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RAMON E. MOORE

Automatic Local Coordinate

Transformations to Reduce the Growth

of Error Bounds in Interval Computation

of Solutions of Ordinary Differential Equations

1: INTRODUCTION

It is the purpose of this paper to consider some local coordi-
nate transformation techniques which can be carried out automatically
by the computer for general systems of first order analytic differential
equations and which will reduce the growth of interval error bounds
produced by the method of successive expansions in Taylor series
with interval remainder.

In a previous work by the author ( Moore [65]), a technique
based on computations by the computer with interval numbers, i.e.
closed intervals of real numbers, was presented. Using the technique,
a digital computer can determine intervals containing exact values of
solutions to systems of ordinary differential equations.

The technique consists of successive expansions in Taylor
series to a certain number of terms with the remainder bounded by the
computer over certain intervals which it also determines. As a re-
sult, the machine computation automatically produces intervals con-
taining exact solution values for all solutions beginning in given in-
itial intervals.

A practical procedure for programming the recursive generation
of Taylor coefficients was also presented in Moore [ 65]. The pro-
cedure consists in displaying the expressions for the first derivatives
given by the system of differential equations as a finite sequence of
products, sums, quotients, roots and elementary functions - all of
which have general recursion formulas for their k th Taylor coefficients
in terms of the coefficients of lower order. The chain rule of Leibniz,
dx(Y(t))

dt
formulas into a program for the computation of the general Taylor
coefficients of the solution. See also Fehlberg [ 63, 64, 64a], and
Steffensen [ 56]. Thus we will feel free in this paper to consider
computational schemes requiring truncated Taylor series expansions.

=X'Y', permits an assembly of the resulting set of recursion
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104 Automatic Local Coordinate Transformationg

An operational program for the IBM 7094 computer which useg
all these techniques has been written and is available from SHARE[(,s]

In principle, by going to multiple precision or long enough
word length on the computer, the bounding intervals containing an
exact solution value at a particular value of the independent variable
can be made of arbitrarily small width for a particular solution with
exactly known initial values.

If the real n-vector y = y(t, yo) satisfies

dy/dt = f(t,y)
y(to, Vo) = Yo

for some interval of values of t, then the technique of Moore [65]
produces an interval n-vector valued function Y( t,Y0) such that if
vy is in*® Yo, then y(t, vg) is contained * in Y(t, Yq).

The requirement of analyticity of f is a local one. We need
to be able to expand in Taylor series along the solution curves
y(t,vg). In addition the components of f must be expressible by
compositions and rational combinations of elementary functions or
functions which can themselves be defined by differential equations
of admissible type. In effect, we need programmable expressions
for the first derivatives of all quantities appearing in the system.

If we denote by Y(n)(t, Yo) the result obtained by the pro-
cedure with n place binary arithmetic, then the maximum of the
widths of the components of Y{(N)(t, yq) for fixed t will be O(2"1),

On the other hand, for fixed n, the interval components of
Y(n)(t »¥g) will increase with t. This follows from the fact that
the width of the sum of two intervals is the sum of the widths. Since
[a,b] +[c,d] =[a+c,b+d], it follows that (b +d)-(a + c) =
(b -a) +(d-c). Since our interval result has the form Y(t,yo) =
Y(to,yo) + (t - tg) F with F consisting of the terms in the series
involving successive total derivatives of f , it follows that the com-
ponents of Y(t, Yo) increase in width as t increases. The con-
tribution to the width of a component of F from the remainder term
in the Taylor series is of the form k(t - to)9 in our program cited,
since we carry expansions to nine terms. Therefore if we carry out
a new expansion before t - tg gets too large then the rate of growth
from this source can apparently be kept very small.

Of course, this is not to say that the contribution of the re-
mainder terms to the widths of bounding intervals produced by the
program cannot be diminished by various refinements of the schemes

*
Component by component.
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involved such as more detailed procedures for choosing the number of
terms to be used in the expansions depending in some way on the par-
tjcular set of equations being solved, etc.

The situation is much more involved when we consider interval
solutions beginning with intervals of initial values Y, and for either
interval or exact initial values when we consider the actual growth of
interval widths from all sources during successive expansions of an
interval solution carried out with fixed n, i.e. a fixed number of
pinary places in the arithmetic.

We shall see shortly that the very form in which we seek to
represent solutions, namely interval vector valued functions Y(t,yg),
must necessarily cause a certain excess growth in interval widths in
connection with any scheme of successive expansions, no matter what
the details of the scheme. We will even admit the possibility of
jterative finishing procedures for sharpening the bounding interval
functions over each interval of expansion. In fact, we shall indicate
next a few such iterative procedures. After that, we shall describe
precisely the problem with which we are concerned in this paper,and
indicate the general approach to its solution to be discussed in the
next sections.

1.1 The method of Chaplygin

Henrici [ 62], p. 106, gives several references to papers on
a method due to Chaplygin, (see also, Chaplygin [19], Chaplygin
[ 48], Petrov [45], Savarensky [45], Baranov [ 64], Gendzhoian[64],
Pak and Chichkin [ 64], Azbelev [62]), which concerns the iterative
improvement of two sided approximations to solutions of differential
equations.

In the method of Chaplygin for a single equation, y'= f(x,y),
one begins with a pair of curves constituting upper and lower bound-
ing curves U(x), L(x) to the solution y(x) defined over a definite
range of values of x, say [Xg, XI] which passes through the point
(xo,yo). Then

L(x) <y(x) < U(x) for x in [XO’XI]'

Such a pair of bounding curves could be found to begin with by the
computer using the above mentioned program SHARE [ 65], or by hand
using the interval expansion method of Moore [65]. More simply, a
rough pair could be determined by putting

L(x) =Y0+(f(X ) -b)(X-xo)

0’ Yo
U(x) =y, + (f(xo,yo) +b)(x - xo)
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with b and x; chosen so that If(x,y) -f(xo,yo)l <b

for x in [xo,xl]

and y in [y0+(f(x0, yo)-b)(xl-xo), YO+(f(XO,Y0)+b)(X1-XO)].

A new pair of bounding curves Ll(x) , Ul(x) is "constructed" such
that

L(x) <L1(x)<y(x)<Ul(x) <U(x)

for x in [xq, %] by a method to be described presently. The pro-
cess is repeated and it can be proved that (ignoring round-off) the
process is error squaring and hence rapidly convergent if L(x) is
close enough to U(x) to being with.

In order for the procedure to continue to provide upper and
lower bounding curves to the solution it is necessary to assume that
the function f(x,y) regarded as a surface in 3-space is convex in
y for each x whenever (x,y) lies in the region R, determined by
x in [xq, x;] and y between L(x) and U(x).

One approximates f by a surface f; generated by tangent
lines parallel to the y,f plane on one side and he also approximates
f by a surface f2 generated by chords on the other side. He then
"solves' the linear differential equations

' s il
U} = 206, L)+ (%, L) (U] - L(x))

U(x)) - f(x, L(x))
U(x) - L(x)

L} = f(x,L(x) + % (Ly(x) - 1()

for Li(x) and Up(x), x in2 [XO’XI]'

Assuming now that 8—2 <0 in R1 and that Rl is not too
oy
large, it is shown (Chaplygin [19]) that the process is convergent.

The error squaring results from the fact that the two surfaces

£(x,y) =f(x,L(x)) +5a}—f (%, L(x))(y - L(x))

U(x)) - £(x, L(x))
U(x) - L(x)

£,0x,y) = £(x, L(x)) + % (v - L(x))

depart quadratically from f in the quantity y - L(x) . Just as in
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NewtOH'S root finding method the tangent lines depart quadratically
from the graph of the function.

Various more complicated sufficient conditions occur with
systems of more than one equation and of course computationally one
still has the problem of actually or approximately solving the linear
equations which arise at each stage of the iteration. Nevertheless,
+he method could conceivably be used to design a fairly general pro-
gram for automatically narrowing somewhat the interval solutions ob-
tained by the method of Moore [e5].

For other work on two sided approximations based on convexity
or on the local constancy of sign of various expressions in higher
derivatives, see: Piaggio [19], Gorn and Moore [ 53], Gorbunov and
Shakov [ 63].

1. 2 Picard iteration

A much more slowly convergent procedure for the iterative im-
provement of interval bounds but a simpler and more general one can
be based on successive substitutions in an equivalent system of integral
equations. This method amounts to aninterval version of the well-known
Picard iteration.

Suppose we obtain an interval vector solution Y(x) contain-
ing the exact vector solution y(x) to the differential system written
in vector form y' = f(x, y) for x in some interval [xg,x;], with
y(xo) =ygp. Then y(x) satisfies the equivalent vector integral
equation

X
v(x) =y, + f f(x', y(x"))dx' .
%0
Since y(x) is contained in Y(x), we will have
y(x) € Y(xo) + fxf(x',Y(x'))dx' if Vo € Y(XO) .
X
0

Consider the sequence of interval vector functions defined by

y(D(x) =Y¥(x)

X
v () =Y(x0)+ff(x',Y(”)(x'))dx .
X
0

ofi
We can see that if max Z l——| <K for xe [x.,x%,], v{x)e Y(x),
i Byj 0’71
then denoting the maximum width of the components of an interval
vector V by w{(V), we will have
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X
Gy < wivegn+ [ xw(y ™ ey axe

*0

w(Y

and

) max w(Y(n)(x')) .

w(Y ™ ) ¢ wixd %)) +K(x-x
x'e[xo,x]

0

Hence the sequence of interval functions Y(l),Y( 2), ... (each of
which contains the solution function f for x in [xg,x;]) will be a
nested sequence converging to the solution function provided that
K(x; -xo) <1, (again ignoring round-off). Notice that even in case
K(xl -Xg) <1, the iteration may not reduce the width w(Y( n)(x))

below w(Y( XO)) .

1-K(x- xo)
In order to make this procedure work computationally, it is of
course necessary to devise accurate means for evaluating the integrals
of interval functions which occur in each stage of the iteration. Such
techniques have been discussed in section 7 of Moore [ 65].

1.3 Dynamical systems and flows

Even with the possibility of iterative improvement of error
bounds over each interval of expansion by methods such as those
above, there is a source of growth of the widths of bounding intervals
which requires an examination of the nature of differential systems
and their solutions for its understanding and possible control.

An autonomous ¥ system of n first order differential equations
is also called a dynamical system. The equations define a vector
field on E,, euclidean n-space. If dy/dt =f(y) and f is a map-
ping of E, (or an open set in Ej) into E, then the system can be
though of as defining a motion or a "flow" of the points y of the
'"phase space''. A point Yo moves during time t; to a point y(tl,yo)
and from there during time t, to the point v(ty, v(t], vg)) =
vty +t,,v0).

In this way the flow in phase space can be viewed as a one
parameter continuous group (or a local group) of transformations of
the phase space. For each value of the parameter t in an open real

* "autonomous'' means f does not depend explicitly on t. This is
not an essential restriction since, of course, y{ = fi(t, Y eees ¥) s
(i=1,2,...,n) in E, is equivalent to the autonomous system

| . i= ! = .
v fi(yn+1’yl""’yn)’(l L, 2,ee,n), v =1 in E 1
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interval we have a transformation T(t) of the points vy, of the
phase space indicated by y =v(t,vg) = T(t)[ygl]l. Thus,
ot +t2) [v] = T [T(e2) [v]] -

On the other hand, for fixed y,, regarding v(t,yg) as a
mapping gf the space of the parameter t which we will take as the
real line” or an open interval, we can consider the image of the map-
ping to be the "orbit" of the point yg under group of transformations,
or the trajectory'' of a particle beginning at yqy or the stream line
of the flow through ygq.

If we determine by some approximation method that at t; the
point y(ty,vp) lies in the interval vector Y(tj},yg) then we have in
effect computed a rectangular region represented by the vector of in-
tervals Y(t},yg) which contains the point y(tj,yq). This rectan-
gular region, furthermore has sides parallel to the y; coordinate axes.

We will call such a region in E,, @ box. Thus a box is aset
of points y = (y],¥2,«++,¥p) in Ej consisting of the cartesian
product of n closed real intervals; i.e., a box is representable by
an ordered n-tuple of intervals Y = (Y],Y5,..., Y,), i.e.,an interval
yvector. A point y is in the box Y if yj lies in the interval Y, for
each i=1,2,...,n.

The procedure of successive expansions with interval error
pounding leads to boxes Yj,Y,,... such that y(t),yg) isin Y
for every yg in Ygq; y(tz, yl) is in Y, for every y] in Y;; etc.,
etc. Therefore, we will have y(tp +t},vp) contained in YZ;
y(tg +tp + 1, Yo) contained in Yj3; etc., etc.
¥ In the study of solutions of differential systems in the neighborhcod
of algebraic singular points of f an extension of the domain of the
variable t to the complex field, which is algebraically closed, is
exceedingly fruitful. For example, in the vast and beautiful compu-
tational study carried out at the Copenhagen Observatory on the restricted
three body problem by Stromgren [ 35], complex transformations were
used to continue analytically numerical solutions from collisions to
ejections. Besides, these complex transformations were useful in
improving accuracy even for near collisions. Inthese studies Stromgren
and his associates at the Copenhagen Observatory, over some decades,
found and graphed a very large number of complete families of periodic
solutions of fascinating and significant variety, without the benefit of
modern computing machines.

In the present paper, however, we will content ourselves with con-
cern for real systems with f analytic in regions of interest. The
equations for the restricted three body problem are regular except at
the two gravitationally attracting bodies acting on the small thirdbody
whose motion the equations describe. Thus, we do not exclude systems
such as the resticted three body equations,but only must confine our-
selves to regions which do not include singularities of f.
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On the other hand, under the flow itself a box Y is carried
after time t into the set of points

y(t,Y) = {y(t,p)lpeY)

which will in general not remain a box except for a few simple flows
such as rigid translations of the whole phase space in a fixed direc-
tion and spherically symmetrical expansion of the whole space about
the center of the box Y. Usually, a flow will rotate and distort a
box.

An example will help to make clear what the problem is.
Consider the system

"
<

dyl/dt
(1) .
dyZ/dt -,

Let T(t) be the transformation of the plane represented by the matrix

cos t sint
w75 )
-sint cos t
then we have
ylt,y,)) =T(t)y
and 0 0
v(t,Y) = {y(t,p)lpe ¥} = {T(t)plpe v} .

Figure 1 illustrates the 'rotated box" y(m/4, Yl)

le{
~—

Yy

Figure 1
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Clearly the smallest box (with sides parallel to the y;, vy, coordinate
axes) containing y(w/4,Y)]) is that indicated by the dotted rectangle
consisting of the interval vector

Y21 cos m/4 sin w/4 Yll

Y22 -sin /4 cos T/4 le

or
—
Yn/ﬁ +y) N2

-Yn/\/'z' + le/\/—z_

Supposing the intervals Yj; and Y}, are of equal width w, then the
widths of Y] and Y,, will be NVZw. If we should carry out the
expansion procedure at steps of w/4 (=.78...) in t with interval
bounding, we would have an increase in the widths of bounding boxes
amounting at least to multiplication by (V2) 8 =16 per revolution of
the solution.

By decreasing the steps to small At in this example the in-
crease in widths of bounding boxes after m steps will still be a
factor close to eMAt, per revolution, mat = 2m; e 2T s around 500.
Thus the trouble does not go away by using smaller steps between
expansions.

The program cited above, (SHARE [65]), actually repeated
expansions for the example above at intervals of about 0.54 in t
and widths of bounding intervals increased by a factor of about 500
per revolution.

In differential systems of higher dimension the growth of
bounding intervals due to this phenomenon can be still more pro-
nounced considering, for example, that the diagonal of the unit n-cube
has length Nn.

In the example (1) connected with figure 1, we know, of
course, that the solution curves are circles about the origin so that

by introduction of polar coordinates, the integral curves y% + y% =
const. are parametrized by a single variable 6 satisfying a single
first order equation d6/dt =1. An "integral' of a differential system

%{: f(y) in Bn is a non-constant real mapping of En, H, satisfying
dH | _ oH oH _
It lalong By f1+... + 3y f,=0.
solutions 1 n
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An integral H layers the phase space Ep into n-l1 dimen-
sional differentiable manifolds (locally "'diffeomorphic' to Ep.])
called integral manifolds or integral surfaces. If a point yg is on
one of these surfaces then the entire trajectory through yg lies on
the surface, that is H(y(t, ¥o)) =H(yp). Inthe dynamics of Systemg
of particles, etc., conservation laws (energy, angular momentum,
etc. ) appear as integrals of the differential equations of motion.
From the point of view that a dynamical system defines a flow in the
phase space, these integral surfaces can be thought of as ''stream
surfaces". If a suitable parametrization (coordinatization) of the
manifolds can be found, the dimension of the flow can be reduced ang
the source of growth of error bounds under discussion will, in princi-
ple, be diminshed.

T. M. Cherry [24], has shown for analytic differential systemg
how to obtain series representations (in powers of the components of
a point on the surface) locally for a complete set of n-1 integral
surfaces in the neighborhood of a given point in the phase space. By
intersecting these integral surfaces, i.e. by considering their de-
fining equations together as a "simultaneous' system of equations,
the motion of a point can be locally approximated (for some interval
in t) arbitrarily closely by solving a single first order differential
equation. An approach to the control of the growth of interval error
bounds could conceivably be based upon Cherry's local expansions
of integral surfaces, using, say, the first two terms in each expansion
to define a set of "integral coordinates', Various difficulties appear,
however, such as the inversion of non-linear transformations in E,
and the fitting together of successive local integral surfaces in such
8 way as to maintain a simple formalism (so that a tractable compu-
tational algorithm can be derived).

In celestial mechanics and in the study of satellite orbits and
space probe trajectories a great deal of success has been had con-
sidering the equations of motion as perturbations of the two-body
equations. The coefficients of the integral curves (conic sections)
of the two-body problem, for example, can be taken as coordinates
and differential equations for their time variation derived so that the
motion being studied (including, perhaps, effects of several attract-
ing bodies, ''oblateness'' of the earth, atmospheric ''"drag', etc.) is
approximated locally by solutions to the two body problem. Among
the many such choices of sets of variables used in this work, there
must be many which would result in smaller growth of interval error
bounds via the solution of their derived differential equations than
that resulting from direct use of the inertial cartesian coordinates.
Certainly the long, successful history of work on motions in the solar
system is filled with transformations of variables accomplishing a
great variety of objects.
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1.4 Local coordinate transformations

The idea we will investigate in the succeeding sections of this
paperis to seek algorithms whichcanbe carried out by the computerfor
producing time dependent transformations of coordinates y = T(t, z)
(so that at each t we have a local z coordinate system)for a given
differential system y' =f(y) using properties of the system at points
y) near a particular solution y(t, yg) suchthatthe derived differential
system

20 = (&) Lie(r(e, 20 - 55)

(or its autonomous equivalent in Eq4;) defines a flow z(t,yp,vy)
which tends to preserve small boxes (i.e. with y; close to v(t, vo))
in the z coordinate space. Thus we wish to have z(t,yO,Yl) re-
main close to a box for a small box Y] with center at yq. At any
rate if we apply the method of successive interval expansions in
Taylor series with interval remainder to the derived differential sys-
tem for z and the resulting interval bounds Z(t) in the moving z
coordinates grow slowly enough, then the resulting interval bounds
Y(t), (boxes), in the original y coordinates obtained by bounding
T(t, Z(t)) C Y(t) will have a reduced rate of growth compared to
those obtained directly from successive expansions with interval
remainder for the original differential system y' = f(y) .

We will consider the problem from a variety of related points
of view and derive various transformations mainly of the form

&k
y(t, yl) =y (¢, yo) + S(t, YO)Z(t, Yo yl)

where y*(t, yo) is a real approximation to y(t,yg) and S(t,yg)
is a non-singular real linear transformation. If we determine a box
valued function Z(t,yg,Y]) by interval solution, (Moore [65]), of
the derived differential system in z, using z(0,yq, Y;) =Y} -vq, (if
S(0,yg) =1, the identity transformation), such that

z(t, v, Y)) C 2(t, vy Y)
then by interval evaluation we can compute a box
Y(t,Y)) =v (t,yy)+ S(t, v,)2(t, Yo ¥y

such that y(t, yj) is in Y(t, Y;) for every Y] in Y; . Choosing
y*(tl, yg) for some t)>tg as anew yg we can continue the pro-
cess by determining a new y*(t, yg) and S(t, yg) to be used
during the next interval in t of expansion of z and then contin-
uing the interval solution of the z differential system with

Z(ty, yO’Yl) as the new initial z box for the next expansion. Thus
the form of the transformation from z to y will remain unchanged
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as t increases as will the form of the differential system for z at
each new expansion point tost1,t2, ... ; however we will have new
coefficients in the expressions for y*, S and in the differential
equation for z. Since we are in effect solving a new initial value
problem in z in each interval of expansion in t, and since the
final value of z in one t expansion interval becomes the initial
value of z in the next expansion interval, there will be no diffi-
culty concerning discontinuities in the Taylor coefficients, forthese
will always be computed interior to the expansion interval.

2. THE GEOMETRIC APPROACH OF N. S. HAWLEY

An approach suggested to the author by Newton Hawley is
motivated by geometrical concepts such as circles of curvature, in-
trinsic coordinates, etc.

2.1 The circle of curvature method.

Consider the dynamical system dy/dt = f(y) in E, again
and denote by yb the vector f(yg) and by vy the vector

2]
(d/dt)f(y)lyO =£ f(y)ly=y0 . We fix Y, and consider the curve

Y( t’ YO ) .

Suppose that Yy and y'o' are not collinear. (If y' and y"
are collinear over an interval of values of t along a trajectory
v(t, yO) for an analytic differential system, then the entire trajectory
lies on a straight line). Then yb and yy determine a plane through
Yo, the so-called ""osculating' plane to the trajectory vy(t, yo)
through Yo+ Using the notation (u,v) forthe inner product of two
vectors u, v, (u,v) = vyt ... tu vy, we can represent the so-called
""circle of curvature' to v(t, yg) at Yo as a circle in the yb, yb‘
plane with center at

"o
C,=y. . +p —
0 0 o(n n )1/2
00
and radius
1/2
1 1
. _(yo,yo)
0~ 1/2
(no,no)
where
(yl, vy
n_=y" 0’70 v,

20
1 1
0 0 (yo,yo) 0
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call v no
(0) =— ™ ———— e (0) = )
1 1/2 7 2 1/2

(nO’ nO)

thus el( 0), e,(0) are the unit tangent and normal vectors at ygq.
We can approximate the flow y(t,y}) for yj in the neighborhood of
yo by a uniform rotation y*(t, yl) of the phase space in the yb , y'o'
2-plane about cg.

We put

(20 ¥y 2oy + (v -cgre (0D e ()4 (v -cg e (0)e,(tre,

where

el(t) = (cos 6(t))e1(0)+ (sin 9(t))e2(0)

eZ(t) = (-sin G(t))e1(0)+(cos e(t))eZ(O)

e, = (yl-co)-(yl-co, el(O))eZ(O)—(yl-co,ez(O))eZ(O)
and

(vL,v! )1/2
o(t) =—20
Po

Choosing a z coordinate system carried along by the approxi-
mate flow y* , we can represent trajectory points y(t, y}) in the
original coordinates by

(3) y(t,yl) =co+zlel(t)+zze2(t) + z
with y(0,y}) =y, and
z,(0) = (yl-co,el(O)) » 2,00) =(y,-cp,e,(0))

and with

2(0) =e,, (2(1), e(t)=(z(1), e,(t) = 0.

Notice that in two dimensions E(t) = 0, since in that case e),e;
form a basis for the vector space E2.

We find that the derived differential system in the z co-
ordinates can be written, (where for brevity, the prime denotes
derivative with respect to t),
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- o . ' .
z -Bozz+(z,e2)90+(f(co+zlel+zze2+z), el)

1
1

" - _g! (o ' -
(4) z Gozl (z,e1)90+(f(c0+zlel+22e2+z),eZ)

S o= . 1 o ot - 1 1 .
z' = f(c0 + zlel + z,e, +2z) + (6022 zl)el (Gozl+zz)e‘2
The first two of these are_scalar equations and the third is an
nth order system for the vector z known to lie in the (n-2) space
defined by (Zz(t), el(t)) =(z(t),en(t)) =0 at each t. By 6}, we
mean, of course
’ ’ (v, yp/2
0! =
0

Po

We will illustrate this transformation by applying it to the
example (1) above which can also be written in the form

0 1
(n! v =< y .
-1 o

For definiteness we put Yo =( (l) ), then

1 "o 0
), yO_(-l).

vo =y
We have
(yb,y'(;) =0
0
n0=(_l)
Po =1
0
e)(0) =(;), e,(0) =( ), e;=0
0 0
Co=l )+ )=y =0
6(t) =t, 96=1
0
e = el(t)=cost(;)+sint(_l) = (-cs?rsltt)
ey =e,(t) == (sint)( ) +cost( 3y = (15T

y
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y(t,yl) = z8 + z,e, +z

yll
= = = 0) = -
v(0,y)) =y, (le)’ 21(0) Y1y Zz( ) V1o

z(t) =0
- _,0 1 cos t -sint, _,-z;sint-z,cost
f(c0+zle1+zze2+z) - (-1 0 ){zl( -sin tHZZ(- cos t)} = -z)cost+tz,sint
(f,el) ='229 (f)ez) =Zl

Therefore the system (4) becomes for the present example the
trivial system

In this case

zl(t) =21(0) =Yy

zz(t) =zz(0) ==Y,

for all t, and the flow is completely stopped in the z coordinates.
Thus, in this example, we obtain from (3) a representation
(of the solutions ot (1) ') of the form

cost) (-sint)_( cost sint)
sint’ Y - Y

v(t, yl) =y11(- 12'-cos t -sint cost'’l°

" The point here is not that we can solve the system (1)' for
this simple example but rather that the transformation from y to z
given by (3) can be applied to transform any differential system
dy/dt = f(y) into the form (4), (except at inflection points where
yb , y'd are collinear) with a resulting reduction at least of the gross
primary rotational motion of our bounding boxes.

For systems in which (2) is a good approximation to the flow,
some reduction in the growth of interval bounds can be expected
throughrepeated application of the transformation ( 3) at successive
points of expansion.
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2. 2 Intrinsic coordinates, the attached n-tuple of unit vectors.

Regarding the solution y(t, yo) passing through yg to the
system y' ={(y) with f analytic in a neighborhood of y(t, yo) for
each t under consideration as a curve in E, we can attach an
n-tuple of unit vectors e}, ey, ..., e, = ey(t) to the curve at each
point in such a way that ej is the unit tangent vector, ey 1is a unit
vector in the direction of the normal, e3 1is a unit vector in the di-
rection of the binormal, etc. These vectors can be found at a point y
on the curve by the Gram-Schmidt orthonormalization of the ordered

n-tuple of vectors (y',y", y™, ..., y'" ), sothat ej isinthedirection
1 1"
v', ez isinthe direction y"—-((-};,—’};'—))y‘, etc. Thevectors e), e,,..., eq
’

form an orthonormalbasis forthe phase space Ey. Putting ey, €000y €
asthecolumns of a matrix E(t), then E(t) becomes ( the represen-
tation of) an orthogonal transformation for each t and we can approx-
imate the flow of the dynamical system near y(t, Yo) by

(5) v (e, y) =y(t, y )+ B E 0Ny - v, )

Motivated by this approximation to the flow, we can define a trans-
formation to moving (local) z coordinates by

y(t, yl) =y(t, Vo) * E(t)E'l(O) z(t, yo,yl) .

At t =0 we will have z(0, Y0,Y]) =v] - yg and z will satisfy the
derived differential system

(6) 2 = B0 (0{Ey(, y )+ B E (0 2) - £y, y )
- BB (OE(E N 0) 2 .

The differentiability of the orthogonal matrix valued function E(t)
follows from the supposed analyticity of f along the particular
solution curve vy(t, Yo) -

In principle this transformation should serve very well, for
Y] near enough to Yo, to control the rotation in n-space of bounding
boxes in the local z coordinates. However, the computation of
E(t), E'(t) in practice requires further approximation and because
of the complexity of the dependence of E(t) on f the analysis in the
general case of the errors involved is apparently very complicated.

It is interesting to conjecture whether some use could be
made of the classification of orthogonal transformations given by
Kuiper [62]: [On p. 174]: "With suitable coordinates the matrix of
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an orthogonal endomorphism (of En) is

cos ¢ sin P

) ) for i=1,2,...,m and zeros in
-sin ¢ cos g

with o, = 1, -1, or (
all other places. '

2.3 Approximating linear systems.

An approach closely related to that just considered in section
2. 2 but which leads to more tractable expressions is to approximate
the flow satisfying a given dynamical system y' =f(y) in E, by
one satisfying a linear system with constant coefficients.

(7) (v¥)' =Ay* +b
with A and b to be chosen such that
" o _ 1
Yo = Ayo
m = "
Y Ayo

(n+l) _, (n)
vl
b yO Ayo

for then if we put "
v (0, yg) = Yo
we will have

* - ' 2 " n (I‘l) | n+l
vt y,) Ty ttyptt y0/2+... +tyy /nt+O(t)

Thus the approximate flow is made to agree in its Taylor expansionto terms

of order t" withthe flow defined by the given dynamical systemin Ep.
Denote by Yp the matrix whose columns are the vectors

Y0, Y0, --+»¥0," and by Yy the matrix whose columns are

Y0r Y0Qsees y8n+1) . Then Yj=AYp and we can determine A by

A =YhHY3' . The matrix Yo will be singular for example if the tra-

jectory y(t,yg) lies in a hyperplane of dimension less than n. If

the trajectory with analytic components does not lie in such a hyper-

plane then Yo will be*singular only at isolated points on the tra-

jectory. Denote by Y (t) the matrix whose columns are

y*' y*!" ., v¥(n) where y* is the solution to (7) with A:YE)Y(')I,

b =ypy - Ayg, and y (0,yq) = Yo - Paralleling the transformations

derived for "intrinsic coordinates' in section 2. 2 we define an

approximate flow by
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(8) (5 y)) = vl yg) + YO Y TN 0) (y, - v )

and we define a transformation to local coordinates by

(9) vty = vinyg) + Y (Y 02t vy v)) -

At t =0, we will have z(O,yo,yl) =y] - Yy and z will
satisfy the derived system

(10) 2 =Y (Y (vt y )+ ¥ (0¥ 0y 2) - £y, v )
®! %-]
-Y (0)Y (0)z .

It can be checked that if the given dynamical system was of
the form

(11) y' =By +c

for a constant matrix B and a constant vector c, then the derived
equation (10) for z reduces to the trivial system z' =0. It is
interesting, therefore, that (9) represents the ""general" solution
y(t,y)) of an nth order linear system (11) with constant coeffic-
ients as the sum of a particular solution y(t,yg) through the point
Yo Plus the time dependent linear transfarmation Y*(t)Y*'l( 0) act-
ing on y]-yg. Therepresentation will hold if the vectors y',y“,...,y(n)
are linearly independent.
We can obtain a more useful version of the transformation

with a slight modification by not requiring an exact particular solution
v(t,yg) but rather, since we only really used y(0 ,Y0) =Yoo
y(') , yb‘ yeees yon s y6n+l) we can just as well base the transformation
on the approximate particular solution

(n+1)
Yo
(n+l)!

n+l

* - 1
(12) y (6, y) =y vt + t .

We define YO, Yb just as before and denote by Y*(t) the
matrix whose colgmns are the successive derivatives of order
1,2,...,n of y (t,yo), namely

%
R S(nt])
* _ . _ N (j+l) 0 n+l-j
(13) Y (t) = : =Y, +y0 t+"'+——(n+l-]‘)!t

*
Ynj(t)
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and Y*'(t) is defined just as the derivative of Y*(t) .
Notice we can also write Y*(t) as

N Y*(n)

% * *!
Y(t)=Y(0)+tY (0) +... 4+t o

where the columns of Y*(j)( 0) are the derivatives evaluated at t =0
of order j+l, j+2,...,j+n of the approximate particular solution

. y(n+l)
& 0 n+l
—_ 1 m——————
y(t,yo) _y0+y0t+'“+(n+l)! t .

The kth column of Y*(J)(0) will be zeroif j +k >n +1,
The approximating flow then becomes

(14) Yty =y (G y )+ (Y ) (v -y ,)

0

And the transformation to the local z coordinates is
_ % sk L |
(15) vt y)) =y (t, y )+ Y (1)Y 77(0) 2(t, Yoo ¥y) -
As before we have z(0, Yo Yl) =Y)-Y0 and z now satisfies
* *-1 « % %*-1 %1
2' =Y (0)Y ) {H(y (£, y )+Y ()Y (0) 2)-y (t,y,)}
P FE .
-0 Y o) 2.
We will illustrate the application of the transformation (15) based on

an approximating linear system to the system describing the so-called
non-linear pendulum

(16) y'"+siny =0
or
sy .
dt 2
d
= - = = f(y) .
dy
—=Z - sin
at Y]
We will consider the initial point in the form Yo = ( w)

corresponding to starting the pendulum at the bottom of its swing with
angular velocity w # 0. We obtain from (16)
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oYy, "o- 0. w9
vo=lg)s vp =0 ) yvg=04)

Thus we obtain

* 0 w 1, 0,2 1,-w 3
Yy = () + (a5 e+ 270

2
* 0 1, - 2
Yy =) + (Dt 4500
and
— 0 [ 0 =W no_ "% 0
Yo'(o -w)’ YO_(-w o)’ Yo (0 0)
and
w t2 - 0

Yo =0 % e

We obtain for the transformation to z coordinates

wt - wt3/6 ) w-wt?/2  -wt 1/w 0
v(t, vy) = ) + z(t, v, vy)

w -th/Z - wt -w 0 -l/w
or
t-t3/6 1-t2/2 t
(17) yit,y,) =w + z(t,v.,v,)
1 1-t%/2 -t 1 071

And z(O,yO,yl) =Yy - Y, while z(t,yo, yl) satisfies

dz __1 1 -t 0
dt l+t2/2 t 1-t2/z cot+zl-sin(w(t-t3/6)+(l-t2/2)zl+tzz

dz) 3 2
(18) — = (sin(w(t-t7/6)+(1-t7/2)z +tz ) -wt - z.)
a2 12 1
dz 2
1-t7/2 . 3 2
= ——— (wt+z -sin(w(t-t"/6)+(1-t7/2)z,+tz_)
dt mz/2 1 1" 72

And, in fact, we have the interesting result that
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(1-t%/2) —dzl + t—d22 =0 or —dzz = —LZ - 1
N dt dt ~ dz t :

1

At each instant t the vector field defined by the differential
equation in z coordinates is unidirectional. If these vectors were
also of all the same magnitude at a given t then the z flow would
carry boxes into boxes by ''parallel translation' along the '"parallel"
trajectory curves. Of course, the magnitude of the vectors is not,in
fact, constant so that actually some distortion of z boxes will de-
velop as t increases. We recall that the particular transformation
(17) is only intended to be used over the interval in t of one
expansion of the 2z solution (18). At the end of this interval, say
at t), we evaluate y from (17) and taking y*(t;,v,) as anew
yo Wwe obtain a new y*(t, yg) from (12) . Then we get a new
Y* from (13) and a new =z transformation from (15) leading to a new
(18) which we solve by interval expansion taking the final z box
(at t =t)}) as the initial z box in the current interval expansion of
z. The procedure described in Moore [65] automatically selects the
t intervals over which a given expansion is to be used.

3. THE TRANSFORMATION OF E. FEHLBERG

Perhaps the first to consider a problem of the same general
type with which we are concerned in this paper was E. Fehlberg [ 58],
who obtained a solution to the following: given a differential equation
y' = f(x,y) and assuming one is going to use the Runge-Kutta for-
mula for its numerical solution,is there a transformation y =y(z,t)
such that the same numerical procedure applied instead to the derived
differential equation for z will lead to improved numerical results
in the original variable y?

The similarity between Fehlberg's problem and ours is that
they are both special cases of the following very general problem:
given a mathematical problem P of type T and a general numerical
algorithm A for computing approximate solutions S(P) to all prob-
lems of type T, and given a criterion C for comparing numerical
solutions with respect to an ordering O, is there a general transfor-
mation of variables V such that if P is phrased in a set of vari-
ables y, then V(y) defines a new set of variables with respect to
which the problem P is transformed into a mathematically equivalent
problem, symbolically V[P], also of type T and such that the same
algorithm A produces a better (or a best?) numerical solution
S(V[P]) in the sense of the criterion C? Schematically:
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A:T—=3S

PeT | IS(P)I

C:S—+v

V:T—T [ C(8(P)) < C(S(V[P]))?]

CcC:S—-0

A:T—=S

V[P] ¢ T — [ s(v[P]) ]

Figure 2

Fehlberg [ 58], proved the following: the transformation (in
a notation close to the original)

= 1 ] 2 _éi -
(19) y—2+y0t+yo/2t +(ay)0t(z yo)

leads from y' ={(t,y) to the following derived differential equation
for z

9f, -1 2, of of
2=+ G0t {f(tzy ety 2t gl )=ty +52) 0 (2-y )

whose numerical solution by the Runge-Kutta procedure after transfor-
mation back to y results in raising the order of the local truncation
9z'(t, z),

5z o~ 0 -

The effect in our case of the transformation (19) will be made
clear later when it will appear as a simplification of a deeper and
more complicated transformation which we will discuss in section 4
below.

Taken together, a computational algorithm A" and a transfor-
mation of variables V constitute, in effect, another computational
algorithm A'(A,V). This is the point of view taken by Fehlberg in
extensions of the above mentioned result, Fehlberg [ 63, 64], in which
he combines, for example, the transformation

z =y - -t
j=1 ¢

error by two and also has the property that (

i
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for an nth order system y' =f(t,y) with two Runge-Kutta formulas
and derives combined transformation-Runge-Kutta algorithms whose
local truncation errors are of order m + 4 and m + 5, respectively.

Various other formulas effectively combining algorithms and
transformations have been derived; for example: Pope [ 63], Dennis
[60], Brock and Murray [ 52], Blanch[52].

4. ALOCALTRANSFORMATIONBASEDON THE CONNECTION MATRIX

During the computation of a numerical solution corresponding
to a particular initial point it is not enough to know the behavior of
the system just along the particular exact solution. For as soon as
any approximation is made and a computed point falls somewhere off
the exact solution curve, then we need to know values of the functions
occurring in the differential system and, for an error analysis, the
behavior of the vector field in a tube surrounding the exact particular
solution curve. Even more so,in the problem of the present paper,is
the nature of the flow in an entire tube of concern, since this is the
very form of our interval vector- or box - valued solutions.

Representing as before, the flow defined by a system y'=£(y),
analytic in a region E, containing an open set about yg, by v(t,V),
we denote by C(t, yo) the matrix

ay(t, V)
C(t R r~—iaanal
(t,yg) == Iy:yo’
with components ayi(t, .37)'
C..(t,y,) =———|= _ .

ij 0 ayj Y =Y,

We can approximate the flow by
%

(20) y (ty)) =y(t,y ) + C(t, yo)(y1 - ¥y

sk
and y will be a good approximation for ” Y] =Yg " small, since for
t in a finite closed interval we will have

2
2 = y¥ -
(21) y(t,y) =y*(t,yp+otlly -y 19 .
We will call C(t,yqg), the connection matrix for the solution

curve y(t,yg).
Denote the Jacobian matrix of f along a y(t, Yo) by

_ofly)
It vo) oy ly =y(t,yy) .
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For small enough t and small enough Il Yy- Yoﬂ the flow y(t,vy;)
will satisfy

o av(LY)) |8 oy(r,7
ot oy oy ot

and we will have

8C(t, v,) 2 L), 005 NI
ot 8y ' ot Y=y, oy Y=Y,
But
S af(y(t, V) _ = =
_T?_'](t)y(t,Y))C(ty}’)
so we have
BC(t,yo)
(22) m =I(t,Y(t,y0))C(t,y0)

Since y( is fixed we can shorten the notation to
dc _ -

(23) AR

From the Taylor expansion

- — —_ 2
y(t,¥) =y +f(y)t+0O(t") ,

we find that at t = 0, C is the identity matrix, C(0) =1.

Motivated by the approximation y* given by (20) to the

flow y(t,y]) we define a local transformation of coordinates based
on the connection matrix

(24) y(ty) =yt yg) +Clt yp)z(t, v, v))
Since C(0, yO) =1, we have
(25) z( 0, Yo ¥y = vyt Y,

The derived differential system for z (using (23), is

(26)  2'= C(0TH{ily(t, v, 4C(1)2) -Ely(t, y )-T(1)C(1) 2} .

\ 8
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Since C(t) =1+ tJ(0) + O(t%), C(t) will be non-singular

for small enough t.
Because of (21), we have

(27) 2(t,y g, v)) =y, - v, + O “yl—yoﬂz)

for t in a finite closed interval [0,T] for some T > 0.
Thus given a y-box B of width w(B) centered at 0, we will
have, for te [ 0, T], theresult thattheflow in z coordinates satisfies

(28) 2(t, ¥ ¥y +B) =B + O(w(B) * .

Therefore for a box B of small width the local transformation
(24) is such that in the z coordinates the box tends to remain
stationary in time. We will now discuss a computational algorithm
based on the transformation (24). We will replace (24) by a more
tractable version of the same thing

* *
(29) vt y)) =y (t, v) +C (1, yo)Z(t,yo,yl)
with y* and C" chosen to approximate vy(t, vo) and C(t,yq) by
a computationally feasible set of formulas, in a fashion similar to

that in section 2. 3 above.

4.1 Computation of the connection matrix.

The differential system (22) for C is of order n2. For
i,j=1,2,...,n, we have

dc..

1)

dt

T (D Gy -

=

1

Rather than compute a truncated series expansion for each
Cij » we will base our approximating connection C* on a special

form of the solution C(t) to (22) with C(0) =1.
We claim that

C(t) = li%rgn Cn(t)
where

n
(30) C (0 =T {I+7(t (e )}

- t .
=i n+l-i n-i

and
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0=t <t. <t_<...<t =t

0 1 2 n
¥ =
. max (ti-ti_l)"O as n—= © ,
i=1l,2,...,n
We have
an(t)
I C 00

Therefore as n ~© we obtain (22) if 1§‘m Cn(t) exists. It does,

providing t is not too large, for thenthe Cauchy-Euler polygonal

approximations converge. The product (30) is equivalent to appli-
cation of Euler's method to (22) since

C (1) =C t ) +Tt e Lt p-t )

={T+7(e _Nt-t D} C

t .
n-1 n-l)

Motivated by the representation (30), we define y*, c* as
follows. Denote by

= < < <... < < ...
t0 0 tl tZ tm

the successive values of t which are going to occur as the places
where an expansion of z in Taylor series with interval remainder
will be carried out (by the computer, see Introduction above).

Choose a positive integer k (for example, choose k =d for
a machine arithmetic equivalent to about d decimal place arithmetic,
see Moore [65]), and define y*(t,yg) by y*(0,yg) =yg and

(3)

k
y .

F m-1 J

- ERUNC RV <t<

(31) y (t,yo) j?-JO 31 (t tm_l) for tSt t
and set

ym= 13.1—1':11: Y (t,y0)=y (tm7yo) .

m

te [tm_l, tm)

Define C*(t,yo) by
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% *
(32) Ciltyyy) ={I+J(t vy Mt-t  )C (t 1Yo
or
x F
C(t,y,) = {I+]m_l(t-tm_l)}cm_l fort <t<t .

Recall that C¥(0,y,) =C*(tg,yy) =1. The definition is self-con-

sistent since at t =t _;, we have

%

* x
C (tm_17y0)‘(1+0)c (tm-l’ yo)—c (tm-l’yo)

Notice that with the choices indicated by (31) for y* and
by (32) for C¥*, the local transformation (29) can be written for

te [ty 1>tym] as
MENS)

(hyo=d Bl Yy ier ot s

ih Yy ST m-1 m-1'"""'m-1" “m-1% *
Compare this to the transformation (19) of Fehlberg given in section 3
above which we can rewrite for t e [tm-l’ tm] in the form
2 )
(t,yp= 2 Tmli PH{I+]_ (t-t_ Nlz-y_
yit,y) _ij j! m-1 “m-1 m-1 Ym-1*

Thus, Fehlberg's transformation (19) appears similar to out transfor-
mation (29), putting k = 2 in our expression for y* (eq. 31)), and
replacing C(t,yy) by I+ 7Ty j(t-t,_)) in each interval te [tm_l,tm].
In virtue of eq. (22), I+ Im_l(t -tm-1) Wwill be close to C{t, Yo)

only for very small t.

4.2 A computational version of the transformation.

Using the definitions (31), (32), we have a computationally
feasible local transformation between y and z coordinates of the
form given in (29) above.

From (32), we have

*
dc (t, yo)

= i <t< .
o ] C in t tm

m-1"m-1 tm—l—
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The derived differential equation for z is similar to (26), namely:

(330 2'=(CT (v HE (5 v +C (4 v ) v Ly )T CF )

i <t< - .
Int  St<t and at t (see eq. (31) above)

From (31), we have

ym-l

%! _ v j-1
vt y,) -j:,l Gt ot

, for te [tm_l,t' ].

m-1 m

This, then, is the system of differential equations which we
would submit to our interval expansion program for a Taylor series
development (at t,,_ ) about the initial box Zy,-1) with interval
error bounding. We have already supposed above that the program
itself is going to determine t;,, by the procedures described by
Moore [65]. Thus for each t in tp_;<t<ty abox Z(t) will be
defined containing the solutions to (33)through Zp, .1 and, inparticular,
thebox Zm =Z(ty) will be computed explicitly, enabling the proce-
dure to be continued to the next interval of expansion [tm, tm+1] -

The only essential matters left unsettled concerning the de-
tails of the proposed computational procedure are: (1) the inversion
of the matrix C*(t, vo) and (2) the computation of the matrix

7 = )
oy

We will take care of the second of these two matters by
supposing for now that either a program is provided for evaluating J
along with the one for evaluating f by the "user" of our procedure,
or else, that a modification of the Taylor coefficient recursion scheme
in Moore [ 65] will enable the computer to compile a program for J,
given one for f. .

Regarding the inversion of Cs'(t, Yo), we note that (from (32))

* ES
C (t, yo)={1+]m_1(t-tm_l)}cm_l for t int ,<t<t .,

and therefore

%
dC *
— = 1 <
T (byy)=J C | int  <t<t .,
e dc*
'—j(t,Y0)=0 (i >2)

dt
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in particular

) * *x
:-fggt_“’yo) . Tm-1Cma1
If we rewrite (33) in the form
(35) c¥z =F = f(y*+c*z)-y*'-1m_lc:_lz
then
S e
or
(36) C;-lz:;}l:Fr(rj:ll)- (3-1) ]m-lc;-lzx(nj-ll) .

Therefore by using (35) we only need to invert C;_l in order to
carry out the first k terms in the expansion of z at tm-1+- Note
that the derivatives of C*(t , Yg) needed in the determination of
Félj_’ll) can be computed easily using (34). For the computation of
the remainder term over a region ([tp.], tm],B) we need to invert
the interval matrix

ES E3
C ( [tm_1! tm]7 yo) = {I+]m-l([tm-l’ tm] -tm_l)} Cm_l
s
- {I+Im-l[ 0.t - tm-ll} Cmo1
_1)-1 by carrying out

We can obtain the required inverse using (Cm
the operations indicated in the expression

il bt vy =(Cp I 10, et )]

as an alternative to multiplying the factors first and then inverting.

Replacing t,-1in (36) by the interval argument [tm-1rtm]
and zpy_.] by abox B we can recursively determine the remainder
term for the z expansion by interval computation.

The inversion of the matrices C;’;l_l occuring at points of
expansion of z can be accomplished with rigorous error bounding by
the computer using, for example, a method recently developed by
Eldon Hansen, a brief description of which is given in an appendix
to this paper. The method is of considerable importance and utility
in its own right and will be discussed more fully elsewhere along
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with related techniques for other matrix problems such as eigenvalues,
eigenvectors, etc.

Since not even the polynomial and matrix computations can be
carried out exactly by the computer due to the finite precision of
machine arithmetic we are forced to slightly increase the initial z-
box, Z(tm*) to be used in the interval of expansion [tp, tm+1] over
the final z-box, Z(t;y ) obtained in [ty_],t;m]. Using interval arith-
metic, we compute Z(tr;) = (C;f1 )'”(C}‘E‘)Z(t;n) + Ep} where C”n‘;
is a matrix with interval elements obtained by evaluating (32) at
t =ty in interval arithmetic, and C% is a matrix with real elements
(machine numbers) obtained by evaluating (32) at t =ty in ordinary
machine 3?rithrnetic, and Ep 1is an interval vector obtained by eval-
uating y (tp), using (31), in interval arithmetic and subtracting the
vector, y*(t%), of mid points of y*(t,‘n) computed in machine arith-
metic. So Ep = y*(tg)-vy*(t}) and if

[a;,b] l/2(a) + b))
[a,b,] l/2(a, +b,)

(a b ] 1/2(a_+b )

* - * o+
y (t )= , then y (t ) =

v e

with the averages in y*(t;) carried out in machine (i.e. non-inter-
val) arithmetic.

An important and delicate question now remains. If the
successive t values tg <t} <tp...<tp<... atwhich z expan-
sions are carried out get far enough apart then (32) may give too
crude an approximation to C(t, yo) for (29) to do any good in keep-
ing bounds narrow. In this case we could go back to (22) and
devise a more accurate approximation to C(t, yg). However, this
would almost certainly complicate the resulting differential system
for z; so that somewhere in this direction there is a point of dim-
inishing return.

By reducing the number of terms used in the Taylor expansions,
the spacing between successive expansions will decrease (by the
computer's choice, based on keeping the local truncation error small),
and (32) becomes better. However, at the same time the number of
steps to reach a given t value increases and eventually the interval
bounds will get wider as tj - tj_] decreases since we are alsokeep-
ing track of accumulated round-off error.

The proper balance can perhaps be expressed in terms of a
procedure for: (1) choosing the number of terms carried in the y*
series (see eq. (31)), (2) the number of terms to be used in the
z series and (3) allowing the successive points of expansion to



Ramon E. Moore ) 133

depend on an estimate of the error in C* as well as on the z series
remainder.

Computational experience with such a plan will enable various
details involved to be fixed in a reasonable manner.

By a straightforward though tedious a priori analysis it can be
shown that the transformation (29), as it would be applied by a com-
puter program using the methods described in this section to the
example eq. (1), connected with figure 1 in section 1 at successive
points 0, At, 2At,...,mAt,... with At <1 would lead to a growth

in the widths of the bounding interval boxes Y(At, yg), ..., Y(mAt, yg),...
satisfying
A
2(1-Est) mat
w(Y(mAt),yO))5(1+At)e w(Y(At, yo))

and therefore the factor of increase per revolution, mAt = 2m, can be
made nearly as small as (1+(1+m)At). Even for At as large asl/4
the factor should be less than 3. 6 per revolution. Compare this with
the factor of 500 mentioned in section 1.

A computer program based on the transformation techniques
developed in this paper is being prepared for the CDC 3600 at the
University of Wisconsin.

4.3 Application of the transformation to Euler's method.

In section 3 above we mentioned that a transformation and an
algorithm can be put together into a combined algorithm.

If z' =g(t,z) then Euler's method given Zm4] 3S a@n approx-
imation to z at tpy] by

37 = - .

(37) mtl ~ Zm + (tm+1 tm)g(tm’ zm)

Consider the system y' = f(y) and apply Euler's method to
the transformed equation (33) using (29). We obtain

(38) z =z +(t t )C*'l{f *icF *! *
m+l ~ “m m+l  m’ “m (ym+ mzm) Vm -]mcmzm}
and
(39) (t ) =y (t c*
Yl ¥y =Y ( m+1’ y0)+ m+1%m+l

Using (32), and ( 38), we get
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.
CF 12y = (14T (£ -t )}{C}

* * %1 *
- - -] CT z
+ (tm+l tm)(f(ym+cmzm) m Im m m)}
For example, if tm =0, th1=t, 20 =Y1-Y0 then from (39)
( since C =1 and y0 =ygp) we have an approximation to y(t, v))
of the form

Y(t,y) = v¥(t, o) + T+ T {ly -vy) + t(fy))- vo-Toly, -y )}

or putting y*(t, yo) = yO + tf(yo), we have

(40) Y(t, yl)—y0+tf(y0)+(1+ t){y1 y0+t(f(yl) f(y0 a (yl y ))}

The formula (40) gives an approximation to the solution to
y' =f(y) for small t for any initial value Y] near yg. Similar
formulas can, of course, be derived by combining other algorithms
for numerical solution of differential equations with the transformation
(29).

5. CONCLUSIONS

We have arrived in section 4 (esp. 4. 2) at a transformation
procedure with the property sought (28). Roughly, the procedure
amounts to carrying along a simultaneous approximate complete set
of solutions of the 'variational' equations (22), ( 32), together with
an approximate solution y*(t, yo) of a particular initial value pro-
blem and at the same time using these to define moving coordinates
z with respect to which a derived set (33) of differential equations
is solved in the transformed variables. This final set (33), is in-
tended to be solved with rigorous automatic error bounding by methods
previously developed (Moore [ 65]). The computations of y* and
C* do not require error analysis since they are only used to set up
a local coordinate system.

Of course, the transformation (29) of interval solutions in
z variables back to intervals in y variables must be carried out by
interval methods (or in some way with error bounding) in order forthe
y intervals to be guaranteed to contain the exact solution to a given
initial value problem.

The entire computational procedure outlined can be carried
out by a computer and constitutes a general scheme for narrowing the
width of interval bounds produced by the computer.
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The extent to which the scheme is effective in reducing error
pounds in practice and the relative cost in computer time of doing
this can most easily be determined by actual trials on the computer,
and will depend to some extent on the way in which a number of de-
tails are arranged.

A useful by-product of the procedure based on the connection
matrix in many practical applications is the estimate given by the
coefficients of the matrix C* of the sensitivity of a solution with
respect to small changes in initial conditions. Recall that, by
definition,

ayi(t, o)

a(yo)j

Cij(t, yO) =
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APPENDIX

Abstract of “On Interval Arithmetic in Matrix Computations, Part I”
Eldon Hansen

This abstract is from the first in a series of papers on matrix
computations using interval arithmetic to appear in J. S.I. A. M,, serieg
B, Numerical Analysis. Only matrix inversion is discussed. How-
ever, necessary preliminaries are included for the discussion of de-
terminant evaluation, the solution of linear algebraic equations, and
the matrix eigenvalue problem. These topics will be considered in
later papers in the series.

Let Al be a matrix whose elements are interval numbers. We
wish to find the set

(AI)'1={A’1: Ae AI, I

=1} .
The notation A e AI indicates that each element of the (non-interval)
matrix A is contained in the corresponding interval element of Al ,
One can attempt to compute (AI) -1 by using an ordinary
method for matrix inversion but perform the arithmetic operations in
interval arithmetic, It is shown that, for a general interval matrix
Al such a method suffers from an inherent loss of accuracy.
The method proposed in this paper is longer than such a
straightforward approach but, in a sense, minimizes the inherent
error. The method is as follows:

Let AC € AI. Using ordinary arithmetic, compute an approxi-
mate inverse B for Ac . In interval arithmetic, compute AR and
(AIB)‘l. Since AIB =1 - El where the interval elements of El are
"small', it is, in general, possible to express (AIB) -l in the form
I+El+ (EI) i, . Hence, one can obtain (AIB) -1 by truncating
this series (and bounding the resulting error). Alternatively, we can
invert AlB~ directly in interval arithmetic. As a final step, (A%) ™" is
obtained as B(AIB)'I.

As an example, the Hilbert segment of order 3 is represented
in interval form as
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Ramon

1 .5 X
AI= .5 X .25
X .25 .2

where X denotes the interval [.33333 33333, .33333 33334]. Di-
rect inversion in interval arithmetic using infinite precision yields
only obout seven correct decimal digits in the computed interval
elements of (AI) -1, However, the above method yields about fifteen
correct digits.
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