)) < 10719 for xe [0, 1/4], the number of arithmetic
operations was approximately minimized by choosing k = 12, n = 5. The
number of operations was taken as nk2 and it was assumed that
mp w(x™(0) = otk DE)
x eX¥*

for some constant C. Suppose now we make the assumption that the

"contribution" to

— n —
sup w7V (R)
X e X¥
made by replacing exact interval arithmetic by digital interval arith-
metic is nk- 2 Y, In fact, suppose that
k
s wEPE) = k1R 4wl el
X € X*
Again, let us find integers Xk, n depending now on N such that

2 . -
nk 1s minimum subject to the condition that

Kk
Ly s oV < 10710,

I, m, M) = (k1R <
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Clearly, we cannot satisfy the above inequality unless N is large

enough; in particular, we must have

On the other hand, if N is sufficiently large we will again arrive at

the result k =12, n = 5. In fact, if N is such that

&
I

1
51077,

then the choice is not much affected, and for k = 12, n = 5 this means
if N > hB, then k =12, n =5 is also close to the best choice for
the digital version of the kth crder methods for this example.

The mechanization of some procedure enabling the computer to deter-
mine a good choice of n, k, given a particular differential system, is
certainly an interesting possibility.

The choice of the intervals B and a ( see Figure lO) is arbitrary
and actual machine computation (as well as some theoretical investigation)
indicates the possibility of a reasonably efficient mechanizable procedure
for choosing the successive "box" sizes, for a particular differential
system.

Using single precision floating point digital interval arithmetic
and the methods described above, actual machine programs were written for
the IBM 7090 computer. Numerical results were obtained for a variety of
differential systems including the equations for the restricted three-body
problem. By going to high values of the order k surprisingly rapid com-
putations produced very narrow rigorous bounds on the exact solution.
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For instance, for the equation ' y' =y with y(0) =1 and X* =
[0, 1], the 12" order method (k = 12) produced in one integratién
step (n = 1) a machine interval containing e of width one binary
digit in the last place carried, i.e., maximum single precision accuracy.

For the equation y' = y2 with y(0) = 1, the lOth order method
with n =4 and X* = [0, 1/4], produced an interval containing the
exact solution y(1/4) = 4/3 of width less than one in the eighth sig-
nificant decimal digit. Twenty-seven binary digits was full single
precision accuracy; i.e., about .74 in the eighth significant decimal

digit corresponds to one binary digit in the last place carried.
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