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CHAPTER I

INTRODUCTION

Purpose and Scope

The advent of high-speed digital computers have had a profound effect
upon numerical analysis and on computational techniques. Problems that could
not previously be done, because of the lengthy calculations involved, can now
be completed in a relatively short period of time.

This tremendous advance in computing speed has brought with it prob-
lems relating to the accuracy of the results of lengthy machine computations.
Not all of these problems are new, but many are now relatively more impor-
tant than they were when calculations were done with paper and pencil or with
the aid of a desk calculator. Decisions based on experience and insight into the
particular problem being solved are no longer possible. All conditions should
be planned for in advance when one does a problem on a digital computer.

The particular digital computer and programming system being used
must be considered in a discussion of error analysis. The manner in which
arithmetic is performed, numbers are represented, and in which round-off,
truncation and significant errors are handled vary from computer to computer.
Conversion from decimal to binary often forces the computation to be started
with a value which only approximates the actual known value. The converting
of irrational numbers to finite rational approximations adds to the problem of
determining the accuracy of results.

Hence, it is exceedingly difficult to make a comprehensive study of the
total error, even for a rather simple problem done on a digital computer. The
net result is that rigorous error bounds are not usually known by, or available

to, the user of a digital computer.



The purpose of this paper is to present a proposed solution to the

problem of finding rigorous error bounds, by the use of interval arithmetic.

Interval arithmetic is a method of computation in which the rational operations
on real numbers are replaced by corresponding operations on closed intervals.
That such a replacement is always possible will be shown in Chapter II, where
a discussion is given of interval arithmetic as a system — definitions, opera-
tions, theorems, and elementary consequences.

In Chapter III, an algorithm is presented for the computation of certain
functions by the Taylor series, and which has error bounds built into the
algorithm. Finally, in Chapter IV, we employ closed intervals to solve the

initial-value first-order differential equation

(1.1) gf{i = f(x,y)
where
(1.2) yx) =¥,

Historical Remarks

The concept of an interval arithmetic seems to have been first formulated
by Paul S. Dwyer [1] 1 and used by him for computation done on a desk calcu-
lator, but not on a digital computer. In 1951, Dwyer discussed, in a heuristic
manner, certain methods for addition, subtraction, multiplication, division

and the square root of his so-called "range numbers."

In 1954, Saul Gorn wrote an article [2] concerned with errors which

derive from the following conditions:

lNumb_ers in brackets refer to references listed at the end of this paper.



(1) An initial inaccuracy is introduced by the necessary
replacement of real numbers by finite decimal (or
binary) approximations.

(2) Multiplications, divisions, and similar operations
performed on two s-placed numbers in general yield
s-placed results only if rounded off, with an accom-
panying "round-off error."

(3) Functions defined by infinite processes are computed
by finitely truncated processes.

While Gorn does not mention interval arithmetic per se, the methods and
procedures he describes would lead one naturally to construct an interval
arithmetic. He realized that this was the case, for he wrote:

. ..it is possible to code an error-estimating routine

applicable without change to any computational pro-
cedure whatever.

However, it was not until 1959 that formal proofs were presented, when
R. E. Moore published a report [3] in which he presented a formal system,
called interval arithmetic. George Collins (of the International Business
Machines Corporation) published several interval arithmetic programs [4]
in 1960, for the IBM 704 computer. Dr. Collins presented primarily an
heuristic approach to the subject. |

In 1962, Dr. Moore, working at Stanford University, produced another
report [5] on interval arithmetic in which he states that an interval arithmetic
computer program exists which could be used for the numerical solution of the
initial-value problem for ordinary differential equations and would yield both
rigorous and sharp error bounds.

Four papers published in 1964 in mathematical journals ([6], [7], [8],
and [9]) indicate that several Russian mathematicians have also been working

in the area of interval arithmetic for the numerical solution of differential

equations.



CHAPTER II

INTERVAL ARITHMETIC

We shall now construct an algebraic system known as interval arithmetic.

It will be seen that this system is an abelian semi~group and contains the field

of real numbers.

Definitions and Operations

Definition 2. 1: For any pair of real constants a,b , with a =b , the set of

all real numbers x for which a = x = b is called the closed interval [a,b] .

Since, corresponding to each pair of real constants a,b (a <b) there
exists a closed interval, the set of all closed intervals is necessarily infinite.
Let [a,b] denote a closed interval corresponding to a pair of constants
a,b (a=Db), and let S denote the set of all closed intervals. The following
definition may then be made.

Definition 2. 2: Two closed intervals are said to be equal, i.e. [a,b] = [c,d] ,
ifand only if a = ¢ and b =d.

We now proceed briefly to define [1] the arithmetical operations of two

closed intervals [a,b] and [c,d] in S.

Definition 2. 3: Interval addition:

(2.1) [a,b] + [c,d] = [a+c,b+d]

Definition 2.4: Interval multiplication:

(2.2) [a,b][c,d] = [min(ac,ad,bc,bd), max(ac, ad, bec, bd)]

Hereafter we shall refer to these operations simply as addition and

multiplication when no confusion exists as to whether we are discussing

interval arithmetic or the arithmetic of real numbers.



Fundamental Theorems

We will now present some simple theorems concerning interval arith-
metic which will be needed in later chapters. It will first be demonstrated

that interval arithmetic is closed, associative, and commutative under both

operations of addition and multiplication. By virtue of our definition for a
closed interval we must logically assume here the properties of real numbers.

THEOREM 2.1. (CLOSURE FOR ADDITION). For every pair of elements

[a,b] and [c,d] in S there exists a unique element
(2.3) [e,f] = [a,b] + [c,d]

in S.

PROOF: Let [a,b] and [c,d] be any two elements in S . Then we have
(2.4) {a,b] + [c,d] = [a+c,b+d]

by virtue of Definition 2.3. Now since a,b,c,d are real numbers, so also
are a+c and b+d. Moreover, since a=Db and c¢ = d by Definition 2.1,
sois a+c=Db-+d. This shows that [a+ c, b+ d] is a closed interval and
hence is an element of S . The uniqueness of [a +c, b+ d] follows from the
uniqueness of the real numbers a+c, b+ d. This completes the proof.

The proof of closure for multiplication is similar to the proof that
addition is closed.

THEOREM 2.2. (CLOSURE FOR MULTIPLICATION). If [a,b] and [c,d]

are any pair of elements in S, there exists a unique element
(2.5) le,f] = [a,b]l[c,d]

in S.



PROOF: Let [a,b] and [c,d] be any two elements in S . Then we have
(2.6) la,b][c,d] = [min(ac,ad,be,bd), max(ac, ad, bc, bd)]

by virtue of Definition 2.4. Now since a,b,c,d are real numbers, so are the
numbers ac,ad,bc,bd . Furthermore, min(ac, ad, be,bd) = max(ac, ad, be, bd) ,

which shows that
[min(ac, ad, be, bd) , max(ac, ad, be, bd)]

is a closed interval and hence is an element of S . The uniqueness of the

interval [min(ac, ad,be,bd), max(ac, ad,bc,bd)] follows from the uniqueness

of the real numbers ac,ad,bc,bd . The proof of the theorem is thus complete.
It will now be shown that addition and multiplication are associative.

THEOREM 2.3. (ASSOCIATIVITY FOR ADDITION). For all elements [a,b] ,

[c,d] , [e,f] in S,
(2.7) [a,b] + ([c,d] + [e,f]) = ([a,b] + [c,d]) + [e,f]

PROOF: Let [a,b], [c,d], [e,f] be any three elements in S. Then we

have, by Definition 2. 3,

(2.8) [a,b] + ([c,d] + [e,f]) = [a,b] + [c+e,d+{]

= [atc+e,b+d+ 1]

|

Also, by Definition 2. 3, it is seen that

i

(2.9) (fa,b] + [e,d]) + [e,{] [a+c,b+d] + [e,f]

Il

[atc+e,b+d+ 1] .

Thus, summing each side of (2.7) yields the same closed interval, and the

proof is complete.



THEOREM 2.4. (ASSOCIATIVITY FOR MULTIPLICATION). For all elements

[a,b] , [c,d] , [e,f] in S,
(2.10) (a,b] (lc,d]le,f]) = (la,b]lc,d]) [e,f] .

PROOF: Let [a,b], [c,d], [e,f] be any three elements in S . Then by

Definition 2.4, we have for the left side of (2. 10),

il

(2.11) [a,b] ([c,d]lle,£]) [a,b][min(ce, cf, de, df), max(ce, cf, de, df,)]

[min(ace, acf, ade, adf, bce, bef, bde, bdf) ,

i

max(ace, acf, ade, adf, bce, bcf, bde, bdf)] .

The right side of equality (2. 10) yields, by Definition 2. 4,

Il

(2.12) ({a,b][c,d]) [e, 1] [min(ac, ad, bc,bd) , max(ac, ad,bc,bd)][e, f]

i

I min(ace, act, ade, adf, bce, bef, bde, hdf) ,

max(ace, act, ade, adf, bce, bef, bde, bdf)] .

Hence, multiplying each side of (2. 10) gives the same closed interval, and the
theorem is proved.
The following two theorems show that addition and multiplication are

commutative.

THEOREM 2.5. (COMMUTATIVITY FOR ADDITION). For every pair of

elements [a,b] and [c,d] in S the relation
(2.13) fa,b] + [c,d] = [c,d] + [a,b]

holds.
PROOF: Let [a,b] and [c,d] be any two elements in S . Then we have,

by Definition 2. 3,

(2.14) [a,b] + [c,d] = [a+c,b+d]



and
(2.15) [e,d] + [a,b] = [c+a,d+Db]

Since a,b,c,d are real numbers, so alsoarea+c, b+d, c+a, d+b,
and commutativity holds for the addition of real numbers. Hence a+c =c+a

and b+d = d+b. Therefore,
(2.16) [a+c,b+d] = [c+a,d+Db] ,

which implies that (2. 13) is an identity and thus completes our proof.

THEOREM 2.6. (COMMUTATIVITY FOR MULTIPLICATION). If [a,b] and

[c,d] are any pair of elements in S, then
(2.17) [a,b][c,d] = [c,d][a,b]

PROOF: Let [a,b] and [c,d] be any two elements in S . Then by

Definition 2.4, we have

i

(2.18) [a,b]][c,d] {min(ac, ad, bc, bd) , max(ac, ad, bc, bd)]

and

i

(2.19) [c,d][a,b] [min(ca, cb, da, db) , max(ca, cb, da, db)]

Since a,b,c,d are real numbers, so are their products, and the real numbers
are commutative under multiplication. Hence ac = ca, ad = da, bc = cb,
bd = db, and it is therefore seen that the right side of equation (2. 18) equals
the right side of equation (2.19). This implies that (2.17) is an identity, and
our proof is complete.

We now show that the closed intervals [0,0] and [1,1] are both left

and right identities for addition and multiplication, respectively.



THEOREM 2.7. (IDENTITY FOR ADDITION). The closed interval [0,0] is

both a left and right identity for addition, i.e.,
(2. 20) [0,0] + [a,b] = [a,b] + [0,0] = [a,b] .

PROOF: Let [a,b] be any element in S. By THEOREM 2.5, viz. commuta-

tivity for addition, we have
(2.21) [0,0] + [a,b] = [a,b] + {0,0]

Now, one sees by Definition 2. 3 that

(2. 22) {0,01 + [a,b] = [0+a,0+Db] ,
and that
(2. 23) la,b] + (0,0} = [a+U, b+ 0]

Since 0,a,b are real numbers, their sums are also real. In particular,

0+a=a,a+0=a,0+b=>b, and b+0 =b, sothat

(2. 24) [0,0] + [a,b] = [0+a,0+Db] = [a,b]
and
(2.25) [a,b] + [0,0] = [a+0,b+0} = [a,b].

Therefore, the closed interval [0,0] is both a left and right identity for
addition.

THEOREM 2.8. (IDENTITY FOR MULTIPLICATION). The closed interval

[1,1] is both a left and right identity for multiplication, i.e.,
(2. 26) [1,1][a,b] = [a,b][1,1] = [a,b]

PROOF: Let [a,b] be any element in S. By THEOREM 2.6 for the com-

mutativity for multiplication, we have



(2.27) [1,1][a,b] = [a,b][1,1] .

Now, by Definition 2.4,

1l

(2. 28) [1,1][a,b] [min(l - a, 1 b), max(l- a, 1 b)] ,
and

(2. 29) {a,b]J[1,1]

i

[min(a - 1,b - 1), max(a - 1,b 1)],

Since 1,a,b are real numbers, their products are real. In particular,

10

l-a=a,a-1=a,1-b=Db,b:1=D>b. Remembering that a =b, we

have
(2. 30) [min(l - a,l-b),max(l-a,1-b)] = [a,b]
and
(2. 31) [min(a - 1,b - 1), max(a- 1,b - 1)] = [a,b]

Hence, it follows that the closed interval [1,1] is both a left and right

identity for multiplication.

Elementary Consequences

Some elementary consequences, based on the definitions and theorems
will now be presented.

The reflexive, symmetric, and transitive laws hold for all [a,b] ,
[c,d] , [e,f] in S and are immediate consequences of real numbers. We
thus have the following.

Reflexive law:

(2.32) [a,b] = [a,b] .
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Symmetric law:

(2. 33) If [a,b] = [c,d] , then [c,d] = [a,b] .

Transitive law:

(2.34) It f[a,b] = [c,d] , and [ec,d] = [e,f] ,

then [a,b] = [e,f]

It is of interest to note that an isomorphism1 exists between the field of
real numbers and closed intervals of the form [a,a] .
Definition 2.5: The set S* is the set composed of all closed intervals of the
form [a,a] , where a is a real number.

Closed intervals of the form [a,a] are intervals of zero width. Clearly

S* is a subset of S, and the set S* is necessarily infinite.

THEOREM 2.9. (S* ISOMORPHIC TO THE REAL NUMBERS). The set of S*
is isomorphic to the field of real numbers. |
PROOF: We first establish a one-one correspondence between the field of real
numbers and the elements of the set S* . We do this in the following manner:
with 0 we associate [0,0] , and vice versa, while with 1 we associate
[1,1] , and vice versa; in general, we associate n with [n,n] , and vice
versa.

We now show that sums and products are preserved. ILet a and b be

any two real numbers. Then by the one-one correspondence established above,

1An isomorphism between two sets S and S' is a one-one correspon-
dence a <—a' of the elements of S with the elements of S', which satisfies
for all a and b the conditions

(a+b) =a'+b" , (ab)! = ab'.
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the number a corresponds to the element [a,a] in S*, and b corresponds
to the element [b,b] in S* . Hence, we must show that a +b corresponds
to the sum of the closed intervals [a,a] + [b,b] , and that ab corresponds to

the product of the closed intervals [a,a][b,b] . From Definition 2.3 we have
(2. 35) [a,a] + {b,b] = [a+b, a+Db]

and by Definition 2.4 it follows that

(2. 36) [a,a]l[b,b] = {[ab,ab] .

By the one-one correspondence established above

(2.37) a+b=<—Ja+b,a+b],
and
(2.38) ab <— [ab, ab]

Thus, sums and products are preserved and the isomorphism is proved.
The field of real numbers can be congidered as being embedded within

the set S of closed intervals. By the correspondence
(2. 39) ¢ — [c,c]

any real number may be changed to a closed interval. Thus we can define
addition and multiplication of real numbers and closed intervals.
Definition 2.6: Addition of a real number c¢ and a closed interval [a,b] in

S is defined by the relation
(2.40) ¢+ [a,b] = [c+a,c+Db] .

Definition 2.7: Multiplication of a real number, c , and a closed interval

[a,b] in S is defined by

(2.41) ' cla,b] = [min(ca,cb), max(ca,cb)]
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In general, neither additive nor multiplicative inverses exists in the set
of closed intervals S .

THEOREM 2.10. (ADDITIVE INVERSES). Additive inverses do not exist in the

set of closed intervals S, except for the subset S* .
PROOF: The set S* is isomorphic to the real numbers by THEOREM 2.9,
and additive inverses exist for all elements of the set of real numbers.
Additive inverses will therefore exist for all elements of S* .

Let [a,b] be any closed interval in S, where a = b (i.e., a<b).
Assume that an additive inverse exists for [a,b] in S, say [c,d] . Then

by Definition 2.3

(2.42) fa,b] + [c,d] = [a+c,b+d] = [0,0] ,
and therefore,

(2.43) a+c =0, and b+d = 0,
Thus,

(2.44) a=-c¢, and b = -d.
Since a <b by hypothesis, we have

(2.45) a=-¢c<b=-d and -c¢c<-4d,

This implies that

(2. 46) d<c;
but by Definition 2.1, [c,d] requires that
(2.47) c=d.

Thus, assuming that [a,b] has an additive inverse leads us to a contradiction,

and the theorem is proved.
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THEOREM 2.11. (MULTIPLICATIVE INVERSES). Multiplicative inverses do

not exist in the set of closed intervals S, except for a subset S* which
excludes [0,0] .
PROOYF: The set S* ig isomorphic to the real numbers by THEOREM 2.9,
and multiplicative inverses exist for all elements of the set of real numbers,
except zero. Therefore, multiplicative inverses exist for all elements of S* |
except [0,0] .

Let [a,b] be any closed interval in S, where a #b, (i.e., a<b).
Suppose a multiplicative inverse exists for [a,b] in S, say [c,d] . Then

by Definition 2.4, we have

(2.48) [a,b][c,d] = [min(ac,ad,be,bd), max(ac, ad,be,bd)] = [1,1] ,
implying that

(2.49) l=ac=1, 1l=ad=1, l=bec=1,1=hd=1,

But if

(2.50) ac = bc or ad = bd

then

(2.51) a =5hb.

This, however, contradicts our assumption that a < b, and the proof is
complete.

It is interesting to note that even though additive inverses do not exist
for all elements of S, we have the following theorem:

THEOREM 2.12. (CANCELLATION LAW FOR ADDITION). FKor |a,b],

[e,d] , [e,f] in S, if

(2.52) [a,b] + [c,d] = [a,b] + [e,f],
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then
(2.53) [e,d] = [e,f] .
PROOF: Let [a,b], [c,d], [e,f] Dbe elements of S . By assumption,
(2.54) [a,b] + [c,d] = [a,b] + [e,f]
Summing each side of equation (2. 54) yields
(2.55) [a+c,b+d] = [ate, b+T]
From Definition 2. 2, we have
(2. 56) a+c = a+e , and b+d = b+1.

Recalling that a,b,c,d,e,f are real numbers, we note that equation (2. 56)

implies that

(2.57) c =e , and d = f.
Hence, by Definition 2. 2, it follows that

(2.58) [c,d] = [e,f]

THEOREM 2.13. The cancellation law for multiplication does not hold in interval

arithmetic. That is, for the intervals [a,b] , [c,d}l , [e,f] in S, if

(2.99) {a,b][c,d] = [a,b][e,f] ,
we cannot conclude that
(2.60) - le,d] = [e,f]

PROOF: (Let us assume that the cancellation law does hold in interval arith-
metic. We shall then show by a counter example that this assumption is

incorrect). For the closed intervals [0,2] , [0,1] , [1,1] in S, itis seen
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by Definition 2. 4 that

(2.61) [0,2]1[0,1] = [0,2][1,1]
[0,2] = [0,2] .

Now

(2.62) [0,1] = [1,1]

and thus our assumption that the cancellation law holds is incorrect, and our
theorem is proved.
Another point of interest concerns the distributive law.

THEOREM 2.14. The distributive law does not hold in interval arithmetic.

PROOF: Let [a,b], [c,c], [-c,-c] bein S. Using Definitions 2.3 and

2.4, and first adding and then multiplying, vields
(2.63) fa,b} ([c,el +[-c, -c]) = [a,b][0,0] = [0,0] .

But if we first multiply and then add, we get

(2. 64) [a,b] ([c,e] + [-¢c, -¢c]) = [a,b]lc,c] + [a,bl[-c, -c]
= [min(ac, bc) , max(ac, bc)]
+ [min(- ac, - bc) , max(- ac, - bc)]
= 0
unless a =b =0, or ¢ = -¢ = 0, or both. Therefore, in the general

case, the distributive law does not hold in interval arithmetic.
One special case in which the distributive law does hold, however, is
noteworthy:

THEOREM 2.15. If [a,a] isin S* and [b,c] and [d,e] arein S, then

(2. 69) [a,a] ([b,c] + [d,e]) = [a,al[b,c] + [a,a][d,e]
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PROOF: Let [a,a] be any element in S* , and let [b,c] and [d,e] be
any two elements in S . There are three cases, depending on whether a <0,
a=0,a>0.

Casel. a<0:

1l

(2.66) [a,a] ([b,c] + [d,e]) = [a,a][b,c] + [a,a][d,e]

[a,a][b,c] + [a,a][d,e]

1l

[a,a][b+d, c+e]

[a(c + e), a(b + d)] fac,ab] + [ae,ad]

and finally

[ac + ae, ab + ad],

[ac + ae, ab + ad]

Case 2. a = 0:

(2.67) [0,0] ([b,c] + [d,e]) = [0,0][b,c] + [0,0][d,e]
[0,01[b+d, c+e] = [0,0]+[0,0]
which yields
[0,0] = [0,0],
Case 3. a>0:
(2.68) [a,a] ([b,c] + [d,e]) = [a,a][b,c] + [a,a][d,e]

[a,a][b+d,c+e] [a,a][b,c] + [a,a][d,e]

l[a(b + d), a(c + e)]

It

[ab,ac] + [ad,ae]

and so

[ab + ad, ac + ae] = [ab+ ad, ac + ae],

In each case the equality of (2. 65) holds, and the proof is complete.
Hence, the distributive law holds when the common factor is an element
of S* . Due to the isomorphism between the real numbers and the set S*

(THEOREM 2.9), and to Definitions 2.6 and 2.7, which give us the ability to
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both add and multiply closed intervals by real numbers, it is clear from

THEOREM 2. 15 that
(2.69) n([a,b] + [e,d]) = n[a,b] +n[c,d]

where n is a real number and [a,b] , [c,d] arein S.
The elements of S can be partially ordered [2] by set inclusion.

Definition 2.8: A partial ordering by set inclusion for any two elements [a,b]

and [c,d] in S, exists if and only if

(2.70) c=a=b=d.

This ordering is expressed symbolically by

(2.71) [a,b] € [ec,d]

It follows from Definition 2.8 that

(2.72) [2,b] € [c,d] and [c,d] C [a,b]
if and only if

(2.73) a =c¢ and b =d.

It is clear that for the closed intervals [a,b], [c,d] , [e,f] , [g,h]

in S, if

(2.74) la,b] € [e,f] and [c,d] S [g,h] ,
then

(2.75) [2,b] + [c,d] € [e,f] + [g,h]
and

(2.76) la,b]lc,d] < [e,f][g,h]

The inclusion relationships follow from the definitions of addition and

multiplication, respectively, viz., Definitions 2.3 and 2. 4.
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While in the general case distributivity does not hold for closed intervals,

a weaker law, which Moore [3] calls "subdistributivity," does hold.

Definition 2.9: Subdistributivity: for the closed intervals [a,b] , [c,d] ,

[e,f] in S:

(2.77) [a,b] ([c,d] + [e,f]) € [a,b][c,d] + [a,b][e,f]
For example,
[1,2] ([3,3] + [-3, - 3]) € [1,2][3,3] + [1,2][- 3, - 3]
[1,2][0,0] c [3,6] + [-6, - 3]
[0,0] € [-3,3] .
The usual power notation will be used.

Definition 2. 10: For any closed interval [a,bl in S, and any integer n =0,
(2.78) [a,b]" = [a,b][a,b] ... [a,b] ,

where the closed interval [a,b] is used as a factor n times, and for n = 0

we mean
, o
(2.79) [a,b]” = [1,1]
The concepts of union and intersection have meaning with closed inter-
vals as in the following:
Definition 2. 11: The union of two closed intervals, [a,b] and [c,d] in S,
is defined by the relation
(2.80) [a,b] U [c,d] = {x]x € [a,b] or xe¢ [c,d]} .
Definition 2. 12: The intersection of two closed intervals, [a,b] and [c,d]

in S, is defined by

(2.81) [a,b] N[c,d] = {x|x e[a,b] and x € [c,d]l} .
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Besides the partial ordering by set inclusion (Definition 2. 8), the set
S can be partially ordered by the inequality, < , less than [4] .

Definition 2.13: A partial ordering by the inequality, <, less than, for the

closed intervals [a,b] and [c,d] in S is defined by
(2.82) [a,b] < [c,d]

where for every x € [a,b] and for every y ¢ [c,d] ,
(2.83) X<y,

The ordering of closed intervals by Definition 2.13 is a transitive

relationship. Since for x ¢ [a,b] , y € [c,d] , and z € [e,f] , if
(2.84) [a,b] < [e,d] and [c,d] < [e,f]

then by Definition 2. 13

(2.85) Xx <y and y < z .

But x,y,z are real and the real numbers are ordered. Further, the ordering
of the real numbers is a transitive relationship. Thus (2.84) implies that
(2. 86) [a,b] < [e,f]

Definition 2. 14: The square root of the interval [a,b] in S, with a =0,

is defined by

(2.87) VTa,b] = [Va, VD]

For v [a,b] , we wish to obtain an interval which contains the square

root of each x in the closed interval

(2.88) a=x=b , a=0.
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Now the least square root of (2.87) will be va and the greatest square root of
the interval will be vb . Thus the interval [Va,Vvb] will contain all values
of the square root of x contained in [a,b] .

An example should clarify this concept. Let us obtain the square root of
the closed interval [1,2] . That is, we want the square root of x , say to

three decimal places, where 1 =x= 2. Now, by (2.87),
VI1,2] = [VI, V2] = [1,1.415]

Clearly, the closed interval [1,1.415] contains the square root of all values
of x in the given closed interval, [1,2] .

We shall now define subtraction and division for two closed intervals
[a,b] and [c,d] in S.

Definition 2. 15: Interval subtraction:

(2. 89) [a,b] -~ [c,d] = [a,b] +[-d, -c]

Definition 2. 16: Interval Division:

(2.90) [a,b] + [c,d] = [a,b][1/d,1/c] ,

provided 0 ¢ [c,d] .

We should observe that the interval fraction
(2.91) 120l L1101 ) 0 ¢ [a,b]

unless a = b . For, by Definition 2. 16

(2.92) —[[sj-g:]l— = [a,b] [-é—,i = [min (%,l,g>,max(§ 1,.§>]

Only in the case when a = b do we have

(2.93) %:—%]L = [1,1] »
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If 0 <a<b, then

(2.94) %:—EZ]L - [%g]

If a<b<0, then

[a,b] _ [b a
(2.995) [a.b] ~ la’b

If a<0<b, we have an interval that contains zero and we cannot divide.

Definition 2. 17: A rational interval expression [5]

(2.96) F(lxy L %,], [xg, %] ony [x g x1)
is a finite combination of closed interval variables,
(X1 Xo) s [Xgs X405 eees [X 15 % ]

and a finite set of constant closed intervals of the form [a,b] in an expres-
sion with interval arithmetic operations.

A rational interval form is usually not representable as a quotient of two
polynomials. That is, we cannot say

L1 Dkl (L

(2.97) [x1 , XZ] + [Xl : X2] = [Xl ) xz] ,

unless x This is due to (2.91).

1:X2.

Since interval arithmetic operations are monotonic inclusive, if
! ! 1 1
(2.98) [x}, xp] € [xp, x50, [xh, x4] C [xg, %405,

1 1
[xn_l, xn] c [xn_l , xn]
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and if
(2.99) F([xl,xz] , [x3,x4] e ees [xn_l,xn])
is a rational interval expression, then
(2.100) F(Ixl, xy], [xy, xh] oo [} o x)]) © Fllxg, %p], (x5, %400
[x,_1>x.1) -
The following two theorems are of value when doing numerical calcula-

tions with closed intervals.

THEOREM 2.16. For the closed intervals {[a,b] , [c,d] in S, if

(2.101) [a,b] < [c,d]
then there exists a closed interval [e,f] in S, such that
(2']‘02) [C’d] = [a,b] + [e9f] )

and 0 ¢ [e,f] .

PROOF: By hypothesis,

(2.103) la,b] c [c,d] ,
So that from Definition 2.8,

(2.104) c=a=b=4d.

Since a,b,c,d are real numbers, for ¢ =a and b =d, some real numbers

e=0, and f=0 existsuch that
(2.105) ¢c =a+e and d = b+1{
Thus,

(2.106) [c,d] = [a,b] + [e,f] ,



for, by Definition 2.3
(2. 107) [c,d] = [ate,b+{]

THEOREM 2.17. TFor the closed intervals [a,b] and [c,d] in S, if

(2.108) la,b] < [ec,d]

and [e,f] is any element in S which does not contain zero in its interior
(zero can be an end point), then there exists a closed interval [g,h] in S,

such that

(2.109) [c,d] = [a,b] + [e,f][g,h]
PROOTF: By hypothesis,

(2.110) [a,b] c [c,d] ,

and by THEOREM 2. 16, we have

(2.111) [e,d] = [a,b] + [Xl’ X2] , 0 ¢ [xl, XZ]'

Let [e,f] be any closed interval in S, which does not contain zero in its
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interior. Then we must show that a closed interval [g,h] in S exists such

that

(2.112) [x,,%,] = [e,f]lg,h] .

If [g,h] exists, then by Definition 2.4

(2.113) le,f][g,h] = [min(eg,eh, g, fh), max(eg, eh, ig, fh)]
Since by hypothesis [e,f] does not contain zero in its interior, either

(2.114) e=f=0 or 0=e=1f{
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Since there are no restrictions on [g,h] , one of the following three conditions

must hold for [g,h] :
(2.115) g=h=0, g=0=h , 0=g=h,

Thus, there are six possible cases for equation (2.113). We will show that in
each case, [g,h] exists, i.e., that equation (2.112) is satisfied.

Casel. e=f=0,g=h=0:

(2. 116) [x,,%x,] = [e,f][g,h] = [fh,ee]

Case 2. e=f=0,g=0=h:

(2.117) [Xl’ Xz] = [e,f][g,h] = [eh,eg]
Case3. e=f=0,0=g=h:
(2.118) [xl , xz] = [e,f][g,h] = [eh,fg]
Case4. 0=e=f,g=h=0:
(2.119) [Xl’ x2] = [e,f][g,h] = [fg,eh]
Cased5. 0=e=f,g=0=<h:
(2. 120) [Xl’ xz] = [e,f][g,h] = [fg,fh]
Case 6. 0<=e=f,0=g=h:
(2.121) [Xl’ xz] = [e,f]lg,h] = [eg,fh]

Hence, in each case, a closed interval [g,h] in S exists and the

theorem is proved.

Interval Arithmetic Ags A Semi~Group

In this section we will prove that interval arithmetic is an abelian

semi-group.
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Definition 2. 18: A set of elements which is closed under a binary operation
and for which the associative law holds is called a semi-group [6]. If the

operation is commutative, we have an abelian semi-group.

THEOREM 2.18. The set of closed intervals S forms an abelian semi-group

under addition.
PROOF: By Definition 2.3, interval addition is a binary operation on the
elements of S. THEOREMS 2.1, 2.3, and 2.5 give us closure, associativity,
and commutativity, respectively, for the operation of addition in S . There-
fore, the set S is an abelian semi-group under addition.

It should be noted that an abelian semi-group under addition is also
known as a semi-module [7].

THEOREM 2.19. The set of closed intervals S, forms an abelian semi-group

under multiplication.
PROQTF: By Definition 2.4 interval multiplication is a binary operation on the
elements of S. THEOREMS 2.2, 2.4, and 2.6 give us closure, associativity,
and commutativity, respectively, for the operation of multiplication in S .
The set S is therefore an abelian semi-group under multiplication.

The set S of closed intervals does not form an integral domain since
the distributive and cancellation laws do not hold (THEOREMS 2. 14 and 2. 13,
respectively) and we do not have an additive inverse (THEOREM 2. 10).

Obviously S is not a field, for a field requires an integral domain with
a multiplicative inverse, and by THEOREM 2. 11, we do not have multiplicative
inverses.

S is not a group under either addition or multiplication, for while we °

have identity elements for each (THEOREMS 2.7 and 2.8, respectively) we do
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not have additive or multiplicative inverses (THEOREMS 2. 10 and 2. 11,
respectively). Not being a group, S cannot be a ring.

In closing, it should be noted that we have by no means exhausted the
study of interval arithmetic as an algebraic system, but have tried to present
only the basic definitions and theorems and some useful elementary
consequences. We now go on to some applications where interval arithmetic

is useful in securing error bounds on numerical computations.



CHAPTER III
APPLICATION TO TAYLOR'S SERIES

Introduction

When a function f(x) is approximated by a power series

n .
(3.1) f(x) = Z aix1 s
i=o

the error ¢ is given by

n

(3.2) f(x) - > aixi = €.
i=o

If the error ¢ can be expressed analytically so that a reasonable upper bound
may be found, and if the error term can be restricted to a region where it is
monotonically increasing or decreasing, then by using interval arithmetic we
can calculate values for the given function, and for each solution have a
rigorous error bound. Moreover, the error bound would then be obtained
simultaneously with the solution — not as a separate and time-consuming
calculation.

As a practical matter, the techniques to be developed in this chapter
are most useful if one is planning on having the calculations done on a digital
computer. We shall discuss Taylor's series (since it is often used on digital
computers for approximatiﬁg functions), and shall place our emphasis on the
remainder term of the series. It will be seen that the same general approach

is applicable to many other series approximations.
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Taylor's Theorem

Taylor's well-known theorem (sometimes called Taylor's formula, or
Taylor's series with remainder) may be stated as follows [1]:

THEOREM 3.1. (TAYLOR'S THEOREM). Let a function f(x) and its first n

derivatives (n = 0) be continuous in a closed interval containing x = a , and

let x be any point in this interval. Then
X - a 2
(3.3) Hx) = fa) + (x - a) £'(a) + ESE ) +

+%§%U“Nle+R,

where the remainder Rn is given by

X

(3.4) R = ﬁ af x -t (1) a

PRQQE:l (By mathematical induction) By hypothesis, the given function f(x)

satisfics the Fundamental Theorem of the Integral Calculus, and hence

X

(3.5) f(x) = f(a)+ [ £'(t) dt .

a
This is formula (3.3) for n = 1. Assume now that (3.3) is true for n , that
is, that

2
(3.6) 100 = (@) + (x - a) fa) + ES By L

(x -a)y nl) 1 £ n-1 (n)
C(n - 1) f( (n—l)'. f(X‘L) £ty dt .

a

lln order to make the paper more self-contained, we give the proof

here, although the theorem is proved in many standard texts.
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Integrating the last term by parts, we obtain
(x - a)z
(3.7) f(x) = f(a) + (x - a) f'(a) + o1 f'(a) + ...

n-1 _a\h

X
+£§J(x—mnﬁn+”a)a,

which is the same formula as (3.3) with n replaced by n+ 1. Therefore,
by mathematical induction, formula (3. 3) is true for all n = 1, and the proof
is complete.

Of particular interest for our purposes is the remainder term

X
(3.8) R = —Lte [y -y"ta .

)2
However, while this form of the remainder has the advantage of being explicit,
it is usually rather difficult to estimate in a numerical problem. We will
therefore develop Lagrange's form of the remainder

n
(3.9) R = E=2 M e ox

n n

which has the advantage of simplicity and, as will be seen, is more amenable
to interval arithmetic.
In order to obtain Lagrange's form of the remainder from (3.8), we

make use of the Second Law of the Mean [2], which states that if f(x) is con-

tinuous for a =x =b and if g(x) does not change sign for a <x <b, then.

the relation
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b b
(3. 10) [ fx) g(x) dx = (&) [ gx) dx
a a

holds for at least one & suchthat a<&<b.
Now, the quantity (x - t)n_f1 in (3. 8) does not change sign as t varies
from a to x . Thus, the Second Law of the Mean allows us to rewrite (3. 8)

in the form

(n) X _
(3.11) Rn=(f1—_—(-1§))!—af(x—t)nldt,a<§<x,

which is easily integrated to yield

n
(3. 12) R =1X—r’ﬂﬂLf(n)(g), a<t<x .

n

If we set a = 0 in (3.3), we get the well-known special case, called

Maclaurin's series with remainder. That is,

x2 N
(3.13) f(x) = f(o) + xf'(o0) + o1 f'o) + ... + o= f (o) + Rn )
with the remainder term (3.9) becoming

" (n)
(3.14) Rn:Ef (§) , 0 <& <x.

The Remainder Term as an Interval

The Lagrange form of the remainder (3.9) of Taylor's series tell us
only that £ is known to lie somewhere between a and x . Our objective is
to obtain a closed interval which will contain the exact value of the remainder

R .
n
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For a function whose nth derivative is either monotonically increasing
or decreasing in the interval a to x , we can construct a closed interval such
that the function can be approximated by Taylor's series with rigorous error

bounds.

We construct the desired closed interval in the following manner. Noting

that the remainder,

’

n
(3. 15) R = B2y e ox

n

states that the exact value is dependent upon £ , and that ¢ lies between a
and x , we will build a closed interval which will contain all possible values
of Rn , for a<é<x. I ¢ takes on every possible value between a and

x , then Rn is boundeQ. In fact, for either

(3. 16) & = a or £ =x,
we obtain a maximum value which is less than R][1 for
(3.17) a<éi<x.
Similarly, for either

(3.18) (¢ =a or & =x,

we obtain a minimum value which is greater than Rn for the condition (3. 17).

For notational simplicity, we make the following notational definitions.

n
Definition 3.1. R = E=8 (M
n,a n!
n
Definition 3.2. R_ _ = =2 dWyy
n,x n'

It is clear that either

(3.19) R =R =R
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or
(3. 20) Rn,x =< Rn = Rn,a

We are now in a position to define the closed interval which contains Rn .
Definition 3. 3: Rn,i = [mm(Rn’ 2’ Rn,x) , max(Rn’ . Rn,x)]

THEOREM 3.2. The closed interval, Rn,i , contains Rn .
PROOF: The proof is immediate. For Definitions 3.1, 3.2, and 3.3, together
with (3. 19) and (3. 20), clearly show that we have constructed a closed interval
which contains Rn . Q.E.D.

The closed interval which contains the remainder term (3. 14) of the
Maclaurinseries can be constructed in the same manner as was the closed
interval for Taylor's series, with a = 0 . Thus, we have from Definition 3. 3,

with a = 0,

(3.21) R, ; = [min® R ), max(R R ]

This of course is obvious, for the Maclaurin series is the Taylor series with

a = 0 and the condition o < ¢ <x .

Taylor's Series Interval Algorithm

If we modify the usual form of the Taylor series (3.3), to make use of

-

the closed interval Rn i which by THEOREM 3.2 contains Rn , wWe have
=y #3)
(3.22) f(x) C jg’oj' (x -a) f (a)+Rn,i.

When f(x) is any real function which can be computed by Taylor's
series, and when the nth derivative is either increasing or decreasing mono-

tonically between a and x , then the first n terms can be computed in the
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usual manner and then added to the closed interval Rn,i . The sum of the
first n terms will be a real number, and by Definition 2.6 we can add real
numbers and closed intervals.

In actual practice, however, it is often necessary to start a computation
with an inexact value of a parameter x , say, X + ¢ . This problem can be
taken care of for a series expansion and a result obtained with a precise error
bound if we employ interval arithmetic.

Let us assume that f(x) is a real function and meets the conditions for
being expanded by Taylor's theorem, and also meets the condition imposed
upon the nth derivative. Further, suppose x is not precisely known, but
rather that we have x + ¢, e.g., e with x = 1+0.1 , or sin x with
X = 0.25 £ 0.001. The usual procedure is to calculate the value of the function
for x , without regard to the ambiguity, and then to do some analysis con-
cerning the error. This often amounts to an educated guess, simply because
of the difficulties encountered in the corﬁputation required by the analysis.
What follows is a procedure for simultaneously doing the initial computation
and the error analysis, thus obtaining a closed interval in which the exact
value of the function is known to lie.

If x is a real number, so are x+ € and x - ¢ . Clearly then, f(x + ¢)
and f(x - €) can both be calculated by Taylor's series (3.3) or by (3. 22), i.e.,

Taylor's series with a closed interval remainder Rn , assuming increasing
H

i
or decreasing monotonicity of the nth derivative between a and x .

For notational purposes, let us define the following.

n-1 ..
Definition 3.4: f(x - ¢) C Z 317 x-¢€- al)J f(J)(a) + Rn
j=03 ’

Definition 3.5: R =R . with x replaced by x - ¢, i.e.,
n, o n,i

a "
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(3.23) R = [min(R_

n o Ry oo max(By R )]

,a’ " n,

Definition 3. 5 is simply based on the fact that the condition on the

remainder term is now
(3. 24) a<éi<x-eg.

Definition 3.6: Let « be equal to the sum of the first n terms of Definition

3.4. That is,
n-1 1 i ()

(3. 25) a =3 j—,(x—e—a)JfJ(a) :
=0

We can now restate f(x - ¢) as

(3. 26) fx-¢) Ca-+ Rn,a

or

(3.27 flx - C e + (R ,a + (R R

(3.27) (k-0 Cla*t@®, ) La+® ) ]

where by (Rn oz)min and (Rn oz)rnax we mean the left and right ends of the

closed interval Rn o’ respectively.

2

For f(x + ¢) the following definitions may be made.

n-1 1 i ()
Definition 3.7: fx+¢) € 3 = (x+c-a) fa)+R

=0 j!t n,ps
Definition 3. 8: Rn 8 = Rn i with x replaced by x + ¢, i.e..
(3.28) Rn,ﬁ = [mm(Rn’ g Rn,x+e) , max(Rn’a, Rn,XJr €)]

Definition 3. 8 is based on the fact that the condition on the remainder

term is now

(3. 29) a<f<xte.
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Definition 3.9: Let B be equal to the sum of the first n terms of Definition

3.7. That is,
n-1 1 ..

(3. 30) B =3 J.—T(x+€—a)J £ ay .
=0 "

We can now restate f(x + ¢) as

(3.31) fx+e) CH+R o
or

(3.32) fx+8) C B+ Ry ) os B+ (R )]

where by (Rn,,B)min and (Rn,B)max we mean the left and right ends of the
closed interval R respectively.

n,B°’

Thus, we are in a position to state succinctly a éertain algorithm for
computing a closed interval which contains all values of the function f(x + ¢) ,
and which also contains the upper and lower error bounds.

ALGORITHM 3.1. If f(x) meets the conditions of Taylor's theorem, and if

th NP . . . .
the n~ derivative is monotonically increasing or decreasing between a and

x , then for f(x + ¢) we have the Taylor Series Interval Algorithm

(3.33) f(x + €) [min(oz +(R. ) . ,B+(R

n, ' min

n,B)min> !

max <oz + (Rn,oz)ma.x’ B+ (Rn,ﬁ)max” )

If in this section, a is everywhere replaced by zero, we then obtain
the Maclaurin Series Interval Algorithm, which is identical in notation with
(3.33), since a does not appear explicitly in that expression.

It should be noted that if ¢ = 0, then o« and B in (3.25) and (3. 30)

are identical and (3. 33) becomes (3. 22).
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Example

It has been shown that by using interval arithmetic, we can obtain
explicit closed intervals containing the exact solution and the error bounds
for any function which can be calculated by the Taylor or Maclaurin series,
and meets the condition imposed in the last section for the nth derivative.

We shall demonstrate the use of the algorithm developed in the pre-
ceding section by using the Maclaurin series to calculate sin (x £+ ¢€) . It is
assumed that x lies in the closed interval 0 to g . (This assumption is
not really a restriction on the generality of the algorithm, as any value of x
for the sine function can be scaled to be within the limits imposed.) It will
be noted that the condition concerning the nth derivative will always be met
for 0 =x= % .

No a priori analysis will be required to determine the number of terms
needed to achieve any desired decimal place accuracy. If we simply calculate
f(x - ¢) and f(x + ¢) according to Definitions 3.4 and 3.7 respectively, on a
term by term basis, including the remainder for each term, we will then
obtain closed intervals which contain f(x - ¢) and f(x + €) . The closed
intervals so found can have any desired accuracy. We have only to notice
when the width of the remainder intervals, Rn,a and Rn, I is less than the
prescribed error. Once we have done this; we have the necessary elements
for substituting in (3. 33).

Remembering that the algorithm is planned for use on a digital computer,
an experienced programmer can easily design a general purpose routine for
any function which meets the required conditions.

We shall now illustrate these matters by finding a closed interval which

contains sin (1 £ 0.01) to five decimal place accuracy. The error bound

will then be in the sixth place.



We first find f(x - €) or sin (0.99) from (3.27). From (3.25), we

have
n-1 ..

(3. 34) EEEDY -jl,(o.99)J 1 (o) .
=03

For Rn o Ve now make use of (3. 23), noting, however, that since

(3.35) £ () = sin <X+I;—7T> ,
we have

(3. 36) £ (0) = sin (%)
Thus, since

(3. 37) 0 <& < 0.99

it is seen that

n
% f(n) (0)

(3. 38) Ry o =
and
n
3.39 R - X 40 g 99
(3.39) n, 0.99 nt (0.99) .

However, for the sine function restricted to the first quadrant, the
minimum value of the function is zero and the maximum value is unity.

Hence, for our problem, we can consider

(3. 40) R, o =0
and
n
_oopix
(3.41) Rn,0.99 =1 n'

38
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Relation (3. 23) thus becomes

4 _ . 1 n-1 xn) ( 1 n-1 xn)
(3.42) Rn,oz = Jmin (0, (- 1) L1/ max 0,(-1) ot .

3

Now calculating on a term by term basis until the width of Rn o is less than

five decimal places, we have

(3.43) sin (0.99) € 0.9900000 - 0.1617165 + 0.0079249
- 0.0001849 + 0.0000025
+ [~ 0.0000003, 0.0]

or

sin (0.99) C [0.836025, 0.836026]

The exact value [3] of sin (0.99) to seven places is 0.8360259 .

We now find f(x + €) , i.e., sin (1.01) from (‘3.32). From (3. 30) we

have

(3. 44) g = Iit) 31{(1.01)j o) .
=

For R, use is made of (3.28). Since

(3. 45) f0xy = sin <x+92~75) ,

we have

(3. 46) #M o) = sin (%—”) .

And

(3.47) 0 <& <1.01;
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hence
n
(3. 48) R, = £ 1)
and
(3. 49) R, 101 %f(n)(l.on :

Again, making use of the fact that the function is always in the first

quadrant, the minimum value is zero and the maximum value is unity. Thus

(3. 50) Ryo = 0

and

3.51 R - _1n-1>_<f1_
(3.51) n,l.Ol—( ) n! *

Hence, for (3.28) we have

n
n-lx

3.52 R = i (0 1 ) (0 1“'1£)
(3.52) n,g min » (- 1) o , max y (= 1) o .

Now if calculations are made until the width of Rn is less than five decimal

B

places, we have

(3.53) sin (1.01) € 1.0100000 - 0.1717168 + 0.0087584
- 0.0002127 + 0.0000030
+ [~ 0.0000003, 0]

sin (1.01) c [0.846831, 0.846832],

The exact value [4] of sin (1.01) to seven places is 0.8468318 .
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We now have all the elements of (3.33) and the closed interval is
(3. 54) sin (1 +0.01) C [0.836025, 0.846832] .

Clearly, all values of sinx for
(3. 55) 0.99 = x < 1.01

are included in the interval (3.54). For further computation, one can take
the center point of the interval, keeping track of the error bounds; or one
could do all further computation in intervals.

Round-off error, which has not been considered in our discussion, can
be included in our intervals by simply widening them at one or both ends to
include the full value of all numbers being computed. The interval arithmetic

program listed in the Appendix is designed to do just this.



CHAPTER IV

APPLICATION TO THE INITIAL-VALUE PROBLEM OF

FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

Introduction

Some familiar, preliminary concepts and theorems from calculus1 will
be presented first. We shall then prove an existence theorem for a first-order
ordinary differential equation, and present a technique for finding a closed
interval containing its solution.

The concept of uniform convergence is basic to the proof of the existence
theorem. . If fn(x) ,(n=1,2,...), is a sequence of functions of x , each defined
in a closed interval a =x =< b, the sequence is said to converge to f(x) in the

closed interval if for each x of the closed interval,

(4.1) llm fn(x) = f(x) .

n—ro

If (4.1) holds, then for a fixed x , we may make |fn(x) - f(x)| as small as we

please, simply by choosing n sufficiently large.

Definition 4.1: (Uniform Convergence [1]) The sequence fn(x) is said to

converge uniformly to f(x) , for a=x <b, if for every ¢ » 0 an integer N

can be found, such that
(4. 2) |fn(x) -f(x)| < ¢ (n = N)

for all x .

N, of course, is dependent upon ¢, but is independent of x .

1
See, for example, references [2] and [4]. For completeness we

reproduce some of the proofs.
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THEOREM 4.1. (CONTINUITY OF THE LIMIT FUNCTION [2]). If the sequence

fn(x) converges uniformly to f(x) for a=<x=Db and, for each n , fn(x) is
continuous on a =x =b, then f(x) is continuouson a<x=<5b .

PROOF: Let X be any point in the closed interval a <=x =<b . Then
(4.3) f(x) - f(x ) = (fx) - fn(x)) + (fn(x) - £ (x )
* (fn(xo) B f(xo)) ?
and
(4.4) |f(x) - f(x )| = [f(x) - £ x|+ £ (®) - f(x.)]
g x) - fx ) |
If €>0, then, by Definition 4.1, we can choose n large enough so that
(4.5) £, - £(x)] < 5
for every x in the interval. Thus equation (4.4) becomes
(4.6) [f(x) - f(xo)[ < |fn(x) - fn(xo)] + % €

Now n is fixed and fn(x) is continuous at X, - Therefore, if x is sufficiently

close to X, we have
€
(4.7) Ifn(x) - fn(xo_)] <3 -

By (4.6) we thus have

(4.8) [£(x) -f(xo)(h] < € ,

which proves that the limit of a uniformly convergent sequence of continuous

functions is continuous.
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THEOREM 4.2. (INTEGRATION OF SEQUENCES [3]). If the sequence fn(x)
converges uniformly to f(x) on a =x =b and, if for each n, fn(x) is
continuous for a =x =b, then

b b
(4.9) [ fx) ax = lim [ f(x)dx

a n—e a

PROOF: From the integral calculus, we have

b b b

(4. 10) / £ (x)dx - [ f(x) dx = S (£, - fx)) dx
a a a
b b b

(4.11) / f (x) dx - [ ) x| = / £ (x) - £(x) | dx
a a a

Let ¢>0 . Choose N, independent of x , sufficiently large enough so that

for N=n,

A
™
i
o)

(4.12) [fn(x) - f(x)] < , a

€
b-a

.Equation (4.12) is true, since by hypothesis we have uniform convergence. Thus,

for N=n,
b b
(4.13) SO -] dx< [ Eodx = e
a a
Hence
b b ’
(4. 14) f £ (x) dx - [ fx) dx| < €
a a

But (4. 14) implies that (4.9) is true, and the proof is complete.

THEOREM 4.3. (COMPARISON TEST FOR CONVERGENCE [4]). If ]an[‘s bn
o0 o0

for n =1,2,... andif z bn converges, then z a, is absolutely

convergent.
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PROOF: Since for 0 = a ,n=12 ..., the series Z a, is either con-
vergent or properly divergent, let us assume that the series Z[a [

properly divergent. Then

n
(4. 15) lim Y |a| = «
n—ew i=1 !

But since [an| = bn , we would have

n
(4.16) lim z b, = o
n—w j=1

so that Zb would be divergent, which is contrary to the assumption. There-
[=\e]

fore Z converges and Z a, is absolutely convergent

THEOREM 4.4, (WEIERSTRASS M-TEST [5]). Let Z u (x) be a series of
=1
functions all defined for a=x =b . If thereis a convergent series of constants

o0
Z Mn , such that

(4.17) ju ()] =M

for all a =x = Db, then the series z un(x) converges absolutely for each x
n=1
in the given interval and is uniformly convergent in the interval.

o0

PROOF: Since for each term of the series Z un(x) , we have
n=1

(4.18) : lu ()| =
o0
and Z Mn is convergent by hypothesis, then by THEOREM 4. 3, the series

Z un(x) is absolutely convergent. To show that the series is uniformly
n=1

2 . . . '
The series Zan is said to be properly divergent if, for the sequence

Sn of partial sums, either lim Sn = + o oOr lim Sn = -0,
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convergent, let

(4.19) S = 2 w®
-1 I
and let
(4. 20) R =8-8
n n

where S_ is the first n term of the series Zu (x) . Hence R_ is the
n n n

remainder after n terms of Zun(x) . Then

(4.21) IRy = Ju @) +u o0 +.e] = Ju (0]

* [un+2(x)'+... = Mn+l+Mn+2+"’

If Tn denotes the remainder after n terms of the convergent series ZM

then ’
(4. 22) Tn:Mn+l+Mn+2+"'

and

(4. 23) ]Rn(x)] = Tn

Since ZMn is a series of constants, for each given € > 0, some N can be

found such that Tn <€ for n= N . Thus

(4. 24) |Rn(x)] =T,<n , n=N

As N depends only on ¢ and not on x , we have the desired uniform con-

vergence and the proof is complete.
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Outline of the Picard Method

We are now in a position to prove the existence of a unique solution for
the initial-value problem of a first-order ordinary differential equation. The
proof is Picard's method of successive approximations. We first present two
lemmas, and then the existence theorem.
LEMMA 4.1. Consider the functional sequence yl(x) , y2(x) s ve e, yn(x) defined

by

X
yi®) =y, [ fit,y,) dt
X

(0]
X
(4. 25) Vo) =y, + f f(t,yl(t)) dt
X
0]
ya® = v+ [ty _;0) a
(0]

where (xo, yo) is a point within a rectangular domain D defined by
(4. 26) [x—xol =a |, [y—yol =b
Let f(x,y) be a single-valued continuous function of x and y, andlet M be

the upper bound of [f(x,y)| in D . Further, let h be the smaller of a and

b/M . Now if x is in the closed interval

(4. 27) X =xXx=Xx_+h ,
: - %o ()

then

(4. 28) . [yn(x) - yO[ =b.
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PROOF (by mathematical induction): Let x be within the closed interval (4. 27)
and let yn(x) be defined by (4.25). Then for n = 1,

X
(4. 29) [yl(x) —yO] = Xf [f(t,yo)[ dt

o
By hypothesis M is the upper bound of [f(x,y)| in D, hence
(4. 30) [yl(x) - yol = Mx-x) = Mh = b
Therefore (4.28) is true for n = 1. Assume now that (4. 28) is true for n - 1,
that is, that
(4.31) |yn_1(x) - yO] =b

Then it follows that

(4.32) |f(t,yn_1(t))| =M ,

since M is the upper bound of [f(x,y)[ in D . Hence

X

(4. 33) f |f(t,yn_l(t))| dt = M(x -x_) < Mh =< b
XO
But from (4. 25)
X
(4.34) Va® =¥, = [ f{ty, () at
X
(0]

Therefore, we have

X
(4.35) |y () -y | = [ |f(t,yn_1(t))| dt = M(x-x) = Mh =b ,

X
o
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and (4. 28) holds for n . Thus (4.28) holds for all n = 1 and the lemma is
proved.
LEMMA 4.2. Let the conditions of LEMMA 4.1 hold. Further, let K be the

Lipschitz constant such that for any two points in D of the same abscissa, say

(4.36) [f(x,57) - X, 55) | <K [(y5 - 5]
Then

n-1
(4.37) 199 = 7100 | <M [ -

PROOF (by mathematical induction): Let x be within the interval (4. 27) and

let yn(x) be defined by (4.25). Then for n = 1,

(0]
(4. 38) ly(®) -y X < Mllf

(x —xo)0 <M

Clearly, this is true. Assume now that (4.37) is true for n - 1. That is,

that
n-2
(4.39) 9010 = 7o) | < gy |6 - x "
For n ,
X
(4.40) 9,0 =y, @] = [ [E(ty,_1®) - £(ty, o) | a
X
(0]

from (4. 25). Applying the Lipschitz condition gives

X

(4.41) 7,0 -y, ® ] <K [ |y, 10 -y, o] dt,
X
[¢]
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The integrand of (4.41) is the same as the left side of equation (4.39). Hence

n-1 x
(4.42) 95 =¥ @] <oyt [ |6 x) T a
X
o]
n-1
<MI§,. |(x—xo)n. .

Thus (4.37) holds for all n = 1 and the proof is complete.

THEOREM 4.5. (EXISTENCE THEOREM FOR y' = f(x,y) [6]). Let the

conditions of LEMMAS 4.1 and 4.2 hold. Then there exists a unique continuous

function of x , say f(x) , for

(4.43) x =x=x +h ,
o o

which satisfies the differential equation

(4. 44) y' = ix,y)
with initial conditions
(4. 45) yx) =,

and which reduces to Yo when x = X,
PROOF: Let x be within the interval (4.43) and consider the sequence of

functions

(4. 46) Y1(X) 5 YoX) 5o ees ¥ (%)
defined by (4.25). Then by LEMMA 4. 1

(4.47) ]yn(x) - y0| =b

It follows that

(4. 48) _ f(x, yn(x)) =M
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and therefore the fn(x) are well defined. By LEMMA 4.2 and THEOREM 4.4

it is clear that the series

(4. 49) Yot ):1 (v, - y,_1(=)
r =

is absolutely and uniformly convergent when x is in the interval (4.43), for
the series ZMn converges by the ratio test.3 Also, each term of (4.49) is
a continuous function of x .

Now
n
(4.50) y () =yt r; (v, - y,._,(®)
Therefore, by THEOREM 4.1, the limit function
(4.51) y(x) = lim yn(x)
n—-w
exists and is a continuous function of x in the interval (4.43).

To show that the limit function y(x) satisfies the differential equation,

_ we note that the sequence
(4.52) g,(x) = £(x,y, (%)

converges uniformly to f(x,y(x)) for X, =x =x + h . This, of course,

follows from the uniform convergence of yn(x) , for by the Lipschitz

condition (4. 36),

3The ratio test for convergence requires that given a series of positive

ad A+l
. n
terms E a_, lim
n
n=0 n—co n

=r<l.
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(4.53) £(x,50) - £(x,5,0) | =K |y(x) -y (9]
Thus, by THEOREM 4. 2,

SR lim y (x)

n-—>oo

X
- lim £(t, t)) dt +
(4. 54) y n—re ){) (8 95-10) Yo

. |
= Xf £(t,y(0) dt+y, .

_

o

The function f(t,y(t)) is continuous in the interval X, =X =x + h, and

therefore

q X

(4. 55) V' = g [ fty®) dt = £(x,yx)
%o
which shows that the limit function y(x) satisfies the differential equation and
reduces to y_  when x = x
o 0
We will now show that the solution y(x) is unique. Let y(x) be a

solution to the differential equation, different from y(x) , and satisfying the
initial condition §(x0) =Y, Let y(x) be continuous in the interval

(xo,x0+ h') where h' = h and h' is such that the condition
(4. 56) |59 -y, | <b
holds. Since y(x) is a solution, it satisfies the integral equation

X

(4.57) yx) =y, + f(t,;‘z(t)) dt
X
o]
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and thus

1l

X
(4.58) 36 -y, = [ [Ef50) - £y, )]
X
(o]

For n =1,
-— X —_
(4.59) yx) -~y x) = f [f(t,y(t)) —f(t,yo)] e,
X
O

and from the Lipschitz condition we have

(4. 60) ly(x) - v, | < Kb(x - x )
For n -1, assume
(4.61) f.s_/(x) - yn—l(X) | < (ﬁfl-ﬁ—,— Kn_l b(x - xo)n—1

Then for n, we have

X

509 -y, < |/ [£(e.50) - £y, q0)] o
O
n-1 F -
<K Xf |¥(t) -y, (D] dt
(4.62) ©
Kn—l X n-1
<(n—_mxf Kb(t -x )"~ dt
(0]
< (_ﬁ% Knb(x - xo)n
Hence
(4.63) yx) = lim y (x)
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but from (4.51)

(4.64) y(x) = lim yn(x)
n—>co

Therefore

(4. 65) y(x) = y(x)

for all x in the interval (xO s X + h') and the two solutions are identical.
Thus there is one and only one continuous solution of the differential equation

which satisfies the initial conditions. This completes the proof.

Interval Integrals

This section will be concerned with certain definitions, theorems and
notational conventions which we shall need for a discussion of the interval
arithmetic approach to the initial-value problem of first-order ordinary
differential equations.

A rational interval expression has been given by Definition 2. 17.

Definition 4. 2: A regular domain [7] is a set D of n-tuples of intervals

where

(4. 66) ([al,az], [a3,a4],..., [an_l,an])e D

and

(4.67) [a_! , a'z] - [al, az] e ey [ah_l, a;l] C [an—l’ an]
imply that

(4.68) ([a! ,a'z], [aé,azl],...., [ah—l’ah]) e D

We will denote the Cartesian product by the symbol @ .
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The set of all possible closed intervals contained within a given closed

interval [al , 32] will be denoted by S[al ’ az] . Thus

(4.69) S[al, a,l {la],apl | 2}, ap) © [ay, a,l}

A regular domain is a union of sets of the form:

(4.70) s[al’a ,®s[33’a4]®...®s[a

2J n-1’ an]

Definition 4.3: A rational interval function [8], F , is defined as the mapping

(4.71) f. D—S

with regular domain D C s" , where S is the set of all closed intervals.
Thus if f is the real restriction of F , where F is a rational interval

function with domain D , then
(4.72) U f(xl, Xoseens Xn) C F([Xl’ X2] , [x3, x4] s [X.‘Zn—l’ X2n]) .
where X, € [X2i—1 , x21] , 1 =1,2,...,n.

For a single variable, if the real function f is the real restriction of a

rational interval function F , with regular domain D, then

(4.73) f(x) C F[Xl’XZ] , X € [x1 , xz]

If x i.e., T is restricted to the domain S* of Definition 2.5,

1 %o

then for the real restriction of F , we have

(4.74) f(x) = F[xl,xl] , X =X

Definition 4.4: The width of the closed interval [a,b] will be defined by

(4.75) w([a,b]) = b-a
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Analogous to the continuity of the points on the real line, closed intervals
arc continuous.

Definition 4.5: The distance function P :

(4.76) P(la,bl, [c,d]) = max(]a -c¢|, |b-d])
Moore [9] proves that P is a metric4 on S. Clearly,

(4.77) lim ([a,b] - [c,d}) — [0,0] =0
P—0

The following four theorems concerning rational interval functions have
heen proved by Moore [10] and are stated here without proof:

THEOREM 4.6. Rational interval functions are continuous.

THEOREM 4.7. There exists a positive real number K , independent of the

method of subdivision of the interval [xl, XZn] , such that

n
(4.78) W O Fx, ,,x.]1) = U fix) + [, €]
i-17 71 _
i=1 x={x ,x ]
o’ n
with
(4.79) 0 ¢ [e' €]
and
(4. 80) w(l €', €"']) = K max W([Xi—l , Xi])

4A metric is a single-valued, positive real function p(x,y) satisfying
the conditions: (1) p(x,y) = 0 ifand only if x =y ; (2) px,y) = p(y,x) ; and

(3) p(x,y) + ply,2z) = p(x,2) .
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THEOREM 4.8. (LIPSCHITZ CONDITION FOR INTERVALS.) For any

rational interval function with regular domain S[a a.] and real valued
1’92

real restriction, there exists a real number K such that

(4.81) [Xl , xz] C [a1 , az]

implies that
(4.82) W(F([Xl,x2])) = Kw([x, X,])

The following theorem states that if f(x) is a rational function, it can
be integrated by the interval extension F([xo , xn]) , for x € [xO , Xn] with
strict error bounds maintained.

THEOREM 4.9.

n X
(4.83) z F([Xi_l, Xi]) W([Xi—l , Xi]) = f f(x) dx + [ €', €]
i=1 a
with
(4.84) 0 e [€,€"]
and
(4.85) w([e', €']) = (x - a) Kmax W([Xi—l’xi]) ,

where K is the Lipschitz constant.

An Interval Approach to the First-Order Problem [11]

A method shall now be presented for finding a closed interval which

contains the solution to the first-order differential equation

(4.86) y' = i(x,y)
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with initial conditions

(4.87) vix) =y

It has been shown in THEOREM 4.5, that when a real valued function f

is continuous on a region in the xy-plane, say
(4. 88) D, = [x,,a] @ Ib;,b,]

with X, <a and b1 =y, = b2 and that when f satisfies a Lipschitz condition

on Df

(4.89) [i(x,y) - fx,y5) | =K [y, - y,]

for some positive real number K, then there exists exactly one solution to

(4.86) and (4.87) in [xo , x¥] for x* such that for all (x,y) € D

(4.90) Yo + (x* - XO) fix,y) € [bl, b2]

It will be assumed, hereafter, that F is a rational interval valued
function, as defined by Definition 4.3, on the regular domain
(4.91) D, =8_ s
and that F satisfies the following conditions:

(1) I is continuous;

(2) T is restricted to the domain

(4.92) Dy = [x,,21 @by, byl

where f is a real valued function;
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(3) F is monotonic inclusive, i.e. if
1
(4.93) [x xa] @ o)y [y w3 € typvgd
then

(4.94) F([xp x|, [vg0v8]) © Bz %00 Iy v s

(4) There is a real number KF such that
(4.95) w(F([x,, %], [y}, ¥,)) = Ky max(w(lxy, x,1), w(ly;, ¥,1))

Note that if F is a rational interval function on DF with real restriction

f on Df , then the above four conditions are satisfied by F .

The foregoing conditions (1), (2), (3), (4) imply that the Lipschitz

condition (4.89) is met. For, assume
(4.96) w(F([x,, X,1, [y, ¥p)) = Kpmax(w(lx;, x,1), W([y;, ¥,])
Then

(4.97) W(F([X,X] s [yl’ yZ])) = KF W([yla y2])

for real X, S X =a. Since f is the real restriction of F , by hypothesis,

we have

(4.98) f(x,y) € F([x,x], [y, ¥o1)
whenever

(4.99) y € ly;s¥,l

Thus

(4100) f(X,yl) - f(x,yz) € F([X,X] ) [yl, yz]) - F([sz] » [yl: y2])
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Now
(4.101) fa,b] - [a,b] = [-1,1] w([a,b]) ,
so that
(4.102)  JH(x,5)) - f0x,y) | = w(F(Ix,x], [y;,¥,0)) = Kp |y -v,]
and hence
(4.103)  [ix,yq) - f(x,y9)| = max |f(x,y;) - {x,y,)| = Ky |y; -y,]

Since KF serves as a Lipschitz constant for F , we conclude that
conditions (1), (2), (3), (4) guarantee the existence and uniqueness in the closed
interval [xO , X*] of a solution to (4.86), (4.87) whenever f is the real

restriction of I .

If
(4.104) Yo € ly1,¥5l € [by.byl
then the equation
(4. 105) [y, s ¥yl + (x4, x51 =[x, %) (DY = [b,by]
has a solution
(4. 106) [X’i,x’é] ,  Where w([x’{,x*é]) > 0

By F(Df) we mean the range of values of slopes of the interval function T

over the region in the xy-plane Df .

(4. 107) F(Df) = F([XO’ a] ’ [bl ’ bz])
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We define

(4.108) [xo,x*] = [x ,al N [x* x}‘]

Thus we can compute a closed interval, [xO , x*] , in which existence
and uniqueness of a solution to (4.86), (4.87) is guaranteed.
The method of computing the closed interval [yl , yz] which contains

the solution y is as follows. Let

w(lx, , x*])

(4. 109) xil_l)l x(in)] = [xgs XL+ 1= L] =,

s () (] _ [0 () wlix, . x*1)
(- 110) - [of] ’biZ] - [ 1,1°Yi-1,2] V1O gy FDY

(i=1,2,...,n)

m ] N DR T
(4.111) [y 1Y ef © [yl 1,1°Yi-1, 2] VT non F([Xi—l’xi ]
[b(irll),b(irzl) ) : (i=1,2...,n)

The i's in formulas (4.109), (4.110) and (4.111) refer to the subdivision of
the interval [xO , x*] into n subintervals. Formula (4.111) may be written

in the following form:

12y [y, 0] - [,y W XD )
(4.112) [y 1Y = [yi—l,l’yi—l,Z L Y| X1 % ]

w([x _, x*])

(n) (n) S e R
TR I RN IR R ey F(Df)> ’

(i=1,2,...,n

The recursive relation (4. 112) gives the interval method for the solution

of a first-order ordinary differential equation in its simplest form.
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The solution to (4.86), (4.87), i.e. y , satisfies

wix , x*]
(4.113) V(%) € y([xi‘_l)lxir_l)l >+ [0, 1] __[TO?]—" F(Dy)
for
(4.114) X € [xgr_l)l, x(in)] R
and if
xipex) © it v
then
X

(4. 115) y(x) = y<[x(in)l, gn)l ) f f(x‘,y(x‘)) dx , X ¢ [x(il_l)l,xgn)]

*i-1
so that

o167 €[ o] (oo o)

w(lx_, x*])

, 0
+10,1] Tnnl F(Df)>
whenever Xx e [xil_l)l, x(in)] . Also, if

wm ) w0

then

(4. 118) W([ § (n) ) <[y§n)l 1’ (1n)1 2 )+hKF max <h’

2, o)) )



where
w[xo,x*]
(4.119) h = (0, 0]
and
(4. 120) ¢ = w(l0,1] F(D)

Now we must ""solve' the inequality (4.118). Let us first simplify the

notation by setting

wy = w((s )

(4. 121)
Wic1 © W([ygr—l)llygr—l)lzp ‘

Thus we want to solve the inequality

(4.122) W, = W + ch)

; Q-1 + hKF max (h, W,

1

for LA i.e. eliminate the w's from the right hand side of (4.122) and

obtain upper bounds on W, in terms of the ''step size"

% _ O
(4.123) h o= A
n

We know that h > 0, so

Vi Vi1 Vi-1
(4.124) T = p thKpmax {1, ¢ A
that is

Vi _ Yioa

—h— = h + hKF
(4.125)

W. W,

i

-1
n = "h (1+hKF)+(hKF)c
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Therefore

i i-1
(4. 126) =%

(1+ hKF) + (hKF) max(c, 1) ,

which is of the form

(4.127) P =P _(1+q+aq,
or
(4.128) P, =qm+(l+q) P,
Wi Vi-1
where Pi =5 Pi—l = Tq ,
q = hKF , m = max(c, 1)
Hence
(4.129) Pi =q, " (1+q)(gm + (1 + qg)(gm +...(1+q) Po))))
and
2 i-1 i

(4. 130) P o= (qm){l+(1+aq)+ 1+ + ..+ (1+q) )+ (1+q) P
or
(4.131) P, = (qm) (&F i“l)+(1+q)iP

: i =AM VTrg -1 o

and

(4.132) P, = (m) ((1+ Q' - 1)+ (1+ 9 P
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But here,

(4:. 133) P = —= oz 2 2 = 0
so that
(4.134) <[yl 10y (n) ) = hP, = hmax (c,1) ((1+ hKF)i - 1)

and

. (Xi_xo)
(4.135) (1+hK ) = ((1 + B ) l/h) ,

since

(4.136) ih X, X

It is fairly well known that

1
(4.137) (1 + hx) /h<ex , h>0 |,

SO

. (x -X )
(4.138) (1+hK ) <e “F

and therefore

K (x.-x)
(4.139) ([yﬁn)l (n) ) < h max (c,l)é Fo ot 1>
This proves that at a fixed value for X, , say X; = a , we can make

(4. 140) ([y1 )y (n) )

as h—0.
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We define for n = 1,2,..., the functions y(n) for all

(4. 141) x e [x ,x*]

noting that

n
(4. 142) [xo ,Xx¥] = U (n)l , X(n)]
i=1

and define y(n)(x) for
(4. 143) X € [X§r_1)1’x(in)]
Thus

(n) (n) (n) <) n)
(4. 144) vy 7(x) [yl 1,17 Yi-1, 2 +<X 1)F< i-10 % [yi 1,1°Y (1n)1,2

(n) _(n) (n) (n)

(ST ]'[11’ )F(Df)>

The functions y(n)(x) are well defined since at xgn) , the common end point
(1_1)1’ gn)] and [x(in) , X?—?l] we have

(4. 145) [yin)l’ ) [yin)l 17 ('n) 2] ( m Xir—l)1> F<[Xi—1’X1]’

2L 102 o]+ (2 ] - 2] em)

The functions defined by (4. 144) are continuous interval-valued functions

and are "piecewise linear'" in x . That is, for 0 =t =1, we have

4.146) Y1 -0 x_veg) = (-0 B e [ty g )

Thus, it has been shown that the interval-valued function defined by
(4.109), (4.110), (4.111), and (4. 144) contain the corresponding components

of the solution to (4.86) with (4.87).
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Thus

(4. 147) y(x) € y(n)(x) for x ¢ [xo,x*]

and the sequence of interval valued functions y( b x), y( 2)(x) , y(3) yees
converges uniformly to y(x) for x € [xO , X*¥] . Further, there is a real

number K such that

(4. 148) max w(y(n)(x)) = "IIIS , X € [xo,x*]

Example

We consider the simple first-order differential equation
(4. 149) y' = x+y
with initial conditions
(4. 150) y. =x_ =20

Our method will be to solve equation (4. 112) for the closed interval

[yin)l , y(in)zl which contains the exact solution of (4. 149) under (4. 150).

To solve equation (4.112), however, we must first determine x* ,

which is done by using equations (4. 104), (4.105), and (4.108). Let
(4.151) Vo = 0 € [yy,¥5] = [0,0] € [by,b,] = [-1,1] ,

and choose a = 1, and X, = 0 as given by the initial conditions (4. 150).
From (4. 107) we have

(4. 152) F(Dyp = ([0,1], [-1,1])
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It should be noted that if we let X = [x0 ,a] and Y = [b1 , b2] , then

F(Df) can be written in either of the following forms

(4.153) F(D) = FX,Y) = FIX®@Y)

B
and for our problem

(4. 154) F(D) = X+Y = [0,1] + [-1,1] = [-1,2]

P

Substituting these values into equation (4.105) we have

(4. 155) (0,01 + ([x%, x3] - [0.01)([- 1,2]) = [-1,1]
or
(4. 156) (%, x310-1,2] = [-1,1]

A solution to (4.156) is guaranteed by THEOREM 2. 17. Hence, solving (4. 156)

gives us

(4.157) [XT,XE] = [—%,-21-]

We find x* from (4.103),

(4.158) [x,,x*] = [0,1] N [-%%] = [o,é]
and so
(4. 159) x* = 2

We are now prepared to find the closed interval [y(in)l , y§n)2 of

equation (4. 112) which contains the solution to (4.150) with (4.151). Thus



W[O,—

(n,n]

(n) _(n) M  _(n) <[° z)
(4. 160) [y1 1Y 9] 7 Yio1, 10 Vi1, 2l T ey (1001 F L - L]

W[0’2]

Lol B A (P ]
B ol [ 2]
B ol i T o [

4n
- [ygn)1 10y ('n) 2] ( )*[14;22’1415] ;

[ygn)l 1, 5-1_1)1’2]4- [031] [-1’2]

i

for i =1,2,...,n and y() =0

(n)

i1 i )2] can be found by computing (4. 160)

Now the function y(x)C [y
for i =1,2,...,n.

For n = 10 , we have

(4.161) [y(lto)l’y(l%)o)z = [0.097, 0.223]

Since the exact solution for the differential equation given in (4. 149) is

(4.162) y = -x-1+¢&
1
for x = 5 we have
1
(4. 163) y(g) = 0.149
and

e b



. 10) _(10) ] [ (10) _(10)
Having computed [ ( , , we can select and
g comp Y10,1° 10,2 Y10,1° Y10, 2
x* = % as the new initial conditions, select a new a > x* and another

[bl , bz] D [y(lt())l’ y(ll(‘)o)2 and repeat the procedure. In this way we can

solve the differential equation (4. 149) with initial conditions (4. 150).
To find a solution at a value, say x' where X, < x' < x* | we simply
set x* = x' in equation (4.159). Thus a solution can be obtained for any

given value of x .

70



REFERENCES



REFERENCES

Chapter I

(1) Paul S. Dwyer, Linear Computations, New York, 1951, pp. 11—25,

(2) Saul Gorn, "The Automatic Analysis and Control of Computing
Errors," Journal of the Society of Industrial and Applied Mathematics, Vol. 2,
No. 2, (June, 1954), pp. 69—81.

(3) R. E. Moore, Automatic Exror Analysis in Digital Computation,
LMSD-48421, Lockheed Missiles & Space Company, Sunnyvale, California,
1959, pp. 43—56.

(4) George Collins, Interval Arithmetic for Automatic Error Analysis,
International Business Machines Corp., Mathematics and Applications Dept. ,
New York, 1960, pp. 1—11.

(5) R. E. Moore, Interval Arithmetic and Automatic Error Analysis in
Digital Computing, Technical Report No. 25, Stanford Univ., Stanford,
California, 1962, p. 130.

(6) G. V. Gendzhoian, "On the Two-S8ided Chaplygin Approximation of
the Solution of Two-Point Boundary Problems," Izv. AN Arm SSR, Fiz.
Matematika Nauk, Vol. 17, No. 3, 1964, pp. 21—26.

(7) R. G. Aliev, "On the Question of Specific Criteria for Estimates of
the Lengths of Subcritical Intervals," Izv. VUZ, Matematika, No. 5 (42),
1964, pp. 3—17.

(8) R. G. Aliev, V. V. Ostroumov and S. A. Pak, '""On Certain Properties
of Cauchy Functions," Izv. VUZ, Matematika, No. 4 (41), 1964, pp. 9—11.

(9) S. A. Pak and E. S. Chichkin, '""On the Existence of Upper and
Lower Solutions of the Cauchy Problem of a Second Order Differential
Equation," Izv. VUZ, Matematika, No. 5 (42), 1964, pp. 91—94.

Chapter II

(1) R. E. Moore, Interval Arithmetic and Automatic Error Analysis in
Digital Computing, Technical Report No. 25, Stanford Univ., Stanford,
California, 1962, p. 3.

(2) Ibid., p. 7.
(3) Ibid., p. 6.
(4) R. E. Moore, Automatic Error Analysis in Digital Computing,

LMSD-48421, Lockheed Missiles & Space Company, Sunnyvale, California,
1959, p. 49. '




73

(5) R. E. Moore, Interval Arithmetic and Automatic Error Analysis in
Digital Computing, Technical Report No. 25, Stanford Univ., Stanford,
California, 1962, pp. 7—8.

(6) L.P. Eisenhart, Continuous Groups of Transformations, Princeton,
New Jersey, 1933, p. 15.

(7) E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups,
Providence, Rhode Island, 1957, pp. 256 —257.

Chapter III

(1) A. E, Taylor, Advanced Calculus, Boston, 1955, pp. 110—117.

(2) T'. B. Hildebrand, Introduction to Numerical Analysis, New York,
1956, pp. 22—24.

(3) M. Abramowitz and I. A. Stegum (ed.), Handbook of Mathematical
Functions, AMS 55, Washington, D. C., 1964, p. 161.

(4) Ibid., p. 162.

Chapter IV

(1) Wilfred Kaplan, Ordinary Differential Equations, Reading,
Massachusetts, 1958, p. 471.

(2) Angus E. Taylor, Advanced Calculus, Boston, 1955, p. 598.

(3) Ibid., pp. 599—600.

(4) Wilfred Kaplan, Advanced Calculus, Cambridge, Massachusetts,
1953, p. 314.

(5) Ibid., pp. 342—343.

(6) E. L. Ince, Ordinary Differential Equations, London, 1956, pp. 62—66.

(7) R. E. Moore, Interval Arithmetic and Automatic Error Analysis in
Digital Computing, Technical Report No. 25, Stanford Univ., Stanford,
California, 1962, p. 9.

(8) Ibid., p. 10.
(9) Ibid., pp. 16—17.

(10) Ibid., pp. 21—39.
(11) Ibid., pp. 58—71.



BIBLIOGRAPHY



BIBLIOGRAPHY

Abramowitz, M. and Stegun, I. A. (ed.), Handbook of Mathematical Functions,
AMS 55, National Bureau of Standards, Washington, D. C., 1964.

Aliev, R. G., '"On the Question of Specific Criteria for Estimates of the Lengths
of Subcritical Intervals," Izv. VUZ, Matematika, No. 5 (42), 1964,

pp. 3—1.

Aliev, R. G., Ostroumov, V. V., and Pak, S. A., "On Certain Properties of
Cauchy Functions," Izv. VUZ, Matematika, No. 4 (41), 1964, pp. 9—11.

Birkhoff, G. and MacLane, S., A Survey of Modern Algebra, Revised Edition,
New York, 1953.

Coddington, E. A., An Introduction to Ordinary Differential Equations,
New York, 1961.

Collins, George, Interval Arithmetic for Automatic Error Analysis, International
Business Machines Corp., Mathematics and Applications Dept., New York,
1960.

Dwyer, P. S., Linear Computations, New York, 1951.

Eisenhart, L. P., Continuous Groups of Transformations, Princeton,
New Jersey, 1933.

Gendzhoian, G. V., "On the Two-Sided Chaplygin Approximation of the Solution
of Two-Point Boundary Problems," Izv. AN Arm SSR, Fiz. Matematika
Nauk, Vol. 17, No. 3, 1964, pp. 21—26.

Gorn, Saul, "The Automatic Analysis and Control of Computing Errors,"
J. Soc. Indus. Appl. Math., Vol. 2, No. 2, June 1954, pp. 69—81.

Hildebrand, F. B., Introduction to Numerical Analysis, New York, 1956.

Hille, E. and Phillips, R. S., Functional Analysis and Semi-Groups, Providence,
Rhode Island, 1957.

Ince, E. L., Ordinary Differential Equations, New York, 1956.

Kaplan, Wilfred, Advanced Calculus, Cambridge, Massachusetts, 1953.

Kaplan, Wilfred, Ordinary Differential Equations, Reading, Massachusetts,
1958.

Kelley, J. L., General Topology, New Jersey, 1955.




76

Kolmogorov, A. N. and Fomin, S. V., Elements of the Theory of Functions
and Functional Analysis, Vol. 1, Translated by L. F. Boron, Rochester,
New York, 1957. (Original Russian publication 1954.)

Moore, R. E., Automatic Error Analysis in Digital Computation, LMSD-48421,
Lockheed Missiles & Space Company, Sunnyvale, California, 1959,

Moore, R. L., Interval Arithmetic and Automatic Error Analysis in Digital
Computing, Technical Report No. 25, Applied Mathematics and Statistics
Laboratories, Stanford University, Stanford, California, 1962.

Moore, R. E., Strother, W., and Yang, C. T., Interval Analysis,
LMSD-703073, Lockheed Missiles & Space Company, Sunnyvale,
California, 1960.

Moore, R. E. and Yang, C. T., Interval Analysis I, LMSD-285875, Lockheed
Missiles & Space Company, Sunnyvale, California, 1959.

Murray, ¥. J. and Miller, K. S., Existence Theorems for Ordinary Differential
Equations, New York, 1954.

Nelson, A. L., Folley, K. W. and Coral, M., Differential Equations, Second
Edition, Boston, 1960.

Pak, S. A. and Chichkin, E. S., "On the Existence of Upper and Lower
Solutions of the Cauchy Problem of a Second Order Differential Equation,"
Izv. VUZ, Matematika, No. 5 (42), 1964, pp. 91—94.

Taylor, A. E., Advanced Calculus, Boston, 1955.




APPENDIX A



APPENDIX A

Round-Off Error In Interval Arithmetic

A complete listing of an interval arithmetic computer program for the
IBM 7094 is given in the next section. The program is written in FAP, the IBM
7094 machine language. It can be used as a subroutine with a FORTRAN main
program and reached via a CALL to the appropriate operation.

Of particular interest are the sections which do the rounding after an
operation has been completed. To insure that the closed interval contains the
required result, round-off error must be carefully considered.

For example, the interval containing the square root of the closed interval
[1,2] must contain all values of x for vI=x=+v2. But v2 is an irrational
number and cannot be represented exactly in any digital computer. Therefore,
when we find the number which is approximately equal to the square root of two,
we must be sure that if the number is squared we obtain at least two. Other-
wise we must add enough to have the square equal at least two. Clearly, if
the square of the number approximating v 2 were slightly less than V2 , then
the exact value would not be included within the interval. This, of course, is
the case where V2 is the right end of the interval.

If, however, the interval was [V 2,v4] , we would want the number
approximating V2 to be just less than two when squared, so as to be sure that
all values of x for V2 = x = V4 where included in the interval. |

The same round-off problem occurs with all interval arithmetic operations
and the particular digital computer being used is of no great consequence,

since all computers have finite word lengths.
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An Interval Arithmetic Computer Program

The following computer program for the IBM 7094 will add, subtract,
multiply, and divide two closed intervals, take the square root of a closed
interval and give the inverse of a closed interval. A similar program for

any other digital computer can also be programmed.

FAP

INTERVAL ARITHMETIC PROGRAM

L B I

ENTRY ADD
ENTRY SUB
ENTRY MULT
ENTRY Div
ENTRY INVS
FNTRY S0OR
ENTRY ROVFL
ENTRY RCFLS

THE FOLLOWING HOLDS FOR ADDs 5SUBs MULIs AND DIV
A IN ACCs B IN ACC+1

C IN OPERs D IN OPER+1

RESULT IN ACC AND ACC+1

INTERVAL SUBTRACTION (AsB)=(CoDI=(AsB)+(=Dy~C)

x ¥ k X Xk X X X X

wn

SUR CLS OPER

XCA

CLS OPER+1 NOTE -~ OPER AND OPER+1 HAVE
STO OPER -D BEEN MODIFIED

STQ OPER+1 -C

»* INTERVAL ADDITION (AsB)Y+(CoeD)z(A+CoB+D)

ADD CLA ACC
STO TEMP FOR ROUNDING
FAD OPER ADD LEFT ENDS
STO ACC LEFT END SUM
TPL %42 1F LEFT END 1S POSTIIVEs NO ROUNDING NEEDED
TSX RLDAs2 LEFT END NEGATIVEs ROUND DOWN
CLA ACC+1 ADD RIGHT ENDS
STO TEMP FOR ROUNDING
FAD OPER+1



i

*

%

P S I

[
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STO ACC+1l RIGHT FND SUM
TMT 14 RETURN 10 MAIN PROGRAM
TRA RRUA RIGHT END POsIiIvEs ROUND uP

INTERVAL DIVISTION (AsB)/(CeDI=(A4RY(1/De1/C)
C NOT=0s D NOT=0

CoeD MUST HAVE SAME SIGN
THE DIV ROUTINE WILL GIVE IHE INVERSE OF (CsD)
WE THEN GO INTO THE MULT ROUTINE
NOTE - OPER AND OPER+1 HAVE BEEN MODIFIED,
v CLLA  OPER+1
TZE ERR D=0
XCA N NOT=0
CLA OPER
TZE FRR] C=0
TOP  #37 C NOT=0
TMT #4173 Do C- OK

TRA FERR3 D=~y C+ TLLEGAL INTERVAL

TMI ERR+2 D+sC-= INTERVAL INCLUDES ZERD

CLA FLPT1 CoD HAVE SAME SIGNs NETIHER = 0

FDH OPER+1 (1/D)

5TQ  OPER+1 TEMPORARY STORE OF NEw LEFI ENDs UNROUNDED

TP  #+49 QUOTIENT PLUSs NO ROUNDING NEEDED

XCA QUOTIEN! NEGAIIVEs ROUND

LLS 8 SHIFT OFF CHARACIERISIIC OF REMAINDER
XCA SIGN + FRACTION OF REMAINDER 10 AC
TZE #4+5 REMAINDER IS ZEROs NO ROUNDING NEEDED

CLA  OPER+1 QUOTIFENT TO BF ROUNDFED DOWNs KNOWN NEGA|TVF
LDQ MASK1 PUT 1 BIT IN POSTIION 9 FOR ROUNDING

FRN

STO OPER+1 (1/D) - ROUNDED

Cl.A FLPT1 GET NEwW RIGH! END

FDH OPER (1/C)

STQ OPFR

XCA QUOTIENT TO AC

TMI %48 QUOTIENT NEGATIVEs NO ROUNDING NEEDED
LLs 8 SHIFT OFF CHARACIERISIIC OF REMAINDER
XCA SIGN + FRACTION OF REMAINDER 10 AC
TZE *+5 REMAINDFR IS ZEROs NO ROUNDING NEEDED

CLA OPER QUOTIENT 7O BE ROUNDED UPs KNOwWN POSIIVIVE
LPQ MASK1 PUT 1 BIT IN POSITION 9 FOR ROUNDING

FRN
TRA  #+2 {1/C) -~ ROUNDED IN AC
CLA OPER

LDQ@ OPER+1 (1/D)
STQ OPER (1/D) = NEwW LEF[ END
STO OPER+1 (1/C) - NEwW RIGHI END

INTERVAL MULTIPLICATION



3

# NOTE

%
MULT

MULTI

MULT2

MULT3

MULT4

{AsB) [T
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= (MIN(ACsANGBC RN Y yMAX (ACsADGBC4BDY )

- THF MULTIPLICATION ROUTINE USES THE INDICATORS,.

CLA
TMY
LDG
TaQe
LDQ
TR
J* e
570
LPO
FMp
570
TSX
CLA
STO
TRA
LDQ
FMp
570
TS8X
Lno
FMP
STO
TRA
F M
STG
LDQ
FMp
STO
TRA
CLA
TMI
1.DQ
TP
LDQ
TOP
CLA
S5TO
LnNQ
FMP
STO
TSX
LDG
FMmp
ST0
TRA
FMp
ST0
STR

ACC
MITLT A
OPER
MUL T2
OPER+1
MU T
TEMP
ACCHT
NP ER
ACC
Ri.Dg2
TEMP
ACC+1
lad
ACC+1
OPER
ACC
REDs2
ACC+1
OPER+1
ACCH+]
RRU
ACC
ACC
OPER+1
ACC+1
ACC+1
RRU
ACC+1
MUL TS
OPER
MULTS
OPER+1
MULLT4
ACC
TEMP
ACC+1
OPER
ACC
RL.De?2
TEMP
OPER
ACC+1
RRU
ACC
TEMP
TFMP+1

FETCH A A IN ACC

A B IN ACC+]
A+ o B+ TEST C C IN OPER
C+ D IN OPER+1
A+ s B+ 9C~ TEST D

A+sB+aC~y D+

At gB+gComg Do

{AD)Y

R4

e

(RCH

ROUND LFFT END DOWN

(AD)
EXIT (RCeADY A+ 9B+ yC=yD~
At osB+oC=yD+

{(RCY
ROUND LEFT END DOWN

ROUND RIGHI END UP AND FXI1ise (BCeBD)Y
A+ eB+oC+9oD+
{AC)H

(BD)

ROUND RIGH|I END uP AND EAl s (ACsBD)
A=-9¢ TEST B

R oe

A~y B4y (ESt C

A—-9 R4y C+

A~9 BR+y C=-9 IESI D

A~y R4y C—~y D+

Awy R4y C=y D=9 GFI (BCHAC)

(8C)
ROUND LEF|1 END DOwN

{AC)

ROUND RIGHT END UP AND ExIise (BCsAQ)
A-9 B+y C=-9 D+s INDETFRMINABLE BY SIGN
(AD)



MULTS

LhQ
FMP
CAS
TRA
TRA
TRA
CLA
LD
TRA
XCA
CAS
TRA
TRA
TRA
CLA
LDQ
TRA
X CA
LDt
STO
TSX
PIA
XClL
FMP
5TO
5TQ
LPQ
FMP
CAS
TRA
TRA
CLA
LDQ
TRA
X CA
CAS
TRA
TRA
CLA
L.PQ
TRA
XCA
STO
TRA
LDQ
FMP
STO
TSX
LDQ
FMP
5TO

ACCH+Y
OPER
TEMP
#.4.3
#4085
#4173
TEMP
TEMP+1
#+10

TEMP4+1
#43

S 2]
-4
TEMP
TEMP+1
2

ACC
ACC
RLDaZ

P ER
TEMP
TEMP+1
ACT+]
OPER+]
TEMP
#4173
#44
TEMP
TEMP+1
#£9

TEMP+1
*4-5
*4l4
TEMP
TEMP+1
¥4 2

ACC+1
RRU)
ACC
OPER+1
ACC
RLD 2
ACC+1
OPER+1
ACC+]

(BC)

AC GREATFR THAN TFMP,s STORFE (AD)
AC FQUAL TO TEMP
AC LFSS THAN TEMP, STORE (BQ)

MOST SIGNIF PARI 10O MQs LEAST SIGNIF 10 AC
MOST SIGNIF PARtS FQUALe tEStT LEAST SIGNIF
AC GREATER THAN 1EMP+1,y SIORE (AD)

AC FQUAL TO IEMP+1y STORE (BC)

AC LESS THAN TEMP+1s 510ORE (BC)

REPLACE AC AND MQ By JEMP AND EMP+1

MOST SIGNIF PARI 10 ACs LEAST SIGNIF 10 MC
PUT ACC (AY IN INDICATORS FOR [FMP SiORAGE
THE SMALLFR OF (AD) AND (BQ)

ROUND LEFT END DOWN

PUT A IN ACy FIND RIGHT END

(AC)

{(8D)

AC GREATER THAN TEMP, STORE (BD)
AC EQUAL TEMP
AC LFSS THAN TEMP,s SIORF (AC)

MOST SIGNIF PART TO MQs LEAST SIGNIF TO AC
MOST SIGNIF PARIS EQUALs 1ESE LEASE SIGNIF
AC GREATER THAN TEMP+1, SIORE (BD)

AC EQUAL TO 1EMP+1l, SIORE (BD)

AC LESS THAN TEMP+1, STORE (ACQ)

REPLACF AC AND MQ BY TEMP AND TEMP+]

MOST SIGNIF PARI 10 ACs LEASH SIGNIF 10 MQ
THE LARGFR OF (AC) AND (RN)

ROUND RIGHt END uP AND ExT)

A=sR+9C+9D+

{tAD)
ROUND LEFT END DOWN

(8D)



MULTE
MULTY?
MUL T8
"
"
#
5.
i
%
*
ITNVS

TRA RRU ROUND RIGHT END UP AND FXTiy (AD+BD)
CLA  OPER A-gB—e TEST C
TMI MULTT7 A-yBey(~

LpaQ ACC A-sR~eC4+oD+ GET (ADWRC)

FMP  OPER+]

STO  ACC (AD)

TSX RLDs2 ROUND LEFI END DOWN

LhQ  ACC+]

FMP  OPER

STO  ACC+] (RC)H

TRA 1.4 XTI (AN AC)

CLA  ACC ACC STORED IN 1EMP WHEIHER D IS5 4+ OR -
STO  TFMP

LDO  OPER4] A~-y9BR—gC=y TFST D
TQP MUIL T8 A~ oR—o(C=gD+

FMP  ACC4+]1 A-gRegCmygDN- GFT (RDyAC)H

5TQ0  ACC (RDYs NO ROUNDING NEEDED

LNnQ TEMP

FMP  OPFR

STO  ACCH+1 {AC)

TRA RRU ROUND RIGHI END uUP AND EXxI e (BDsAC)H
FMP  ACC AwgPeweC=pNa o GFT (ADIAC)

STO ACC (AD)

TS8X RLDe? ROUND LFFT FND DOWN

L DO TFMP

FMP APER
570 ACC+1 (AT
TRA RRU ROUND RIGHT END UP FND Fxli1e (ADSAC)

INTERVAL INVERSE (113 /(CeDY=(1/Ds1/C)

C NOT=0s D NOT=O

CeD MUST HAVE SAME S TGN
C IN OPERs D IN OPFR+1
RESULT IN ACC AND ACC#]

CLA OPER+]

TZF FRP Nun

XCA D NOT=0
CLA  OPER

TZE FRR1 Cm()

TGP %43 C NOT=0
TMI %43 D=eC~ 0K

TRA ERR3 Do C+ ILLFGAL INTERVAL

TMI  ERR2 D4+esC~ LEGAL INIERVAL, Rus NO:y FOR DIVISION
CLA FLPT1 CoD HAVE SAME SIGNe NEITHER = 0

FOH OPER+1 (1/D)

STQ OPER+1 TFMPNORARY STORE OF NEw LEFT FNDs ONROUNDED

TQP  %+9 QUOTIENT PLUSs NO ROUNDING NFEDED
XCA QUOTIENT NFGATIVE, ROUND
LLS 8 SHIFT OFF CHARACTFRISTIC OF RFMATINDFER

XCA SIGN + FRACTION OF REMAINDFR TO AC



* ok & & ok K K %k K %k %k K

wn
o
E

SQRT1

TZE
CLA
LDQ
FRN
STO
CLA
FDH
STQ
XCA
TMT
LLS
XCA
TZE
CLA
LD@
FRN
TRA
CLA
LDQ
sSTQ
570
TRA

*#45

OPER+1
MASK1

OPER+1
FLPT1
OPER
OPER

e )
8

Hp B
OPER
*.42
OPFER
OPER+1
ACC
ACC41
1s44

84

REMAINDER IS ZEROs NO ROUNDING NEEDED

QUOTIENT TO BE ROUNDED DOWNe KNOWN NEGATIVE
PUT 1 BIT IN POSITION 9 FOR ROUNDING

(1/D) ~ ROUNDED
GFT NEW RIGHT END
(170

QUOTTENT TO AC

QUOTTENT NFGATIVEs NO ROUNDING NFFDED
SHIFT OFF CHARACTERISTIC OF REMAINDER
SIGN + FRACTION OF REMAINDER TO AC
REMAINDER 1S ZEROs NO ROUNDING NEEDED
QUOTTIENT TO BE ROUNDED UPs KNOWN POLTtIVE
PUT 1 RIT IN POSITION 9 FOR ROUNDING

{1/7C) - ROUNDED IN AC

{1/D)
{(1/n)
(1/0)
RETURN TO MAIN PROGRAM

INTERVAL SQUARE ROOTs SQUARE ROOI OF (AeB)

A IN OPERS,
5Q
LEFT ENDs
15
1 BIT
RIGHT ENDo»
Is
CLA OPER
TNZ #4313
§STZ ACC
TRA SQRT3
TMI  ERRS5
TSX SRTe2
57TO0 TEMP
XCA
FMP  TEMP
CAS OPER

B IN OPER+]

RT OF A IN ACCs S5Q RT OF B IN ACC+1

IF SQ OF SQ RT =

GREATER THAN Ae SUB 1 BIT FROM POSIITION 35 AND

COMPARE AGAIN

IS EQUAL TO As CHECK LEAST SIGNIF PORTIONs IF LSF

=0 ACCEPT SQ RTy IF LSP MNOI=0e SUUB 1 BIT FROM
POSITION 35 AND ACCEPT AS SQ RT

IS LESS THAN As ACCEPT SQ RT (SQ RT IS LESS THAN

FROM FXACT VALUER)
IF SQ@ RT =~

1S GREATFR THAN B, SUR 1 BI[ FROM POSTIION 35 AND

COMPARE AGATIN

1S EQUAL TO Bs ACCEPT AS SQ RT
LESS THAN B, ADD 1 BIT TO POSITION 35 AND

ACCEPT AS 5Q RT

LEFT ENDs FEICH A

SQ RT OF ZFRO Is ZERO
GO WORK ON RIGHT END

NEGATIVE NUMBER

GET SQ RT OF LEFY END
SQ RT OF A

5Q OF sQ RT
COMPARE WITH A



SORYZ

SARTSE

SORT4

#

SRT

TRA
TRA
CrLA
STO
TRA
L.GL
XCL
TZE
CLA
AMA
ADD
55M
FAD
STO
TRA
CLA
ANA
ADD
5 8m
FAaD
TRA
CLA
TNZ
577
TRA
TEX
ST
XCA
e Vi)
CAS
TRA
TRA
CLA
L.DQ
FRMN
STO
TRA
CLA
570
TRA
CLA
ANA
ADD
SSM
FAD
TRA

EMTER

SXA
AXT

SQRT2
By
TEMP
ACC
“SORTa
9

e 9
TEMP
MA 5K
ONE

THEMP
AL
SORTH
TEMP
MASK
ONE

T Mp
SGRT1
OPFR+1
RN
ACC+1
ek
SRTe2
TEMP

TEMP
(OF P41
SQRTS
#rf,
TEMP
MA K

ACC+]
1o
TEMP
ACC+1
lod
TEMP
MASK
ONE

TEMP
50R74

WITH

He16e7

392

SG OF SO RY IS GREATER THAN A
1S EQUAL TO A
IS LESS THAN As STORE ORI
S5TORE LFFT END
60 ON TO RIGHT END
CHFCKY LFAST SIGNIF POR1TIONe SHIFT OF CHAR

LEAST SIGNIF POTION = 0Ds STORE SQRT
PICK UP SORT

KEED CHARACTERISTICe MASK OFF FRACTION
IoBiT IN POSIYION 35

SUR T BIT FROM POSITION 35

STORE LFFT END

GOOON TO RIGHT END

SUB BIT FROM POSITION 35 AND COMPARE AGAIN
KFEP CHAR, MASK OFF FRACTION

I BIT IM POSITION 135

SUB 1 RIT FROM POSITION 35
GO Qe THEN COMPARE AGAIN
RIGHT FNDe FETCH B

SGRT OF ZERO 1S ZERO
FXTT

GET $G RT OF RIGHT END
SORT OF B

50 OF SORT
COMPARYE WITH R
SG OF SORT IS GREATER THAN B
15 EQUAL TO Be STORE SQORT
1S LESS THAN By ADD 1 BIT 10
1 B{7T IN 9 OF MQ POSTTION 3% AND STORE
ROUND - ADD A BIT
STORF RIGHT END

FXTT

SORT OF A

STORE RIGHT END
EXTT

SUR BIT FROM POSTITION 368 AND COMPARE AGATIN
KFEP CHARs MASK OFF FRACTION
1 RIT IN POSITION 38

SUB 1 BIT FROM POSITION 35
GO 5Qe THEN COMPARE AGATN

ARGUEMENT IN ACs REITURM wliH 5Q Ri IN AC



R I

RI.DA

RLDAl

*x & X K

STO
ANA
ARS
ADD
ARS
ADD
5TC
CLA
F 4
CLA
5TQ
FAD
5UR
TIX
AXY
TRA
ocCT
ocT

THIS

86

TFMP X

#4168 LAST DIGIT OF POWER
1

TEMP X

i

#4711 1004
TEMPB41 Y1s ETC
TEMP K

TEFMP4T (/Y1 = 0
TEMP+1 Y1

TFMP+1 01

TEME+]1 Y1401

w45 DIVINE RY 2
H-..L,‘;«" Y :}

Habe 7

1oz

100400000000
001000000000

SUBROUTINE 1S USED ONLY FOR ROUNDING ADD AND SUB

ROUND LFFT END DOWN (ONLY WHEN LEFT END Ts KNOWN TO

R

NFGATIVF)e IF RFMAINDNFR TS ZEROs DO NOT ROUND,

REMATNDFR 1S TN MOg MOST SIGNIFICANT PART IS IN
ACCe  RETURN T8 BY TRA 162 TO WORK ON RIGHT END

LLS
XCA
TNZ
NZT
TRA
NZT
TRA
CAL
ANA
STO
CAL
ANA
suB
LAS
TRA
TRA
TRA
CLA
LDQ
FRN
STO
TRA

THIS

8 SHIFT OFF CHARACTERISTIC OF REMAINDER
SIGN + FRACTION OF REMAINDER TO AC
RLLDA1 REMAINDER NON-ZEROs ROUND
OPER REMAINDER ZEROs CHECK FURTHERs IS OPER ZERO

162 YESs NO ROUNDING NEEDEDs RETURN TO ADD
TEMP NOs IS TEMP ZERO (TEMP HAS ORIGINAL ACQC)
1e2 YESs NO ROUNDING NEEDEDs RETURN TO ADD
TEMP NOs IS DIFF OF CHARACTERISTICS GREATER
MASK MASK OFF STGN AND FRACTION THAN (53)10

TEMP+1 KFEEP CHARACTERISTIC

OPER MASK OFF SIGN AND FRACTION

MASK KEEP CHARACTERISTIC

TEMP+1 DIFFERFNCE OF THE CHARACTERISTICS
0CT66 COMPARE ABSOLUTE VALUE WITH (66)8

#43 GRFATER THAN (66)8y ROUND
¥t 2 EQUAL TO (66)8s ROUND
12 LESS THAN (66)8s NO ROUNDING RETURN TO ADD

ACC QUANTITY TO BE ROUNDED DOWNs KNOWN NEG
MASK1 PUT 1 BIT IN POSITION 9 FOR ROUNDING

ACC ROUNDED LEFT END
192 RFTURN TO ADD

SUBROUTINE IS USED ONLY FOR ROUNDING ADD AND SUB

ROUND RIGHT END UP (ONLY WHEN RIGHT END 1& KNOWN 10
BE POSITIVE)e IF REMAINDER 1S ZEROs DO NOT ROUND.
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* REMAINDER IS IN MQe MOST SIGNIFICANT PART IS IN

* ACC+le RETURN 1S BY TRA 1s4 TO MAIN PROGRAM,

*

RRUA LLs 8 SHIFT OFF CHARACTERISTIC OF REMAINDER
XCA SIGN + FRACTION OF REMAINDER TO AC

TNZ RRUA1 REMAINDFR NON-ZEROs ROUND
NZT OPER+1 RFMAINDFR ZEROs CHECK FURTHER,s IS OPER Z7ERO

TRA 1s4 YESs NO ROUNDING NEEDFDs FXIT

NZT TEMP NOs IS TEMP 2ERO (TEMP HAS ORIGINAL ACC)
TRA 1.4 YESe NO ROUNDING NEEDEDs EXIT

CAL TEMP NOs IS DIFF OF CHARACTERISTICS GREATER
ANA  MASK MASK OFF SIGN AND FRACTION THAN (53)10

STO TEMP+1 KEEP CHARACTERISTIC

CAL OPER+1 MASK OFF SIGN AND FRACTION

ANA  MASK KEEP CHARACTERISTIC

SUB TEMP+1 DIFFERENCE OF THE CHARACTERISTICS
LAS OCTé66 COMPARE ABSOLUTE VALUE WITH (66)8

TRA %43 GRFATFR THAN (66)8s ROUND
TRA %42 FQUAL TO (66)84s ROUND
TRA 144 LESS THAN (66189 NO ROUNDINGs EXIT

RRUA1 CLA ACC+1 QUANTITY TO BE ROUNDED UP, KNOWN POS
LDQ MASK1 PUT 1 BIT IN POSITION 9 FOR ROUNDING

FRN
STO ACC+1 ROUNDED RIGHT END
TRA 14 RETURN TO MAIN PROGRAM
»
* TH1S SUBROUTINE IS NOT USED BY ADD OR SUB
* ROUND LEFT END DOWN (ONLY WHEN LEFT END IS KNOWN TO
* BF NFGATIVE)e IF REMAINDFER 1S ZEROs NN NOT ROUND,
* REMAINDER IS IN MOy MOST SIGNIFICANT PAPRPT IS IN
* ACCe RETURN IS BY TRA 192 TO WORK ON RIGHT END
*
RLD LLS 8 SHIFT OFF CHARACTERISTIC OF REMAINDER
XCA SIGN + FRACTION OF REMAINDER TO AC
TZE 1le2 REMAINDER IS ZEROs GO WORK ON RIGHT ENDS
CLA ACC QUANTITY TO BE ROUNDED DOWN ~ KNOWN NEG
LDQ MASKY1 PUT 1 BIT IN POSITION 9 FOR ROUNDING
FRN
STO ACC ROUNDED LEFT END
TRA 1,42
*
* THIS SUBROUTINF 1S NOT USED BY ADD OR SuUB
»* ROUND RIGHT END UP (ONLY WHEN RIGHT END IS KNOWN TO
»* BFE POSITIVE)e IF REMAINDER IS 2ERO, DO NOT ROUND.
» REMAINDER IS IN MQs MOST SIGNIFICANT PART IS IN
* ACC+1le RETURN IS BY TRA 1l¢4 TO MAIN PROGRAM,
»*
RRU LLS 8 SHIFT OFF CHARACTERISTIC OF REMAINDER

XCA SIGN + FRACTION OF REMAINDER TO AC
TZE 144 REMAINDER IS Z2ERQs EXIT TO MAIN PROGRAM
CLA ACC+1 QUANTITY TO BE ROUNDED UP - KNOWN POSITIVE



A % k k K K k & x % XK X

OVFL

RCELS

ERR

ERR1
ERR2
ERR3
ERR4
ERRS

FLPT1
MASK
MASK1
0CT66
ONE
TEMP

ACC
OPER

LDQ
FRN
STO
TRA

MASK1

ACC+]

1ok

88

PUT 1 BIT IN POSITION 9 FOR ROUNDING

ROUNDED RIGHT END

MAIN PROGRAM SHOULD HAVE A CALL ROVFL WMICH WILL
SET CELL 8 TO HANDLE FLOATING POINT SPILLS DURING
EXECUTION OF INTERVAL ARITHMETYIC, AT CONCLUSION OF
JOBs THE MONITOR WILL RESET CELL 8 FOR THE NORMAL
HANDLING OF SPILLSe SO THAY IT IS NOT NECESSARY TO
RESTORE CELL 8¢ HOWFVER SHOULD IT BE DESIRED THAT
CELL 8 BE RESTORED FOR NORMAL HANDLING OF FLOATING
POINT SPILLS OF NON-INTERVAL ARITHMETIC CALCULA~
TIONS
THUS RESTORE THE NORMAL HANDLING OF SPILLS,

CALL RCELS WILL RESTORE CELL 8 AND

CLA 8 SAVE

STO *+5 CELL 8

CLA  #+3

STO 8

TRA 144 EXIT

TRA FRR4 TRA TO RE PLACED IN CFLL 8

PZE CEFLL 8 SAVED HERE

CLA #=] RESET CELL 8

STO 8

TRA 194 EXIT

HTR # D=0 DIVIDE ERROR .

HTR # D=0 DIVIDE ERROR

HTR % C~sD+ DIVIDE ERRORs INTERVAL CONTAINS 0
HTR # C+sD~ DIVIDE ERRORy ILLEGAL INTERVAL
HTR % FLOATING POINT SPILL

HTR # SQORT OF NEGATIVE ARGUMENT

DEC 140

OoCT 377000000000

OCT 000400000000 1 BIT IN POSITION 9

OCT 066000000000 USED IN ROUNDING ADD AND SUB
oCcT 1

BSs 2

COMMON 1

COMMON 2

COMMON 1

END



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

