Fldon Hansen

ARO-D Report 67-3

PROCEEDINGS OF THE 1967 ARMY NUMERICAL
ANALYSIS CONFERENCE

This document is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be made only with prior
approval of the U, 8. Army Research Office—Durham, Durham, North

Carolina.

The findings in this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.

Sponsored by
The Army Mathematics Steering Commitice
on Behalf of

THE OFFICE OF THE CHIEF OF RESEARCH AND DEVELOPMENT

PROGRAMMING INTERVAL ARITHMETIC AND APPLICATIONS

Allen Reiter
Lockheed Missiles and Space Company
Palo Alto, California

INTRODUCTION. This paper discusses the current state-of-the-art in
interval arithmetic, both from the programming point of view and from the
point of view of applications to date.

Interval arithmetic was first developed formally by R.E. Moore around
1960, although there is essentially nothing new in the concepts involved.
Moore originally envisioned interval arithmetic as a means of completely
rigorous automatic error control for computational processes using a digital
computer. More recently, people have begun to appreciate the potential of
interval arithmetic for control theory, and also as a tool in experimental
designing on-line, with both a man and a computer as parts of the feedback
loop.

There are basically three different sources of error associated with
numerical computations. The first, which we may call the data problem, is
due to the fact that the value of some given parameter may not be known
exactly (this is for example true for physically-determined parameter
values), or else may not be exactly represented in a computer (for example,
the number 7). A second type of error, usually called truncation error,
is caused by the necessity to terminate after a finite number of steps
some infinite converging process, or (equivalently) by the requirement
that some well-defined expression be evaluated at some point whose location
is known only approximately (for example, the remainder term of the Taylor
series with remainder). The third type of error is round~off error, caused
by the necessity to restrict computational processes to operate on numbers
which do not exceed some predetermined number of digits in length. Round-
off error has traditionally been the most troublesome, primarily because
of its non-analyticity. Attempts at rigorous '"pencil-and-paper" bounding
of round-off either are too difficult or lead to hopelessly pessimistic
"bounds".

Interval arithmetic keeps track of the accumulation of error by
continually producing an interval, guaranteed to contain the "true'" result,
and performing the indicated arithmetic operations on the entire interwval.
Since the implementation of interval arithmetic necessarily involves ordi-
nary arithmetic operations on the end-points of the interval, which in turn
involve rounding, care must be taken to perform the rounding properly: "down"
for the left-hand end point, and "up" at the right-hand one. Thus, when
in the sequel we shall speak of interval arithmetic, it shall be understood
that in the implementation of the operations on a computer rounded interval
arithmetic is used. However, in the formal discussion of interval arithmetic
we shall ignore this fact, and define the formal operations independently
of their implementation.

ARITHMETIC RULES. An interval is simply a closed interval on the real
line, of the form [a,b] . We can also think of an interval as a fuzzy number

87

x of the form [x~e , x+c]; although € is certainly not restricted to being
small in any sense. The arithmetic operations are defined in a natural
fashion, and in fact reduce to ordinary arithmetic when e=0. (When the
occasion arises, we shall speak of ordinary real numbers as degenerate
intervals.)

Elementary operations are defined as follows. Let la,b] and [c,d]
be a pair of intervals. Then ‘

[a,b] + [c,d] = [a+c,b+d] ;

[a,b] - [c,d] = [a=d,b-c] ;

[a,b] * [c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)] ;
[a,b] / gc,d] = [a,b] *[1/d,1/c 1; (division is defined

only if the interval [c,d] does not contain the point zero).

It can be seen that these operations are defined in such a way that
the result is precisely the set of all possible values of the operation
as the operands range over the argument intervals.

Interval arithmetic is associative, and addition and multiplication
are commutative. Unfortunately, the distributive law does not hold; instead
we have the '"subdistributive" law (I, J, and K being intervals):

I*# J+KCI*J+1*K,
That the inclusion can indeed be proper can be seen from the example

[-3,3] * [0,2] + [-3,3] » [-1,0] = [-6,6] + [-3,3] = [-9,9] ,
whereas
[-3,3] % (lo,2] + [-1,0]) = [-3,3]% [-1,2] = [-6,6] .

The example also illustrates that a given interval number may have
many multiplicative units: if y is any real number in (-1,1), then all
interval numbers of the form [—l,y] or of the form [y,l] are multiplicative
units for the interval number [—3,3

More disruptive is the fact that although an additive unit is unique
(10,01), interval numbers do not in general possess additive inverses.
"(This reflects the fact that once uncertainty or error has been introduced
into a computational process, it cannot be cancelled out, but must be carried
along till the end.) This last property is responsible for almost all of
the difficulties in interval arithmetic, and frequently necessitates very
delicate handling of the specification of a computational algorithm - some-
thing that the current state-of-the-art is not quite up to. (In spite of
this handicap, useful areas of application have already been found.)

88

The usefulness of interval arithmetic for error bounding comes from
the fact that

1) The elementary arithmetic operations are continuous mappings

from Il X I2 onto 13 (the I's are arbitrary intervals);

2) Since the elementary operations are defined in such a manner
that the range of the operator as the operands range over the argument
intervals is contained in the result interval, the same is true for any
well-defined grouping of such operations on argument intervals; in other
words, for all rational functions. Of course, rational operations is all
computers are capable of executing; thus, any computable function can be
bounded by the use of interval arithmetic.

Let f(xl,...xn) be a given formal rational function in the indeter-
minates Koo eoX o When the indeterminates take on real values, f denotes

a real-valued function. There may be many different ways of representing
this function, which are all algebraically equivalent; we will fix a
representation fl(xl,...xn). If we let the indeterminates take on interval

values X ""Xn’ then the function f., is still well-defined (we can regard

1 1

fl as a computer program, with a sequence of arithmetic operations to be

carried out in a certain order); we however choose to call this interval-

valued function Fl(Xl,...Xn). Note that the fact that fl and f2 may be

algebraically equivalent to f (and to each other) certainly does not imply

that Fl and F2 are equivalent (this is primarily due to the failure of

the cancellation law for interval arithmetic). The basic theorem of
interval arithmetic however states that for the purposes of error bounding
any representation will do:

Theorem. Let f be a given rational function, f = f(x,,...x_), and
Luaeorem 1 n

let F be any representation of f, F to be evaluated in interval arithmetic.
Let X;,...X be a collection of closed intervals on the real line.

Then the range of f as each variable X, ranges over Xi is contained in

LIC A X

The theorem assures us that interval arithmetic is sufficient to
compute bounds on the range of a rational function over a compact rectangle
in En. Note that since the evaluation of F can be done using rounded

interval arithmetic, the round-off error is included in the final bounds
produced by F. (It is worth while stressing though that nothing is said
about bounding the round-off that might occur in evaluating f. The round-
off process is not a continuous operation. On some computers, in particular
on the IBM SYSTEM/360, it is easy to cook up examples where f evaluated

at some point p inside the rectangle turns out to be outside the interval
obtained by evaluating F. This is but another aspect of "dirty" floating-
point hardware. The true range of f is however always contained in F.)

As already noted, the width of the interval obtained by evaluating

89

F may be considerably greater than the width of the true range of f; it is
also generally quite sensitive to the choice for the particular representation
F. This shall be discussed below.

SOME APPLICATIONS OF INTERVAL ARITHMETIC. Aside from the obvious
advantage of providing error bounds, interval arithmetic can be used by a
computer to control the growth of error. While potentially the realm of
applications is unlimited, the author knows only of the following contexts
in which interval arithmetic has been studied:

a) The initial-value problem for ordinary differential equations;
b) Finding roots of polynomials;

c) Matrix inversion, and the eigen-value problem for matrices;

d) Solution of systems of simultaneous (non-linear) equations;

e) The two-point boundary-value problem.

In these areas, analytic techniques are being developed which make use of
interval arithmetic evaluations, and which also address themselves to the
peculiar problems which arise in using interval arithmetic.

THE INITIAL VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS. Let
dy/dx = f(x,y) denote a system of n first-order ordinary differential
equations, and let Yo = y(xo) be given. The application of interval arith-

metic to the automatic generation of solutions to this problem was the first
application suggested by Moore. He designed a computer program using
interval arithmetic which gave solutions with automatic error bounds.

His method is described in [7] . Briefly stated, the solution is
expanded in a Taylor series with remainder (up to a specified number of
terms) at a given point. To bound the remainder term, the required deriva-
tive is evaluated over a whole rectangle (using interval arithmetic) which
is guaranteed to contain the point at which the derivative should be
evaluated. Iterative procedures can be specified which limit the growth
of the width of the resulting interval.

Since this method depends on the ability of the computer to evaluate
higher~order derivatives of f, it is handy to have a computer program which
can do analytic differentiation. Such computer programs have indeed been
written, either tailored for the purpose at hand [9], or in more general
settings, such as the FORMAC capability for the FORTRAN IV compiler on the
IBM 7094. ‘ :

The success of interval arithmetic in this setting is somewhat diffi-
cult to evaluate. The problem is that for reasonably complex systems of
equations and for long ranges of integration with respect to the independent
variable, the resulting interval tends to be too wide to be of much practical
value. Attempts at elaborate transformations to reduce the error growth
due to the remainder term evaluation being too crude have in general been
defeated by the fact that the structure of interval arithmetic (lack of
additive inverses) causes growth of widths of intervals due to too many
operations. Also, on some computers (such as the CDC 1604) the floating~

90

point hardware structure of the computer is so unfriendly that interval
arithmetic operations are rather time-consuming. For short integrations,
and for qualitative estimates, interval arithmetic may be very valuable.

ROOTS OF POLYNOMIALS. Moore suggested that a simple procedure for
localizing zeroes of rational functions can be developed using interval
arithmetic. Such a procedure was indeed programmed [3]. The method is
based on the simple fact that if P is given rational form in n variables,
R a rectangle in EN, and P(R) evaluated in interval arithmetic does not
contain the point 0, then P (as a function of real variables) cannot
possibly have any zeroes in R.

An iterative procedure can be implemented based on the fact that if
Rl and R2 are two rectangles in E" each of which contains a given zero of

P, then their intersection must necessarily also contain that zero. Thus,
an extension of Newton's method is possible, as long as care is taken at
each iteration to intersect the new interval (which may not be contained
in the one obtained at the previous iteration) with the old one, thus
guarding against divergence. This is called by Moore '"the method of
interval contractions'". Clearly any such procedure must converge, but
the limit will in general be an interval, rather than a point. If the
limit interval is too wide, the process may be repeated by subdividing
the original rectangle R into smaller ones.

Similar results were obtained for the complex domain (Boche [2]
having extended the concept of interval arithmetic to the complex plane)
by Hansen [6] and Bennett [1] .

For this problem, interval arithmetic may well be the best (compu~
tationally speaking) method of obtaining results, especially if it is
desirable to find regions guaranteed not to contain any zeroes of some
given function, :

MATRIX TINVERSION AND THE EIGENVALUE PROBLEM. The problem of inverting
matrices in the context of interval arithmetic comes from two distinct
sources. Problem one: given a matrix with real elements, obtain a (real)
inverse with automatic error bounding of round-off. Problem two: given
a method of obtaining solutions of some problem in ordinary arithmetic
(for example, Newton's method in n variables) which calls for inverting
matrices, extend this method to the case where interval arithmetic will
be used for the solution (possibly because the coefficients are only
approximately known). That is, in problem two we are asked to invert a
matrix with interval elements.

Since it is not a priori clear what we mean by an "inverse" of an
interval-valued matrix, we define this inverse to be the set of inverses
of all of the real matrices contained in the given interval matrix. It is

understood that the inverse is defined only if the interval matrix does not
contain any singular real matrices.

91

Hansen ([4] and[5]) has worked extensively on this problem. He shows
that a direct extension of the standard methods for matrix inversion (such
as modifications of Gauss - Seidel) to interval arithmetic is not very
useful, because of the many arithmetic operations involved, and (again)
because of the lack of additive inverses. Instead, he develops several
methods, all based on essentially the same principle. What he does is to
compute an (approximate) real inverse of the real center of the interval
matrix, and then (using some iterative procedure) compute in interval
arithmetic bounds for the width of each element of the true inverse of the
interval matrix. The variations in the iterative procedures consist of
trying to represent things in such a way as to have as many terms as possible
be non-interval.

Similar considerations apply to the problem of finding eigenvalues
and associated eigenvectors of real-valued or interval-valued matrices.
Again, direct extensions of the standard techniques used for real arith-
metic are not satisfactory. Hansen [6] suggests iterative procedures
using interval arithmetic once approximate solutions are obtained using
real arithmetic. :

The numerical results quoted by Hansen suggest that very good accuracy
can be obtained using interval arithmetic. His methods do converge, although
he does not discuss the rate of convergence. Note that in Hansen's methods
it frequently pays to carry out the real computations involved using ex-
tended-precision arithmetic, since in general multiple-precision arithmetic
is much faster than the interval arithmetic procedures required, and it is
worthwhile to go to great lengths to save an iterative step.

SYSTEMS OF SIMULTANEQUS EQUATIONS. Let f(x) denote the set of n
rational forms fi(x) in the n formal variables xj, and let it be desirable

to find a solution to f£(x) = 0 in the vicinity of some point X in E°. A

method proposed by Moore goes as follows.
Let y be a solution near Xg3 i.e. let f(y) = 0. (Of course, we do not

know y explicitly.) Expanding f(x) as a Taylor series with remainder about
y, we have f(xo) = f(y) + (xo = y)J(2), where z is some point "between"

Xq and y, and J is the Jacobian matrix evaluated at z. Expressing z as
y + e(xO - y), where ¢ is a vector with elements between 0 and 1, it can
be seen that if R is a rectangle which contains both X and y, then R
also contains z. Hence, we can try to solve (xo-y)J(R) = f(xo) for y.

This will yield a new rectangle R' which contains y, and which can then be
intersected with R to yield a (hopefully) smaller rectangle R". We now
solve (R"-y)J(R") for y, etc; this will eventually converge to (we hope) a
small interval containing the real solution y.

Hansen gives a slight improvement in the method [6]; this is essentially
a slightly better way of writing things down for computation.

92

It can be seen that this is a variant of Newton's method, adapted
for interval arithmetic. It requires that f contain no other zeroes near
the point in question, for otherwise the Jacobian J becomes singular. Again
it pays to obtain as precise an initial guess as possible, using ordinary
(possibly extended-precision) arithmetic.

The author knows of no numerical experimentation with solving large
systems of equations using interval arithmetic.

THE TWO-POINT BOUNDARY-VALUE PROBLEM. This problem is currently
under investigation by Hansen. He has devised a general method for
tackling the solution of

y(n) (n—l))

= f(X,¥,0..¥
with a total of n conditions prescribed at the end points x = 0 and x= 1.
His method, based on an adaptation of a finite-difference method, gives
sharp bounds at the mesh points and less sharp bounds throughout the
interval. It will be described in a forthcoming paper.

OTHER POSSIBLE APPLICATIONS. Interval arithmetic may have potentially
many uses. It has been suggested that it can be used in control theory,
where it is desirable to let parameters in differential equations range
over certain restricted domains. Another potential area of utility is
in design, where it can be used in conjunction with an on-line computer
system. A designer, seated in front of a terminal in communication with
a computer, can experiment with various possible designs by letting some
variables range over a set of interval values. With instant feedback from
the computer, the designer can begin to get a feel for the effects of
perturbations in the design parameters. Using interval arithmetic in this
setting 1s particularly attractive because sharp bounds are not required -
the qualitative estimates would be produced in relatively little time, and
would at the same time be completely rigorous, covering all possible cases.

THE REPRESENTATION PROBLEM. The major trouble with interval arith-
metic is that due to the lack of inverses forms normally considered
algebraically equivalent are computationally quite different. It is always
advisable when using interval arithmetic to eliminate entirely expressions
of the form x - x. Other reductions of this type suggest themselves.

The general problem can be stated as follows. Suppose that f is a
given function (from E™ into the reals) and suppose that it is desired to
obtain bounds on the range of values of f over some rectangle R using
interval arithmetic. What is the "best'" way of representing f from the
point of view of obtaining the narrowest bound?

There are three different approaches to this problem. One can try
to obtain an optimal representation for f. (The author strongly suspects
that this approach is not in general workable; that is, given a general
function f, there is no algorithmic procedure that would allow the selection
of a "best" form.) A second approach can be based on the following: if

93

f1 and f2 are two different representations for f, and fl(R) = Il’ fz(R)FIZ,

then Il/\ I2 also contains the range of f over R. It may be possible by

judiciously choosing among different representations for f to obtain
successively better approximations to the range of f. Although there is
probably no algorithmic procedure guaranteed to converge for an arbitrary
function f, it may be possible to find some programmable heuristics which
greatly reduce growth of interval widths. The third approach consists of
subdividing the original rectangle R into smaller rectangles and performing
the required evaluations on each of the small pieces. This process will
generally result in narrower bounds, and is in fact guaranteed to converge
to the exact range of f regardless of the representation chosen. The
convergence is however so slow compared to the overhead for repeating the
computations for each one of the smaller intervals that this approach is
not very practical.

Moore has noticed that a certain representation, which he calls the
centered form, will frequently yield good results. Briefly, this scheme
goes as follows: Given a formal function f of (say) one variable X, and
assuming that we are intérested in evaluating f over the interval [a,bl=
[m ~ L(b-a), m + % (b-a)] , we represent f as expanded about the midpoint
m. That is, we obtain a form g by the relation g(x-m) = f(x) - £(m), so
that g(y) = £(y +m) - £f(m). g has to be represented in the most "economical"
way possible, so that the number of occurences of the term y cannot further
be reduced. Since f([a,b]) = g([-%(b-a), %(b-a)]) we have moved the required
interval evaluation to be centered about zero.

For an example, let f(x) = x - xz, and let the interval in question
be [0,1] . The actual range of values of f is of course [0,%] . Evaluation
of £ as written yields [0,1] - [0,1] * [0,1] = [0,1]-[0,1]= [-1,1] .
Writing f in "nested" form as x*(1-x) yields [0,1] * [0,1] = [0,1]; an
improvement, but still not very good. Writing f in centered form, we have
(with y = x-%) g(y) = -y2 + %, so that f(x) is represented as -(x-%)2 + Y%
interval evaluation of this form yields - [-%o%] * [~4,%] + 4% = [0,4] .
This turns out the best that can be done for any given representation with
the evaluation of only one interval. If however we are willing to evaluate
separately the range of f on [0,%] and also on [%,1], then by using the
centered form it turns out that we can bound the rauge of f by [0,3/8]. 1In
fact, if we keep halving the width of the (equal) intervals, it can be
shown that interval evaluations approach the upper bound % linearly with
the width.

Lest the reader conclude that the centered form is always the best
representation, consider the function £(x) = x + x4, and let the interval
in question be D«s,2+s lwhere 0 < s 5 2. Then both straightforward interval
evaluation and the nested form give [82«55+6,sz+5s+6], which is the exact
range of values. In centered form, however, we represent f as (x~2) (x+3)+6;
evalugtion of this yields [~32~58,sz+5$] +6, which exceeds the actual width
by 2s<.

It is possible (and desirable) to modify the rules of interval arith-
metic in order to reduce spurious growth of intervals. One obvious and

94

easily programmable change is to define, for all intervals I,

% = {xn I g 1}

This in general yields smaller intervals than the computation of Il*I *...*In

2
for Il = 12 =, , = In = I. Other modifications of this sort, which take

into account known and easily computable exact ranges of values of a set of
elementary common forms, may improve the performance (and possibly even speed
up the operation of the system, as generally fewer multiplications will have
to be performed during the computations).

Note that with changes of this sort, some of the properties of interval
operations no longer hold. For example, with the change indicated above
for raising to powers, subdistributivity no longer holds in its original
form; the interval I*(I+1) need no longer be contained in the interval

24 (whether it is or not depends on [). If I = [~1,1], then

T(14+1) = [-1,1] * [0,2] = [-2,2];:

while

SR [0,1] + [-1,1] = [~1,2].

This tends to complicate the representation problem even further, since

it becomes desirable to have a representation contain as many (in some sense)
as possible of the forms whose ranges of values are exactly computable.

The changes are all for the better, however; the complications result because
we now have better ways of representing functions than formerly.

SYSTEMS PROGRAMMING FOR INTERVAL ARITHMETIC. Programming for interval
arithmetic is somewhat similar to writing (general real) computational
routines in the early days of computing, before the hardware implementation
of floating-point arithmetic. At level 1, the systems programmer has to
build the basic tools for performing interval computations: an adder, a
multiplier, an inverter for producing an interval (1/d,1l/c) given the
~interval (c,d), and (if exponentiation is desired) functions that compute
good bounds on the range of values of the EXP and LOG operators. (Similarly,
other elementary transcendental functions such as SIN should be incorporated.)

At level 2, tools must be provided for convenient interfacing with the
user. For a simple example: subtraction can obviously be implemented very
simply using the adder of level 1; at the same time, it is clearly not
desirable to have the user perform this implementation every time he wishes
to execute subtraction. Thus, a set of subroutines must be provided for
the user which he can conveniently call. There are likely to be a large
number of such subroutines, for the following reason. It is generally
desirable to allow the user to mix the mode of the variables freely; he
should be allowed to add a integer-valued variable or constant to an

integer~valued one. By the time all possible combinations of modes for
operands are accounted for, the number of different subroutines provided
is staggering. (Actually, there are typically about eight different
routines, each of which has many entry points. '

It is clear that any such package of subroutines should be FORTRAN
compatible. While the level 1 subroutines usually have to be written in
machine language, there is usually no reason why the level 2 routines
themselves cannot be written in the FORTRAN language.

The representation of interval numbers within a computer for FORTRAN
might have been quite awkward were it not for the fact that formally an
interval number looks just like a complex number. Any FORTRAN language
compiler equipped to handle complex numbers can be tricked into handling
interval numbers by the appropriate TYPE declarations. This is very handy
for getting interval numbers in a decent format into and out of the computer,
and also for defining interval-valued constants. (Arrays of interval
numbers are also easier to handle if they are defined as being of TYPE
COMPLEX.)

The arithmetic operations have to be performed by calls to the
appropriate routines. Some computers (for example, the CDC 1604 and 3600)
have a feature in their FORTRAN compilers which allow the definition of
other (non-standard) variable types. What this means is that the compiler,
when it encounters a vamiable of non-standard type, generates a call
automatically to the appropriate arithmetic routine. - This simplifies
usage of interval arithmetic greatly, since the user, once he defines i
variable as being of TYPE INTERVAL, can use it in statements as if it were
any other type (integer or real). 1In fact, should this prove desirable,
it is possible to define variables as being of type "double-precision
interval" (the appropriate routines would have to be provided). For an
exam?le of an interval-arithmetic package of the sort just described,
see [8]. '

The level 2 routines will depend to some extent on the exact working
of the FORTRAN compiler. The level 1 routines are essentially compiler-
independent; they are however heavily dependent on the way the given computer
performs floating-point operations. (For convenience of interfacing with
FORTRAN, the interval endpoints should usually be represented as floating-
point numbers.) The (real) operations have to be performed at each end
point in roughly the sequence: 1) perform the operation in a double length
accumulator by using both the A and the Q registers without rounding; 2)
normalize the result; 3) round to a single-precision floating-point number
by adding (or subtracting) a 1 in the last place, unless the result was
exact. If the computer does not allow this sequence of operations to be’
performed using the hardware floating-point instructions, then these opera-
tions have to be simulated by software, using fixed-point instructions.

Similar comnsiderations apply to the computation of the transcendental
functions. The functions should be computed in such a way that the result
is off by at most one in the least significant bit of the single-~-precision
answer.,

96

Exponentiation can be implemented using the LOG and EXP routines. The
system should however first determine if the exponent is an integer (even
if represented as a floating-point number). As indicated, a substantial
reduction in the growth of the widths of intervals can be effected if integer
exponentiation is computed by repeated multiplications, using the true-range-
of-values for raising to powers.

REFERENCES. The first place any interested reader should look is
Moore [7]; aside from its definitive nature, it contains a rather complete
bibliography of relevant literature. For a more up-to-date list, see
Bennett [1].

97

[1]

[2]

(3]

[4]

G.K. Bennett, Jr. "A Method for Locating the Zeros of a Polynomial ysing
Interval Arithmetic." Report published by the Computer Center, Texas
Technological College, June 1967.

R.E. Boche, "Complex Interval Arithmetic with same Applications"
Unpublished Master's Thesis, San Jose State College, 1966.

R.H. Dargel, F.R. Loscalzo, and T.H. Witt. "Automatic Error Bounds
on Real Zeros of Rational Functions." Communications of the ACM,
Vol. 9, Number 11, Nov. 1966.

E.R. Hansen, "Interval Arithmetic in Matrix Computations, Part I."
SIAM Journal on Numerical Analysis, Series B, Vol. 2, Number 2 (1965).

E.R. Hansen and R. Smith, "Interval Arithmetic in Matrix Computations,
Part II." SIAM Journal on Numerical Analysis, Series B (to appear).

E.R. Hansen, "On Solving Systems of Equations Using Interval Arithmetic."
Mathematics of Computation (to appear).

R.E. Moore, Interval Analysis. Prentice~Hall, Inc. 1966.

A. Reiter, "Interval Arithmetic Package: INTERVAL". MRC Library
Program #2, Mathematics Research Center, University of Wisconsin.

A. Reiter, "Automatic Generation of Taylor Coefficients: TAYLOR".
MRC Library Program #3, Mathematics Research Center, University of
Wisconsin.

98

	
	
	
	
	
	
	
	
	
	
	
	
	

