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RAMON E. MOORE

The Automatic Analysis and
Control of Error in Digital
Computation Based on the Use
of Interval Numbers

1. Introduction

A digital computation is a finite sequence of inexact arithmetic
operations.

In order to approximate quantities defined by finite or infinite
sequences of exact arithmetic operations, approximation schemes are
designed in the form of digital computations containing a number of
""approximation parameters' such as: the number of digits to be
carried in limited precision arithmetic, the number of terms to be
carried in a truncated infinite series, the ''step size'' to be used in a
discretization approximation to an integration, the number of iterations
in an iterative process, etc.

Each choice of a set of values for the approximation parameters
will give a definite digital computation leading to results with certain
errors.

The analysis and control of error in digital computation involves
choosing a set of parameter values which lead to results with tolerable
errors. There are usually infinitely many sets of such choices and we
further require that the total elapse of time during the execution of the
computation be about as small as possible. Of course, there are
usually constraints on the choice of parameter values such as limited
storage space in the computer.

If we can mechanize the determination of appropriate approxi-
mation parameter values, then we can take fuller advantage of the
great speed of automatic digital computers [13], [14],[20],[23]. Our
approach to a solution of this problem is to start with the things we
know a computer can do.

In section 2, a brief examination of the nature of digital com-
putation leads to the concept of 'interval numbers'. This is essen-
tially the same concept that is used in experimental scientific work
in representing a quantity known only within a certain accuracy inthe
form x+e .

61



62 The Automatic Analysis and Control of Error

In sections 2 and 3, arithmetic operations with interval num-
bers are discussed and it is seen that 'rounded' interval arithmetic
is a means for the automatic determination of upper bounds to the
accumulated round-off error in any digital computation.

In section 4, a convergence theorem is proved providing for
the computation of intervals containing and arbitrarily close to the
exact range of values of real rational functions on finite intervals.

In section 5, some iterative computations with intervals are
shown to produce sequences of intervals contracting to roots of
algebraic equations.

In section 6, continuity is defined for interval functions and
a geometric picture of the set of interval numbers is given.

In section 7, a convergence theorem is proved providing for
the computation of intervals of arbitrarily small width containing the
exact value of a definite integral. A more general theorem is then
proved in which the order of convergence can be chosen arbitrarily.
An interval version of Gaussian quadrature is also presented.

Our main result, presented in sections 8-11, is the application
of interval computation to the design of a computer program [ 24] for
the initial value problem in ordinary differential equations. In carry-
ing through this application in detail, some additional new techniques
are presented including a practical procedure for the recursive gen-
eration of Taylor coefficients.

The resulting program automatically determines all required
approximation parameter values except '"word length'.

Given only a system of differential equations and initial con-
ditions, the program produceés intervals containing exact solution
values at any value of the independent variable within a certain dis-
tance of the nearest singular point or until, for whatever reason,
numbers occur in the computation exceeding the range of machine
representable numbers for a given word length. Numerical results
are given illustrating '"'single' and ''double'' precision floating point
versions which have been coded.

2. Interval Numbers

The first thing we want is a means by which the computer can
say how far off the results of its limited precision arithmetic opera-
tions can be. The answer to such a question can have two forms
each consisting of a pair of machine numbers: (1) an approximate
result and an error bound, (2) a lower and an upper bound to the
exact result.

In either case, the answer has the form of an interval which
contains the exact result, [x-¢, x+¢] or [a, b] where x,¢, a, b
are numbers computed by the machine.
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In order to enable the computer to bound the accumulation of
error, if we wish, say, the computer to determine the sum of two
numbers y,,y, where it is only known that y, e [a,, b;] and y, ¢
[a:,b;], then the best we could do would be to have the computer
determine that

yl+y2e [al+a2, bl+b2] .

Actually, since the computer cannot even determine a, +a;, or

b, +b; exactly, in general, we may have to further adjust the last
digit of one or both end points of the machine values for a, +a;,b,+b,.
The details of how this is done will depend on the arithmetic operations
in a particular computer. If an unrounded single precision result is
computed, for example, with a true remainder, of the same sign as

the result, available for testing, then we would round positive right
ends and negative left ends of intervals away from zero, but not round
positive left ends or negative right ends or any end points for which

a zero remainder was obtained.

In any case, with the rounding procedures dependent on the
detail of the arithmetic used on a particular computer, machine prog-
rams can be written which produce an interval K containing the re-
sults of an exact arithmetic operation on any pair of numbers one from
an interval I and one from an interval J, the end points of all these
intervals being numbers representable on the computer. A number of
such programs have, in fact, been written, [1],[4],[10], [12],[20],...

Now, each finite sequence of arithmetic operations in a com-
puter program defines a rational function, whose values are computed
by executing that part of the program.

We wish to enable the computer to bound the range of values of
any rational function over given ranges of values for its arguments.

In particular, this will enable us to bound programmed expressions for
remainder terms in the truncation of infinite processes. A remainder
term may be an expression involving a variable £, for example,

which is only known to lie within a certain invertal a < £ <b. There-
fore, even leaving rounding errors aside, we still wish to be able to
bound the results of arithmetic operations on quantities known only to
lie within certain intervals.

Thus, the actual processes of digital computation lead in a
natural way to the consideration of an arithmetic system which operates
with intervals of real numbers. The idea of computation with interval
numbers (or "range' numbers), especially in connection with com-
puters, has been entertained recently by a number of authors, [1],[4],
[e], [7],[8],[10],[12],[20],[23],[24],[32],-.-

Of course, in a more general setting, mathematicians have for
some time been dealing with set-valued functions and commonly use
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such notation as f(A) to represent the set of values of f(x) for
x ¢ A, or the "image of A under f''. Interval valued functions and
functions of intervals in particular have been considered, [2], [3],
[21], [22], [23], [27], [28]. Set-valued algebras have also been
considered, [33].

One of the essential features of intervals in connection with
computing is that they are represented by finite sets of numbers, in
fact by pairs of numbers.

3. Interval Arithmetic

In this section we will define an arithmetic system operating
with intervals of real numbers and we will study some of the proper-
ties of that arithmetic.

If * is one of the symbols +, -, *,+, and [a,b] , [c,d]
are closed intervals of real numbers, then the arithmetic operations
on interval numbers are defined by

(3.1) [a,b] * [c,d] = {x*yla<x<b, c<y<d},
except that we define

[a,b] = [c,d]
only in case 0¢ [c, d] .

Since the real arithmetic operations are continuous, they map
the compact connected sets [a,Db] ® [c,d], ( ® denotes the
Cartesian product), onto compact connected sets, i.e., closed real
intervals. In fact, we have the formulas
(3.2) [a,b] +[c,d] =[a+c,b+d]

[aDb] - [c,d] = [a-d, b-c]

[a,b] * [c,d] = [min(ac, ad, be, bd), max( ac, ad, bc, bd)]
and if 0¢ [c,d], then

[a,b] = [c, d] = [a,b] - [V/d4, l/c] .

In the case of interval multiplication, by examining the signs
of a, b, c, d only two multiplications need be carried out to deter-
mine [a,b] + [c,d] except inthe case a<0<b, c< 0 < d where

[ab] * [c,d] =[min (ad, bc), max( ac,bd)] .
It follows immediately from (3.1), identifying each degenerate
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interval of the form [a,a] with the real number a, that interval
arithmetic with degenerate intervals reduces to ordinary real arith-
metic. We make this identification henceforth and treat real arith-
metic as a subsystem of interval arithmetic.

Associativity and commutativity with respect to addition and
multiplication of intervals follows directly from the definition (3.1).
In other words, if 1,],K are intervals, then the following relations
hold:

I+ (J+K) = (I+]) +K
I' (J'K) =(I-]) - K
I+7=7+1
I-J7=7-1.

The real numbers 0, 1 serve as identities in interval addition
and interval multiplication, respectively:

0+I=I1+4+0=1
1+ I=I+1=1,

Inverses do not exist in general. In fact, [a, b] - [c,d]
[a-d, b-c] =0 implies a=d and b =c. Since a<b and ¢
this means that [a,b] - [c,d] =0 ifandonlyif a=b=c =d.
Similarly [a,b] - [c,d] =1 if andonly if a =b =¢-! = 4-},

Thus the only intervals having additive or multiplicative in-
verses are the real numbers themselves.

The distributive law fails, since [1,2] * (1-1) = [1,2]-0=0
whereas [1,2] » 1+ [1,2] - (-1) =[], 2] +[-2,-1] =[-1,1]#0 .

Nevertheless, we do have the following law for any intervals
I, J,K:

fA u

d,

(3.3) I'(J+K) CcI-J+1-K

that is, the interval I+ (J+K) is included as a set in the interval
I-J+1I. K. This interesting relation, which might be called
subdistributivity, follows easily from the definition (3.1).

A simple characterization of special cases in which equality
holds in (3, 3) has not been found, however the following cases are
useful.

If t is areal number, then t - (J+K) =t - J+t- K.

If J» K>0 (thatis, if xe J- K implies x > 0), then
I (J+K) =1-J+1° K. We omit the easy proofs of these relations.

Besides (3. 3) the arithmetic operations on intervals satisfy
further inclusion relations which follow from the definition (3.1) :
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If IcK and JC L, then

(3.4) I+JCcK+L
I-JcK-1
I-JcK-L

I-Jck+L, (0¢1).

We describe this set of relations by saying that the arithmetic opera-
tions on intervals are inclusion monotonic.

The set of relations (3.4) has the important consequence that
if F(X,,Xz,... Xy) is arational expression in the interval variables
X, ,X2,... Xp, i.e. afinite combination of X,,... X, and a finite
set of constant intervals with interval arithmetic operations, then

XrcX

1 1
1CX), Xy CXy, ey XD CX

implies

Xn)

(3.5) F(X], XY, e, X!) CRIX, K, e

In particular, in the case that Xj,X%,... ,X;l are real num-
bers and the constants in the expression for F are real numbers, then
the value of F(X},X';,...,X}) will be a real number contained in
the interval F(X, ,X;,...,X,), which can be computed by a finite
number of interval arithmetic operations.

Therefore we can bound the range of values of a real rational
function over intervals of values for each of its arguments by evaluat-
ing a rational expression in interval arithmetic.

Furthermore, the result (3.5) implies that a digital computa-
tion carried out in '"rounded" interval arithmetic (in which the machine
computed end-points in the expressions in (3. 2) are rounded accord-
ing to the procedures discussed in section 2 above on interval num-
bers) produces intervals which contain the exact (or "infinite pre-
cision") results of the corresponding real arithmetic computation.

Rounded interval arithmetic is therefore, in particular, a means
for the automatic determination of an upper bound to the accumulated
round-off error in any digital computation.

4, Interval-valued Functions

Rational expressions which are equivalent in real arithmetic
are not necessarily equivalent in interval arithmetic. 2

For example, consider the polynomial p(x) =x - x .

If we evaluate the expression P;(X) =X - X+ X usinginterval
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arithmetic with X = [0,1] we obtain
Pl([oy-l]) = [0,1]-[0,1] * [O’ 1] =[0,1] '[0’1] =['1:l] .

Alternatively, if we evaluate the expression P, (X) =X * (1-X) using
interval arithmetic with X = [0,1] we obtain

PZ([O’IJ) =[0’1] * (1'[0,1]) =[071] : [0,1] :[0}1] .

Still again, if we evaluate P;3(X) =1/4 - (X-1/2)+ (X-1/2) in inter-
val arithmetic with X =[0,1] we obtain

PA[0,1]) =1/4 - [-1/2,1/2] - [-1/2, 1/2]
=1/4 - [-1/4,1/4] = [0, 1/2] .

Of course all the expressions are equivalent in real arithmetic so that
for x a real number we have

pP(x) =x - x2 =x(1-x) =1/4 - (x - 1/2)2

The actual range of values of p(x) for x in the interval [0,1] is
[0,1/4] and we note that this interval, [0,1/4], is, in fact, con-
tained in each of the intervals P, ([0,1]), P, ([0,1]), P5([0,1])
computed by interval arithmetic.

These three intervals are unequal on account of the failure of
the distributive law.

The fact that none of them gives the exact range of values of
p is due to something else.

In fact, in the case of the polynomial y(x) = x? it can be
proved, [23], that there is no rational expression which in interval
arithmetic computes the correct range of values, namely [0,1], for
y(x) when x varies over the interval [-1,1]. The expression
X - X, for example, yields [-1,1]-[-1,1] =[-1,1].

The trouble is that in a numerical evaluation of an expression,
the identity of variables is lost so that we must get the same value
for X* Y with X =[-1,1], Y=[-1,1] asfor X+ X with X = [-1,1].
In other words, the direct evaluation of a rational expression in inter-
val arithmetic in which a given variable occurs more than once may
result in a wider interval than the actual range of values of the corres-
ponding real rational function.

On the other hand computations with interval numbers need
not be restricted to purely arithmetic ones.

For example, we can define an interval-valued function X2
which takes on the values
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X2={x2|xex} .

And, in fact, we can program the computation of this interval-
valued function using the formula:

[a,b] * [&,D] if 04 [a,b]
[a,b]%=
[o, az] u[o,bz] =[o, max(az,bz)] if 0¢ [aDb]

More generally, if f is a real function, then using the no-
tation f(A) to represent the image under f of a set A, we have

f(uxi) = uf(Xi)

for any collection of sets X; in the domain of f.
In particular, if X; =[a;, b;] and X =[a,b] =\X; then

f([a,b]) =vi([a;b]) .
Now, if f is monotonic on each Xi, then

[f(ai)’f(bi)] if f increases on Xi

f([aiy bi])=
[f(bi), f(ai)] if f decreaseson Xi

These considerations are of use in programming extensions
of real functions, for example the sine and cosine functions, to
interval-valued functions on intervals.

Using a programmed approximation of known accuracy for
sin X, when x is a real machine number, and using the fact that
the sine function is piecewise monotonic with relative maxima and
minima at knowri_'locations, we can write a program which computes
an interval SIN(X) for an arbitrary interval X =[a,b] with a,b
machine numbers such that

SIN(X) D {sin x|xe X} .

With care, this can be done in such a way that the width of
the interval SIN(X) is only slightly greater than the width of the
interval {sin x|x ¢ X}.

Interval-valued extensions of all the commonly used elemen-
tary function "subroutines'' can be obtained in various ways.
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Any given real rational function is piecewise monotonic; how-
ever, the relative maxima and minima occur at roots of algebraic
equations whose locations may not be known in advance.

On account of the inclusion relation (3.5) we know that a
straight forward evaluation in interval arithmetic of a rational ex-
pression will produce, if division by an interval containing zero does
not occur, an interval containing the range of values of the corres-
ponding real rational function for real arguments ranging over the
argument intervals used.

On the other hand, we saw in the examples above that the
width of the containing interval thus obtained may be greater than the
width of the exact interval of the range of real values of the real
rational function.

We will show now that the exact range of values can be
approached arbitrarily closely by a finite union of intervals.

Suppose F is a rational interval function with F(X) defined
for all intervals X contained in some interval A by a particular in-
terval arithmetic expression with real coefficients in the interval
variable X. The values of F on real numbers will be real, - (with
the identification of degenerate intervals and real numbers agreed
upon, above in section 3). Denote the real rational function by £
so that

f(x) =F([x,x]), =xeA.

Denote the exact range of values of f on X by f(X); thus f(X) =
{f(x)[ x € X} . Denote the width of an interval X by w(X), thus
w([a,b]) =b-a .

Theorem 1. There is a positive real number K depending on F and
A but independent of the method of subdivision of the interval X
such that if X is the union of subintervals X;, then

£(X) ¢ O F(X.)
i=sl '

and

w( & F(X,)) < w(f(X)) + K max w(X,) .
i=l 1 = i i

Proof: The first part of the theorem follows from the inclusion
relation (3. 5) and the fact that

n
£(X) = EX) .

To prove the second part we need to show that if
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n
v e g P
then there is a
Y, € f(X)
such that

,yl -y2| <K m?x w(xi)

In fact if
yl € F(Xi)

then we will show that for every v, ¢ f(Xi) we have

Iyl - yzl in(Xi) .

In the expression for F(X), the variable X occurs only a finite
number of times, say J times (possibly zero). In each occurrence

substitute a new variable X(j) , 1 =L42,...,7.
(For example, in the expression X * X substitute X(l) . X(Z)).
Call the new expression H(X(l), X( 2), vees X(I)) thus
F(X) = H(X,X,...,X). Andforreal x, H(X,X,...,x) =F(x) =1{(x).
But the expression H(X“),'X( 2), vees X(I)
function for real x(l), ceey xU)

(1) (n

for x,x"77,...,x in A such that

) defines a real rational

and there is a Lipschitz constant K

IH(x(l),...,x(I)) -H(x, X, ..., x)] < K max |x(j) - x|
J

Now if yj € F(Xj), then yj = H(x(l), ...,x”)) for some set of
A @

values yees s X in X;. 'But for every such set andevery
x in X, we have Iy - H(x,x,...,x)l <K w(Xi). Recall that
H(x, x,...,x) =£(x); and y, € £(X) is the same as ¥, = f(x) for
some x e¢ X. Therefore, for every v, € £(X;), it follows that

lyy - v, <K w(x)).

This completes the proof of Theorem 1. )
More general theorems of this type for rational interval
functions in any finite number of interval variables with interval
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coefficients also have been proved, [21], [23].

Along with the notation w([a,b]) =b - a for the width of an
interval, it is also useful to define the "magnitude' of an interval by
[a,b] | = max ( Ial, [bl). The following relations between the in-
terval arithmetic operations and the widths and ""magnitudes' of in-

tervals are easily demonstrated.
For positive real numbers a,b and any intervals I,]
w(al + b]) = aw(I) + bw(J])
w(I)) < [1lw(n) + |3l w(n)
l1+70 < 1] + I7l

w(-J) = W(I)) where '[a’ b] = ['b, 'a] .
For any real number a, and any interval I

la1l = lal |1}
w(al) = |al w()

And for any interval 1 which does not contain the real num-
ber zero,

wl+D < h=11% w(n) .
As a note of caution, we point out that

/a if 0<ac<b
[1+[a,b]l = I[1/b,1/a]] =
clb if a<b<o0
whereas
1/b if 0<ac<hb
1+ 1[a,b]l =
-l/a if a<b<o
Therefore a #b implies

1+ [a,b]l #1% [a,b]] .

5. Interval Contractions

In this section we will illustrate the application of the above
considerations to the study of some iterative computations with in-
terval numbers.
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We will give examples of the computation of sequences of in-
tervals of decreasing width containing and converging to an irrational

real number.
Consider first the rational interval function F defined for

X c[1,2] by F(X) =1+Ii+isl+{1-:-(1+xn. We have

F([L,2]) =1+ {1+ (1+[1,2])}
=1+{1+[23]}
=1+ [1/3, 1/2]
=[4/3, 3/2]

so that F([L,2] c[1,2] .

Define a sequence of intervals for n =0,1, 2,..., by
Xn+1=F(Xn) , Xo =[1,2] .

By the inclusion relation (3. 5) we know that for X' € X we have
F(X') c F(X) therefore, since we have already seen that

X) = F(Xg) € Xp, it follows by induction on n that X . C X,
Furthermore, from the relations given at the end of the last section, we
have

w(E(X) < L+ (14301 % w(x)

and for X C [1,2] this implies w(F(X)) < (1/4)w(X) .

Applying this inequality to the sequence {X,} we find that
w(X,) < (1/4)®. Therefore {Xn} is a nested sequence of intervals
of widths converging to zero and the limit of the sequence is the num-
ber x =V2 satisfying

F(x) =x=1+1+X

or x2 =2,
Using three significant decimal digit interval arithmetic we
obtain the sequence
X0 =[1, 2]
X =[1.33, 1.50]
X2 =[1.40, 1. 43]

X3 =X4 = =Xy =[141,1.42], n>3.
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Another way of looking at the sequence is that it generates
the interval-valued partial continued fractions

1
2+ 1
2 +.

1+

o+ 1
[23]

each of which contains the number N2 . By 1/X we mean, of
course, 1 =X .

Next, consider the interval mapping G defined for Y C [1, 2]
by G(Y)=(1/2)Y+1/Y. Again N2 is a fixed point of G.

We have

G([1,2]) =1/2[1, 2] +1/[1, 2]
=[1/2,1] +[1/2,1]

= [1,2]

Therefore the sequence {Yx} defined by Yyi1 = G(Yk) re-
peats with Y, chosen as [1,2]. And with Yy =[1.4,1. 5], we ob-
tain Y} = G([1.4,1.5]) =[1.36..,1.46..] which is not contained
in Yo .

On the other hand, using a decomposition of the intervals we
can obtain a nested sequence converging to NP using unions of a
fixed number of subintervals. For Y = [yl, yz], define, for positive

integers n,
Y, -Y
n , 2 "1 .
AiY=y1+[1-l,i] {——n—}’ i=1,2,...,n ,
then n
Y= u aly
i=1 1

' n
and define G (y) =, G A‘i‘y)
i=

where G(Y) is defined as above.

By the inclusion relation (3.5) we have G(n)(Y) c G(Y).
It can be shown, [23], that for each n > 2 the sequence

{Y(kn)} k=1,2,... defined by Y](ﬁl) = G(n)(Y(E)) converges to \/?,

with Y3 -y, I ER AU S LR

We conclude this section with a final example of a sequence
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of contracting intervals -- again converging to N2 . Consider the
mapping f(y) = y2 - 2. According to the mean value theorem
f(y) =f(x) +f'(x + 68(y - x))(y - x) for some O e [o,1].

If x is the positive zero of f(x), namely \/?, then

) f(y) _ 1-1/2y2
fi(x+6(y-x) 7Y x + 6(y - x)

X =y

for some 8¢ [0,1], therefore (by 3. 5)
2. .
xey+(l-1/2y7) +(x+[0,1] (y - x))

provided 0¢ x + [0,1] (y-x) (since x =V2 , this amounts to the
restriction y > 0).

Denote by mY the midpoint of the interval Y; thus
m[a,b] =(a +b)/2. Define the sequence of intervals {¥,} by

v, =[1,2]

2. .
Yn+1 —mYn+ (l-l/Z(mYn) )+ Yn

Thus

Y =3/2+(1-1/2(3/2) %+ [1, 2] = [1.375, 1.4375]

Y2

Y3 = [1. 414213559 ..., 1.414213563... ]

[1. 41406 ..., 1.4144] ...]

and the sequence {Y_} is a nested sequence of intervals, [ 23],
contracting to the real number V2 .

6. A Metric Topology for Interval Numbers

The introduction of a metric or distance function for interval
numbers provides for the concept of a continuous interval function
and is a valuable aid both to the analysis of interval functions and to
the geometric intuition concerning the closeness of two intervals.

Denote by J the set of closed real intervals

[a,b], a<b.
We make J into a metric space with the distance function

P([a,b], [c,d]) =max (la-cl|, b-dl).
Notice that for degenerate intervals [a, a], [b,b] we have
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P([a,a], [b,b]) = la-bl.

Thus our metric P is consistent with our identification of the
degenerate interval [a, a] with the real number a; the real line may
be regarded as a subspace of the metric space (J,P).

It has been shown, [21], [23], [30], [31], that the arithmetic
operations in J are continuous except, of course, for division by
intervals containing zero. It follows from this that the rational in-
terval functions are continuous.

The set of interval numbers [x,y] may be pictured as the
half-plane of points (x,y), x <y, above the diagonal y =x, with
the diagonal itself corresponding to the real numbers (fig. 1).

figure 1

In figure 1, the interval number [u,v] is seen to be contained
in the interval number [x,y], since x <u<v <y. Furthermore we
see that the interval [u,v] contains all real numbers t, u<t<v,
i.e., points on the diagonal segment intercepted by the horizontal
and vertical lines through [u,v].

Two interval numbers are close with respect to our metric P
if the corresponding points are close in the diagram.
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7. Interval Integrals

Suppose F is a rational interval function with real coefficients
defined for X © A. Then f(x) =F([x,x]) is a bounded real rational
function on the interval A.

If X=[a,b] CA, then f(x) ¢ F(X) for all xe¢ X, and by the
mean value theorem, we have

b
Ji(x)dx =f(a + 6(b - a))(b - a) ,
a

for some 6 ¢ [0,1]. Therefore,
b

(7.1) [ f(x)dx ¢ F(X)(b - a)
a

Now suppose Y =[a,y] C A; define

Y(I;) sa+[i-1,1) -3

n b

(n)

then Yi C A, and

n
v Y(r?)
izl i

By the additivity of the integral, we have

v n
(7. 2) [fx)axe 2, F(Y(ril))(—y;—a—) [interval sum] .
a i=l
More generally, if Y(xz) , 1=1,2,...,n, is a collection of

intervals such that

Y(r.‘)cA,
1
D s(n)
Y_]'.\:J.Y i ‘[a,Y] ’
and
SR
w(y) =), wiy'™) oy _ 4
i=l :
then
y n
(7.3) [f(x)dxe ), P(Y“i‘))w(y(’i") .
a i=]
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The intervals Y(I}) do not all have to have the same width.
From Theorem 1 it follows that there exists a K such that for X C A,
we have w(F(X)) <K w(X), and therefore

(?)), i=1,..

n
(7.4) W(Z P(Y‘“’)w(Y‘?))) <y - @)K max w(Y
=

and we have proved the following:

Theorem 2.
Define
(n)

ey
Ly) = 2 Fe T wi'®

i=l

)

then

v
1ly) = [ f(x)ax+E
a

with 0e E, and

w(E) < (v - a) K max w(y!™) .

For an illustrative example, denote the natural logarithm of
y by log y, and consider

Yy
dx
logy=[ =, y>1,

{ X
and take F(Y) =1/Y for Y>1 (i.e., y ¢ Y implies y>1).
Let :
R Y It B AP
i n
then
(n) 1 [ n n
f(y"") = = . , - .
i l+[i—l’i](yr-11) n+i(y-1) > n+(i-1)y-1)

If a>1, then

b -

== <w(la,b]) ,

w(F([a,b])) =w[l/b,1/a] =
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so we can take K =1 in Theorem 2 and obtain for n =1, 2,...,
logyel(y) and w(I(Y)) <¥=l
n n - n

The interval-valued functions

(n)
Yy, Iiy),
of the real variable y occurring in Theorem 2 can be extended to rat-
ional interval functions on Y'>1 in the following way:
Y'-1

(n) ooy _ . :
Yi(Y)-1+[1-1,1] —

L (v = 5 re™ e we™ vy
i=l

Clearly, {log yly ¢ Y'} ¢ 1(Y') and

Jlog vy dy ¢ 1 (¥') w(¥")
YI

Suppose Y' =[y,y'] with y>1. Let
Y(m)

REPRITRRI L

then

m
yo=o ytm
j=1 3

and

H (m)
L wiy' ) = wiy)
j=1
Now In(Y') is a rational interval function of Y', so by
Theorem 1 there exists a positive real number K such that

(m)

m -
j:/l LY =T (Y +E_

(y'-y) . y -1
with 0 e E and W(Em) <K~F—. Since w(I (y)) <-5—, and
logy e In(y), we have
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— ]
I(Y')= v I(y)c{logylyev}+[-1,1]%
n 1 n n
veY
Therefore
m (m), _ ,
j\illn(Y i ={logylyeY'} +E

It is also easily

[ v
with 0¢ B, w(E_ )j<5wl¥) 2(y' -1
n, m nm' — m n

shown that there are positive real numbers K,K', such that

() (m)
El L™y wirl™) =Yf' logydy +E|

with 0 ¢ E' and
n, m

i

SKw(Y) + K{w(v)}® | 2wl(¥)y'-1)
< 2 L .

(E,

Thus by iterating and composing the processes of taking
unions and interval integration we can obtain, by finite computations
with intervals, sequences of intervals containing and converging to
the range of values and the integrals of real valued functions such as
the logarithm which are not themselves rational but which are in-
tegrals or even iterated integrals of rational functions.

We consider now some more rapidly convergent procedures
for bounding real integrals with interval computations.

0
Suppose F( ) , F“), ey P(k) are rational interval functions
defined for X C A such that the corresponding real valued rational
functions {f(")} are the successive derivatives up to order k of an

ordinary rational function with real coefficients, defined by P(o)(x) =
f(o)(x) =f(x). We know that f is bounded on A because x ¢ A

implies f(x) e F(O)

(A) . Consider the real integral
b
[ £(x)ax
a

with [a,b]C A .
Subdivide the interval [a,b] so that
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[a,b] = iulx1
with
Z w(X) =b - a
i=1

and write X, = [xi-l’ xi] and f =£(0)
The Taylor theorem with remainder asserts that for each
te [0, W(Xi)]

(k-1)
A ST L B

t vt =6 D g+ i e s ALK g6

(k-1)! (

with

(k) ¢(k)

(1) = (%, *+ 0. 0t"
for some 6, ¢ [0,1].
Now
k-1 £ (. ! wiX;) ) w(X,) ®)
[txax = ), ——— [ that + [ R (t)at .

X, r=0 0 0
i

The last integral exists since all the others do.
We can write

h

[ a(t) tfat =k—l f g(t)d(tk“) ;
(o] o]

therefore, using (7.1), we obtain

w(X,) w(X)

f (k)(t)dt l f f(k)(Xi_l+9tt)tkdte
o)

1 (k) k+1
(k+1)! (X {wiX)}
Since

w(Xi)

f tr t-—-——{ (X)}r+l
o
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we finally have the result that

b n k- (x, )
' -1 r+1
[ taxe ), ) e ey e
a i=l r=0 ’
with
n

1 (k) K+1
E k= ke 1Z=:1 P {wX))}

Since there is a Kk such that for all Xi Cc A,

(k) <

Kk k+1

n,k) ém (b - a) . lmax {w(Xi)}

it follows that

w(E

Now define Irl ks(n,k 21) by

n k-1 (1) (%) n
- il 1 k) k+1

(15 1= L L~y (v e L% o

i=l r=0 i=l
We have proved that

b
Theorem 3. [ f(x)dx e I s nkzl
a b

and if W(Xi) =h for i =1,...,n, then

Kk k+1

(7.6) W(In,k)§m(b-a)h

The formula (7. 5) gives a (k + 1) st order method in the sense
of (7.6) for each positive integer k.
In case k =0, delete the double sum on the right hand side
of (7.5) and the first order method expressed by Theorem 2 results.
For an example, consider
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fzdx
j X
. 1 , (0) 1
Let Xi=l+[1-l,i];, (i=1...,n). We have f (x):f(x):;,

S]e]

r
(r) _(-1) r! -
177 (x) ———-Xrﬂ s r=0,1, 2,
Now take
r
- ]
Py LU , r=o0,1,2,..
Xr+l

then

If X=[ab]c[l],2], then

1 _[ 1 1 ]
- )
[a,b ]r+l br+l . ar+l

and
1 ) 1 1 (b +... +a")
w = - =(b-a) T2 T3 )
(xr+1 ar+1 br+1 a1'-l~lbr+l
!
< (r+1)! w(X)
r+l
ba

S (r+l1) w(X)

Thus we can use Kk =(k+1)!, b-a =1, h :;1 in (7.6) to obtain

de
lf _x'eln,k

with
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1k
< (=
(7.7) W(In,k)—(n) .
where
n n- r
i-1, -r-1,1 r+1
(7.8) 1, =1 5 s 1)
i=l r=0
~k1 1 k+1
t—— 2(1) (1+[1-1,100) T
1 .
Call yi Tri 1’ then (7. 8) can be rewritten as
k-1
- L (N -
(7.9) In,k‘él{yi<l+yi< 2+...+yi)< ” ))}
k n
(-1) . -k-1
T Z[n+1—l, n +1i]

1]
—

i

We now give a heuristic discussion of the "efficiency' of this
formula.

Using (7.9), the computation of I,  requires roughly 3kn
additions and multiplications of real numbers (ignoring about n + 2
divisions). Looking at the bound (7.7), suppose we wish to make

k

) =e

o I SN

(

then

_logl/e
“log n

The quantity Cn,k =3 k n measures the amount of computation re-
quired to evaluate In k - In order to achieve w( Irl k) Se itis
sufficient to use any positlve integer n together with k the
smallest integer satisfying

n?’

log 1/e
D ———
n—log n

Then the amount of computation required will be Cn k =3 kpyn or
very nearly

1
o ].Og-e‘.

3
ot " Tog



84 The Automatic Analysis and Control of Error

The function C(n) has a minimum at n = 3 for positive integers n,
so the most efficient choice of k,n indicated by this argument is
n =3, and k, =k the smallest integer satisfying

In —

in this case we find that the amount of computation required for

k
@) =«

if very nearly

C(3) =(8.19...) loge—1 .

10
If e = 10"10 for example, we choose n = 3, =21 ~£c;—?ml+= 20.9...
and using (7.9) to compute I we would have C =189,

3, 21 3, 21

3
1 . 22
W(I3’21)-w(2_21§1[3+1-1,3+i] )

35 (w(03,417%%) % wil4,5] 2% 4 wils,6]7%%))

1122 22
=2—2‘{(§) - () }
<1070

as claimed.

Suppose we arbitrarily choose a value of k, say k =4. Then
to guarantee w(I, 4) = 10~ 10" \ith this " 4th order" method, we need
to take n accordmg to (7.7) such that

or n Z 317 and in this case 0317 4 =3+317+ 4 =3804. Or, in
other words, this choice requires about 20 times as much computation
as our "most efficient' choice.

The method defined by (7.5) was based on a local expansion
of the integrand f(x) in Taylor's series.
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It has become traditional to discard numerical methods based
on direct expansions in Taylor series as impractical because of the
difficulty in computing the Taylor coefficients. We no longer sub-
scribe to this point of view; in fact, in section 9 below we present
a practical technique for the use of Taylor expansions on a digital
computer.

We conclude this section with an interval version of Gaussian
quadrature. We write

b 0 x
[a,b] = = X
with
n
Y w(X,) =b - a
. 1
i=l

with the same assumptions on f as in (7.5). Then Xi =[xi_1, Xi]
and the Gaussian method has the form

b n k
(7.10) aff(x) dx =i§1 w(Xi)El grf(xi_l+ur(W(Xi))§ + En’ K
where
xkn* & 2k +1,(2k)
(7.11) B\ - Y, {w(X,)} f (£,

T2k (2k+1) 121

for some §ie Xi’ i=1,2,..,n.

The numbers gr and u, (r =1, 2,...,k) are the weights and
argument spacings of the Gauss 'k-point formula'" [19]. They are
associated with the zeros of the Legendre polynomials

k

d .2
P(t) =—=(t"-1)
k ak

k

and are tabulated to 15 decimal place accuracy for k =1, ... ,16 in
[18].

Using Stirlings inequalities for n! we find that for positive
integer values of k :

2k

2k+1 [k1]* 1 2k+1
2k +1 <

<2m (=)

Zn(zl) >
[(2k)]7(2k+1)
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Since f(Zk) (§i) € F(Zk)(x ) for a rational interval function FfZ2k)
with real restriction f(2 » We can write (using (7.11))

w(X,) 2k+1 F(Zk)(Xi)
Zr!

.

B ke 2"[2k+1 s 1] Z (

We now define an interval version of the Gaussian method by
the formula

G @ 5
(1.12) 17, =.Z w(X,) ) 9 f(x; _tu w(X,)
i= r=1 (2Kk)
2k +1 F (xl)

W(Xi)>

2k
+2"[2k+1’”121 (Zr) !

For this method we have

b
G
aff(x)dxe Iy

for X C A, there is a Kzx such that w(F(Zk)(X)) sz w(X) and
for h = max w(X ) we have
i=],2,...yn

Theorem 4

(2k) h Zk

w( ([a, b])l}(

n,k)‘(Zk)'(b a){4 2k 4(2k+1)‘P

Proof: Recall that w(AB)= |A| w(B) + |B| w(A) and
w(aA+bB) = |al w(a) + |b| w (B).

Thus
(b a)
G . h2k+1 K
Wil )= an () W

n rw(x )y 2k+1
1 i (2k)
TSN 121( Z ) = ex ) b

Now
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n /w(X,)

i
35
i=l

>2k+1 (2k) 1,h 2k3 | (2k)
e =5 ialr (X w(x)

and

n
), IF(Zk)(Xi)Iw(Xi) < 1F %) ((a, bl (b - a) .
i=l

Putting these inequalities together we obtain Theorem 4.
Returning to our example
2
[
i ox
put

2k
P02y (-1?3k +(12k)!
X

as before. We can take K_, =(2k +1)! and by direct computation
) 2k
we find that

FCR L, 2] =20

So with W(Xi) =Hl we have

fz dx .G
—e I
i X n,k
with (7.12) becoming
n k

G 1 1
(1) 10 =L 5L —m—

’ i=1 r=1 l+=—+4u —

n r
2k+1° i=1 4n i-1 i 2k+1
B (14— ,1+-]

and (using Theorem 4), we obtain

1 2k

G 1
4(2k+1)} () -

(7.14) w( In, k)

éZw{%n(Zk+l)+
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Counting a division as 3 multiplications, the number of mul-
tiplications and additions to evaluate Ig k by (7.13) is roughly
(ignoring n additions)

G
= k+8 .
C n, k (4 )n
In order to achieve w(Iy )= e it is sufficient to take n,k positive
integers such that

] 2k

1 ] 1 <
217{-;(2k+1) +——4(2k+1)} (4n) =

If e = 10_10, we can choose n =1 and k =10, in which case
ClG 10 = 48. This is evidently the most efficient choice of n,k in

this example; if w(In )= 10 -10 and Cgk = 48, then n =1, k=10,

Recall that our best ch01ce of n,k for I n, k with the same value for
e was n =3, k =21 in which case C3 ;) was 189,

In other words, it takes about a fourth as many arithmetic op-
erations to evaluate

>c|§<"N

f
1

using I% k as it does using Irl k to achieve guaranteed ten decimal
place accuracy.

8. The Initial Value Problem in Ordinary Differential Equations

In this section we are concerned with computing intervals
containing values of the solution to the system of first order ordinary
differential equations

dy.
(8.1) d—i=fj(x,y1,...,ym), j=1,en,m,

satisfying the initial conditions
(8.2) yj(xo) =yo, j=1,e.,m .
For brevity, we will sometimes use the vector notation y for

(vy, ...,ym) and f for (f,.. .,f ). For example, we can write
(8.1) in the simpler form

(8.3) ?—d}}:=f(x,Y)
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and (8. 2) can be written v(Xgy) =v¥5. We will use the metric Iy -2z|
= max {Iyl -2yl e, 'ym -z |} for m-dimensional vectors vy, z, f,
etc.

It is well known [16] that when f is continuous on Dy DB =
[xg,a] X B X B,... ® By, with a >x, and Yjo in the non-
empty interior of the interval By, (j=1.., m), and when f satisfies
a Lipschitz condition on Dy

(8.4) |f(X,yl)-f(X,y2)|§Kflyl-yzl

for some non-negative real number K¢, then there exists exactly one
solution to (8.1) and (8.2) in Df C Dy with Df = [x,,x"] @ By,...,
Bn for x* such that (x,y) € B implies

£ i
yjo+(x xo)fj(x,y) eBJ, (j =1,2,...,m) .

Denote the set of closed real intervals by J and the set of
closed subintervals of Ae I by Idp . We will suppose throughout
this section that Fj],...,Fn are interval valued functions on the

domain D = J[ %o, a] ® JBI, cee ® JBm satisfying the following
conditions for j =1,2,... ,m:
1) Fj is continuous and PJ, restricted to
B = [xo,a] ® Bl"" , ® B, isareal
valued function fj , il.e., Fj (x, Yy eees ym)
= fj(X, Vi oo ym) for (x, V) oo ym)e B ;

2) Fj is inclusion monotonic, i.e.,

1
FyXL Y, e, Y ) CRUX Y, Y )

XtcX, Y ch, ,Y'm cYm implies

3) There is a real number KF such that
<
w(Fj(X, Yl’ ,Ym)) = KF max {w(x), w(Yl),... , w(Ym)}

Notice thatincase F is a rational interval function on Dy
with real restriction f on B then the conditions 1), 2), 3) are
satisfied by F.

The conditions 1), 2), 3) above imply (8.4). To see this,
let Y} =[yy), v12], 00, ¥ = [yml’ Ym2] or in abbreviated form
Y =[y),y,]. Assume w(Fj(X,Y)) = Kp max {w(X), w(Y)}. Then
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w(Fj(x,y)) = Kp w(Y) forreal xe[xg, a]. Since f; is by defini-
tion the real restriction of F] , we have fJ(x, y) e FJ(x,Y) when-
ever y e Y. Therefore fJ(x,yl) f; (x,yz) € F (x,Y)- F (x,Y). Now

[a’b] = [a’b] =['1’1] W([ayb]) s
SO

5,0, v) - £(x,y,)| 2 WP (1)) £ Kply, -y
and therefore
l£0x,y)) - 20, v)| = max 156 v)) - (0 vl skly, -yl

We notice incidentally that Kp serves as a Lipschitz constant for f.
We conclude that conditions 1), 2), 3) guarantee the existence
and uniqueness in D;‘ of a solution to (8.1), (8.2) when fj is the
real restriction of Fj .
' If Vio € on for on properly contained in Bj then the
equation

Y +(x*-x )F/(B) =B,
jo (J O)J() j

has a solution X% with w(x*) >0 foreach j =1,2,...,m. By
I-'] (B) we mean, of course, F (B) =F; ([xo,a], By, ..., B ). Define
= [xo,a]mxlr\,...,mx
In this way we can compute an interval, namely x* , in which
existence and uniqueness of a solution y to (8.3), (8.2) is guar-
anteed.

The First Order Method

(n)’y(n) (n)

Let n be a positive integer and define Xi i ,b ji by
y;:) =yjo and for i =1, 2, ..., n
Xk
(n) [inl), fn)]_X +[1_11]W( )
(n) _ (n) W(X )
(8.5) ji = 11+[0 1] ————= FJ.(B)
(n) _ (n) w(X*) (n)  (n) (n)
Yii TY,iatTh Fj(Xi s By e ml)

(le)vector notation, dropping the superscript (n), writing h
w

for - and writing S =[0,1] hF(B) we simplify the writing of
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(8.5) to

= i-1,i]lh
Xi xo+[1 1,1]

by=y; *8

Yy =¥y tRF(X, b))

so that for i =1,2,...,n we have

vy =yi_l+hF(Xi,Yi_1+S)

This recursion formula expresses in its simplest form, our
first order interval method for ordinary differential equations.

The solution y to (8.3), (8.2) clearly satisfies
y(x) e y(x4_1) +S for x e Xj, (thatis for each j =1, 2, eee, M,
yj(x) € Yj(xi-l) + Sj, etc.) and if y(xj.]) e Yi.1, then

X
y(x) =y(x ) + [ f(x',y(x")) dx'  (xe X,)
X
i-1

so y(x) e vig + (x - xi-l) F(Xj, viopt S) whenever x e X;. Fur-
thermore, writing w(y;) = max w(yji), etc., we find that

w(yi) = w(yi_l) +h KF max {h, W(yi-l) + ch}
where ¢ = w([0,1]F(B)), therefore
Kp(x-x)

(8.6) w(yi) = (max (c, 1))(e -1)h .

Replacing the superscripts, (n), we define for n = 1,2,... the
functions y(n) for all x e X*, using the fact that

n
Xk = X(n) ,
) i=] 1
by setting
(n) (n) (n), ,o(n) _(n)
(8.7 ¢'™x) = Yiop FOx-xg IRy (X % )F(B))
. Y i for x e X(in)
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The functions y(n)(x) are well defined since at xi(n) , the
common end point of X(in) and lel) , we have

(n
i=-

(n) _(n) _ (n)
i =% )F(B) =y 7.

y(n) + (X(n) _ X(n))l,(xi,y ) + (X ¢

i-1 i i-1

In fact, the functions defined by (8.7) are obviously contin-
uous interval valued functions and are piecewise linear in x, that
is, for 0 =t =1 we can write

(n) 1y (1) (n)
yo-tx, ptx)=(1-t)y, oty
(However, since yi_nl) is an interval we do not have (1 - t)yg_nl) =

y(lr_’i - ty(ir_’{ , for t>0.)

We have shown that the interval valued functions y(]n)(x)
defined by (8.5) and (8.7) contain the corresponding components
of the solution to (8.1), (8.2); that is, forn =1, 2,..., ; and for
j=1,2,..., m, we have, recalling (8.6),

Theorem 5. yj(x) € yj(n)(x) for x e X*¥ ,

and the sequence of interval vector valued functions y(l)(x), y( 2)(x),
y 3 (x), ... converges uniformly to y(x) for x e X*¥., Furthermore,
there is a real number K such that for x € X

(8.8) max w (y(.n) (x)) = LS .

j=12,.e.,m ) n

The following example will serve to illustrate both the geo-
metric and the computational significance of the above result.
Consider the equation
dy _ 2
ax Y

and the initial condition
y(0) =1.
The rational interval function defined by G(Y) = Y2 has real

restriction G([vy,y]) =f(y) = v2. In order to use the same notation
as developed for the general case, we define F(X,Y) = G(Y) so
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= i = i f.

Dy J[ 0, a] X 95 and F restrictedto B =[0, a] ® B, is We
assume Bj is an interval of positive width containing the initial value
y(0) =1 in its interior and that a > 0. The function F clearly sat-

isfies conditions 1), 2), and 3).
Now F(B) =F([0,a], B))=B%,s0 call X} the solution of

2
E3 = .
1+ (Xl)Bl Bl
Since y(0) ¢ B, we will always have 0 ¢ X*l . Set X* =
[0,a]~ X} . Then we can be sure of the existence and uniqueness of
a solution for x € X*. Figure 2 illustrates the geometric significance
of the process for determining X¥.

a>o

* *
X =le\[o, aj

Figure 2
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The shaded rectangle is X @ Bj. Let B} = [1/3,2] and a =1, for
example; then the lines y =1+1/9x and y =1+ 4x bound a wedge

in X* @ B} containing the solution y(x) of y'=y2, y(0) =1;

that is, for x e X* =[0,1/4] we have y(x) e 1l + xB"i =1+ x[1/9, 4],

since in this case we have
1+ X*i[1/9, 4] =[1/3, 2]

X"i[l/9,4] =[-2/3,1]

or if X* =[c, d], then since 0e¢ X* we have cS0=d and
[C,d][l/9,4] = [4c, 4d]

so we find 4c = -2/3, 4d =1 or x"i =[-1/6, 1/4] and

x* = [0,a]n x*; =[0,1] ~n[-1/6,1/4] =[0,1/4]

(n)

Next, we determine for this example, the functions vy
defined by (8.5) and (8.7). We find that w(X*) =1/4 so h =
and using B =[1/3,2], a =1 we determine that

1
4n
2
F(B) =B1 =[1/9, 4]
2 1
S=[0,1]hB1 =[o, 1]-1_;

K = 117 1)

i-1 7’
b(r;) =y§f‘1) + [o,1]%
y(r;) =yt +_4_1n b?i- ’
therefore
(8.9) A0 oyl L g, L)
for i =1, 2, ..., n with y(on) =1.

The intervals y(?) ,i=1,2,..,n, can be computed using
(8.9) to obtain the functions y(n)(x) . According to (8.7), wehave

(n) (i-1),, (n) 1.2
(n) vy x-S )y +10,1]2)
(8.10) y' o (x) =

or xe [i-l,l]:f;l
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Evaluating (8. 6), we find that

C

W([O,l] F(B)) = W[(O’1][1/9’ 4]

w([0, 4] =4,

and if Y =[y},y2] € By =[1/3,2], then

w(F(X,Y))

w(¥®) = w(ly,v,1%)

=w([y,2,v,2]) =y, -y Ny, +v.)
1072 FRARAUARS AR S

(yl + y?_) w(Y),

and we can take Kp = 4 in order to obtain w(F(X,Y))s Kp w(Y) for
(X,Y) e DF = 3[0, 1] X 3[1/3 ,2]° Making these substitutions in

(8.6), we obtain

i
(8.11) w@“}»ééen (i=1,2,..,n) .

Figure 3 illustrates the construction of the functions y(n) (x)

geometrically.
T '7

T
|
!
I
|
1

VN

- B, = [1/3, 2]

/
/,
7
/,

X*=[0, 1/4]

Figure 3
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The small rectangles are the b; for i = 1, 2, ..., n, while the small
dotted triangles are translates of ygo + (x -Xo)F(B) to the intervals
¥i-1; that is, they represent the interval valued functions of x ¢ X;j

d :
bounding the solutions y to -chx =f(x, y) which pass through
Xi—l’ yi-l' If y(xi_l) €Yy then y(x) € yi_1 + (x-xi_l)F(B) for
X € Xl'

The choice of the interval B; is seen to affect the width of
X* and the numbers ¢ and KF in (8. 6). The bound expressed by

(8.6) on the size of w(y( )) was derived in order to prove the con-
vergence of the functions given by (8.7) to the solution of the differ-
ential equation. On the other hand, we only need the function F in

(n )

order to compute the v which determine (8.7) and we will auto-

matically have y(x) e y( )(x) ; so that the interval valued function

y(n)(x) gives upper and lower bounds to the solution y(x) at each
X e X%,
For example, setting n =10 in (8.9), we find by interval

arithmetic computation that y(ig) =[l32l..., L.399... ] so
w(y(lo)) =.,078 ... which is about 1/4 as big as 1/10 e, (compare

(8.11)). The exact solution to g—i = yZ with y(0) =1, is, of course,

given by y(x) = 11 and from (8.10), setting i =11, we find that
y 1174y =80 (1321, 1.399... ], Thus, y(1/4) = 4/3 =

(l.33...) ¢ y(lo)(1/4) - as promised.
(n )

Now having computed y for i =1, 2, ..., n we can choose

y(g) as a new initial condition at x = Xn; the right hand end point
of the interval X*. Select a new interval B; containing y( n) in its
interior and a new real number a or perhaps use the same a - Xg as

(n

before and set (Bl)new =y n) - Yo + (Bl) If the rectangle so

old *
determined still lies in the domain of F, we can proceed as before.

(n)(X)

To illustrate, we will extend the y( n) (x) obtainedfor the example
we have just treated above. See Figure 4.

In this way we can construct continuations of the functions y
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old X* new X*

Figure 4

If we choose the new Bj =[1,d], with d > y(n)(1/4) , then
F([1/4,a], By) = BlZ =[1,d?] andthe new X* is determined by

1

Y(n)(l y

2
2 08 -0, a1 =1, a],

and
1 1
X =X’if\ Z’ a] =['4-,a*] .

1
If y(n)(z) =[y1,y2], then a* is found from

1, .2
¥ - - =
vy, +(a z)d =d, d>vy,

or

a¥ =

d-y
2 1

dZ 4
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Clearly d =2y, maximizes a*, in fact

1 1
=+ .
4 4y2

A

ax

Since vy, > % , then a* <—126— . We can again choose a positive in-

(n)

teger n and compute the intervals y i bounding the solution over
the new X*. In fact, for any 0 < & <1 we can find a finite mono-
tonic sequence of consecutive a%'s such that the last one is in the
interval [1 - 6, 1] by a finite repetition of the extension procedure.
Then the constructed bounding functions y(n)(x) will converge
uniformly on [0, 1 - 8] with increasing n to the solution y(x) T
and for each n and each xe [0, 1 - §] we will have y(x) e yln)(x).
The method we have been discussing is a first order method in
the sense of (8.8), that is, the widths of the intervals y(n)(x) for
fixed x are 0(n'f). It should be clear that in the example above,
applying the method to the equation y' = yz, the intervals y(n)(x)
did not satisfy w(y(n)(x)) = o(n-l), for fixed x > 0. We will now
turn to the investigation of a class of methods such that for each
positive integer k, there is a kth order method for constructing in-
terval functions y(k’n)(x) of the real variable x (for x in an
interval X*) which are related to a solution y of (8.1), (8.2) by

y(x) € Y(k’n)(x) for x e X%

and such that w(y(k’ n)(x)) = O(n—k) ; in fact, for each k there will
be a positive real number Ky such that for all x ¢ X* and for all
positive integers n

W(y(k’n)

1 k
(X))§Kk('r'l) .

The Methods of Order k > 1

We will derive a kth order interval method based on local
expansion in Taylor series in a fashion similar to the development
of In, k in Section 7.

Let F =(Fy,...,F,) satisfy conditions 1), 2), 3) stated
in the first part of this section. Furthermore, let F(j ),j =1,2,...,m;
£ =0,1,...,k-1 be interval valued functions also defined on Drp with
real valued real restrictions f(. such that f(“ = f(g -1 on B

. j JT T ax i ’
that is,
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£-1 -1
(£) af(j ) m af(j )
- P S L =1,2,...,k-1
f ax + Z ay fr b ( 17 b ) b
r=l r

with £ =¢ .

] J (2)

Assume K p o t= 0,1, ..., k-1 are positive real numbers
such that F(}e) satisfies conditions 2), 3) with

A

(8.12) w(P(“(x,YI,...,Ym)) K(ﬁ.)max(w(X),w(Yl),...,w(Ym)).

. £
For example, if P(j), j=1,2,..,m; £ =0,1,...,k-1
are rational interval functions on Dy then all these conditions are

y)
satisfied if F(f) has real restriction f.(j ) , a real rational function
L d (£-
on B, satisfying f(j) = — f(j 1) .

£ Ji £
Using vector notation again, we put F( ) = (F(l) 5 eoe ,P(m)),

2
fB) C D)) ete
We define the function A(X, x,Y) =A1(X, X, YY),y eeey Am(X, X, Y))

by J[xo’a] ® Dp with ¥ =(Y,...,Y ) by
k-1 _(2£-1)
i
(8.13) AX,x,Y) =Y + ), -F-——“—(x!l) (X - x)
£=1 ’

(k-1)
+———————F (B) (X-xk .

k! )

The function A will play a role similar to that of 1 + xB? in
Figure 2 and the dotted triangles of Figure 3.

Recall that DF = J[x, al ® JBI,... s ® JBm with y],0 in
the interior of Bj, j =1, ..., m. We choose an X* such that

w(X*) >0 and X* C [xo,a] and Aj(X*, xo,yo) c Bj; (i =1,2,...,m).

For every positive integer n, define

*
. W(X)
n n

(n) X(n)]
i 2

(n) _ -
X -xo+[i-1,1]hn-[xi_1 s

i=},2,...,n
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(n) (n)

sothat x' " =x_ and x'g =x°+w(X*) for all n.

Define y 3) =Y, forall n andfor i =1, 2, ..., n, define

(n (n)

Vi (x) for x e X'j' by the equation

(2- 1) LY (n)
1F i) i
(8.14) yin)(x) =A(x, x Yo)f\{ (n) S: 1 = (x'xi(r.li)

(k-1), (n (n) (n) (n)
F (Xi A(X P X1 Yi ) (n) }
k! (x-x; 1)

then

(n) (n) (n)
(X Yi 1 m A(Xi-l’xo’yo) )

so call y(n)( (n)) -ygn) for i =1, 2, ..., n and (8.14) defines,

. : n
by finite induction on i, a function y( )

setting y( )(x) -y( n) (n)

on x e X¥ for each n by

(x) for xe X

(n)

The quantities vy s i=1, ..., n are each determined by a

]
finite number of evaluatlons of the F( ) ; substituting x( n)
on the nght hand side of (8.14), the left hand side becomes
(n) (x (n ) (n)
Recall that we are using vector notation, so that the quantity
(n) (n) (n)

y , for example, is the m-tuple of intervals (y'1i’ ;... , ¥ 'mi

for x

And w(y(ril)) = max w(y(j?) ), etc.
]
The formula (8.14) yields a kth order interval method; more
precisely, we have the following.
Theorem 6.
The equation

y{x) -nf\ y(n)(x) x e X*

defines a function vy e Ck(X*) satisfying (8.1), (8.2). Furthermore,
there is a positive real number M such that for all positive integers
n and for all x e X*,
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k
(8.15) wiy M) = XL ©

Proof: From (8.12), (8.13), (8.14) one derives an inequality

of the form w(y'™) = (1 +h K w(y(nl)) P hk+1. Then (8. 15)

follows easily. (n)
In the present situation w(y o) =0. More generally, (8.15)

k
holds provided w(y'D)) = N(;l) for some, N > 0. This fact will
permit the continuation of the functions y'®’ to a new X% without
losing the inequality (8.15) on the union of the new X* and the old
X*.
In order to prove the first part of the theorem, we proceed as
follows. First, we wish to show that for every x ¢ X* and for each

p(alr )of positive integers nj, nj, the interval valued functions
n
y 1 Y% "2 defmed above have non-empty intersection at x, i.e. ,

( 1

Yix)y ny "2 (x) is non-empty.
In fact, we will use 8.15 to show that for some positive integer
Ny and for every xe X*, n> No implies

(n n nz) (n,) (nz)

(8.16) y (x) cy l(x)f'\y (x)

It is sufficient in order to demonstrate (8.16) to show that for
any nl) there is a large enough No such that n'> N, implies

(n'ny (x )c:y(nl)(x) for all ne X*.

From the definition of y( )(x) it is clear that y(n)(x) C
A(x, xo,yo) for x ¢ X*, Furthermore, y'\™/(x) is non- -empty for

X € X() Since
(£-1)  (n) (n)

k=l (x; ),y )
A(x, x(nl),yfnl) y11+2 “11 ll(x fnl))

(k-1)
+ (B)(x"‘(l)

and

(n) (n)

x A x Ly ncs
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it follows that the expression in brackets for i =2 on the right hand
side of (8.14), namely

(£- 1)( (n) (n),

ksl r ) Y .
y(r;) + 0 2 L L (X-x(’;))
2=l
(k-1) ,,(n) (n) _(n) (n)
F (XZ,A(XZ,XI,YI)) (n) .k
+ 1 (x-x 1 )

is contained in A(x,x(ri),y( )) for x e X( )
We claim that for n sufficiently large,

A(x, X(1ni’ (n)) C A(x, Xgs Yo )
for x e X( ) and therefore y( )(x) is non-empty in X(ri)u X(E)

UX(‘}). Proceeding in this way for i = 2, 3,...,n, we finally have
y(n)(x) is non-empty in X¥*. (n.) (n'n)

Imitating the above argument with y 1 (x) Ny 1 (x) in
place of A(X,Xy,Yo) N{...} on the right hand side of (8.14), we
have for sufficiently large Ng, that n'> Ny implies

(n'nl) (n,)
y (x)C vy (x) forall xe X* .

Thus for each x ¢ X*, and every finite collection of positive integers
nj,nz,..., N, wecan conclude that

(n)
(x, Ay Yx))
q=1

is non-empty and contained in B. By the finite intersection property
of the compact set B this means we can define a function y on X%
by

y(x) = f\ y(n)( ) .
n=l

For each x € X*, y(x) is non-empty, in fact it is clearly a
real m-tuple. By (8.15), i

max wly, (x)) = - w(y(x) s M(HE

j=1, 2, «eoym

n*
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for all n, hence w(y(x)) =0 for all x e X*; that is, yj(x) =
[yj(x), v.(x)] or yj(x) is a real number. Notice that y(x) e y(nkx)
for all n "and all x e X%,

We claim that y satisfies (8.3) with y(xg) = Yo, that is,
v(x) = (y1(x), eee, yp(x)) with {y} satisfying (8.1) and (8. 2).

For large enough n, we have for i=12,...,n

k-1 F(£- l)(x(n) (n)

(n) __(n) )
(8.17) vy eyt Z llll hf
: n
F(k-l)(x(m) , A(X(n) ,x(n) ’an)))
i-1°Yi1”  k
* KT n
where hn = w(X¥) as before.
Recall that x‘i’_‘{ =%+ (i-1h,. Nowfix x\%], then
«M =x{®) +h_ andlet n be large enough so that (8.17) holds,
then
v en) v (o
(8.18) h -Hx, vix ))l
n
(1) (k-1)
2
§—h-l—{w(y(n) +h F(O)( (“l ,yfnl) D+wly])+ [n L+... +he -F—k-,—|} X

Since k >1, then by (8.15) and (8.18) we have
dy(x(n)) _f(x(m) y(x(n) .

In fact, by refinement of the above argument it follows that for all

X e X¥*, g%(x) =f(x,y(x)). Finally, y ¢ Ck(X*) , since the differ-
entiability of y follows from that of f. This completes the proof
of Theorem 6.

9. The Recursive Generation of Taylor Coefficients

In this section, a technique for the recursive generation of
Taylor coefficients of arbitrary order for functions defined by ordinary
differential systems is presented. The method is applicable to a
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wide class of problems and can be programmed for a computer in such
a way that only the differential system need be given and the computer
will derive the necessary recursion formulas in the form of a subroutine
whose execution will provide numerical values of Taylor coefficients
of desired order at any desired point. The time required to get the

Nth coefficient increases at most linearly with N.

The possibility of solving differential equations by power ser-
ies expansions has been known since B. Taylor (1685-1731). As a
practical computational scheme this approach often has been deemed
infeasible because of the task of deriving expressions for higher
derivations.

On the other hand, good numerical results obtained by local
Taylor expansions have been reported for certain differential equations,e.q.
[9], [26], [29]. H. T. Davis [5] recommends the use of local
expansions to a small fixed number of terms and with a fixed step
length (his method of '‘continuous analytic continuation') particularly
for the study of solutions in the neighborhood of singularities.

Recently, a number of programs have been written for the formal
(or "algebraic" or "analytic') differentiation of expressions by com-
puters [11], [12]. The input for such programs consists of expressions
defining functions and the output consists of other expressions de-
fining the derivatives of the given functions. Even so, the derived
expressions for successively higher derivatives usually grow rapidly
in length and their direct evaluation may require an exponentially in-
creasing number of operations.

From the point of view of a prescription for computing values
of successive derivatives a recursion formula will serve as well as a
set of explicit formulas one for each derivative. In fact, it is much
more efficient in computing time to save values of lower derivatives
and use a recursion formula than to start the computation of each
successive derivative from scratch. It has been observed, [9],[26],
[29], that recursion formulas for Taylor coefficients can be readily
derived for certain types of differential equations.

Actually, the computer can be made to derive the recursion
formulas for an extremely wide class of differential systems. Infact,
a program has been coded for the IBM 7094 computer by H. R. Jaschke
[ 24] which will accept a differential system as input and produce as
output a subroutine. The execution of this subroutine will then pro-
duce numerical values of Taylor coefficients up to some desired order
at a desired point. After the f%rst N-1 coefficients have been computed,
the time required to get the Nt coefficient is no more than N times
required to get the first coefficient. The subroutine produced by the
computer is essentially the machine coding for the recursion formulas
and can be used to evaluate the coefficients at any point. Thus a
particular solution to a differential system can be computed by suc-
cessive series expansions (or "analytic continuation') up to terms
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of desired order.

The program just described has been used as part of another
computer program called "DIFEQ" [ 24], which carries out the solution
of a given differential system (with assigned initial conditions) in
rounded interval arithmetic, bounding the remainder term in the trun-
cated Taylor series expansions over intervals it constructs about
each new solution point using the methods described in the previous
section of this paper. Rounded interval arithmetic also bounds the
error due to rounding so that the program is able to supply guaranteed
upper bounds on the actual overall error.

Both heuristic analysis and case studies for a variety of non-
linear differential systems indicated that the most efficient choice of
the number of terms in the Taylor series carried depended mainly on
the number of equivalent significant decimal digits used in the machine
arithmetic employed, see section 10 below. For single precision
floating point arithmetic on the IBM 7094 (about eight decimal digits)
Taylor series expansions out to nine terms are used in the program,
DIFEQ, referred to above, [24].

Actual computational experience with the method to be des-
cribed has indicated the usefulness of a certain normalization pro-
cedure in avoiding large ranges of numbers and undue rounding errors,
therefore we will introduce normalized Taylor coefficients of a function,
Q, as quantities of the form

(9.1) (Q) = (inderadyal)y (=012 ...)

where A is a positive real number (the normalization constant) and
Q may be regarded either as a real valued function of the real vari-
able x or as a complex valued function of the complex variable x.
Or even, as in the program cited above [24], as an interval valued
function of the interval variable x.

We will also use, besides (9. 1), the notation for a subscripted
variable, Q,

(9.2) (Q).=Q

when convenient. Of course, (Qo =Q.
If Q and Q, are functions of x, then

(Ql* Qz)j =Q inZ,j ;

4

furthermore, it follows from Leibniz's formula and equation (9.1) that

J
(9.4) (Q - Q,), =iZ=‘,O Qi
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Writing

QI/ Q2 = Q3
we have

Q=R
and applying equation (9. 4) we obtain

j j
Q; =L Q1" Q3,j-i=Qz,oQ3,j‘LZ Qi P, 5-1

=0 “F =1 o7
therefore .
J
Q, ;= (Q,(Q | -El Qi Qi)
or
j
(9.5) (Q/Q,), = (l/QZ){QI’j-El Q4 (/) )

Equations (9. 3),(9.4), and (9.5) are recursion formulas for
the jt normalized Taylor coefficients of the sum, difference, product,
and quotient of Qp,Q,.

If f is a rational function of y and dy/dx = f(y), then the
normalized Taylor coefficients (y)j , J =0,1,2,..., can be generated
using equations (9.3), (9. 4), (9.5) as follows:

We choose a particular order in which to evaluate the finite
set of arithmetic operations defining f. And for each arithmetic
operation in the resulting list we define the result to be a distinct
function; call these functions T}, Tp,... ,Tq. We then have a set
of equations of the form:

* =
Pl lQl Tl
* =
PZ ZQZ TZ

.

P * =T =1
quq q (v)
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where *g 1is one of the arithmetic operations +, -, «, + for each
s =1,2,...,q9 and where the Py, Qg may be constants, the variable
y, or a variable Ty, with m <s . In particular, P, Q, areeach
either a constant or y. Applying the appropriate one of the formulas
(9.3), (9.4), (9.5) to each equation of the form

Ps*st - Ts

according to which operation *g is, we obtain a set of expressions
for the quantities (Tl)j s (TZ)j y oo s (Tq)j = (f(y))j . Finally, we

write the equation

(9.6) (¥),1 = (W GANE) &

to complete the set of recursion formulas.
For example, if

N 2
dy/dx =f(y) =3y +y ,
then f can be displayed as:
yey=T
3.y =T2

T T, =T, =f(y) ;

therefore we obtain the recursion relations
i (y), = (y), . =(T).
i=0 i j-i 17j
%zl
(3),* (y), . =(T,),
i=0 i j-1i 2%
T). +(T.)), =(T.). =(f .
(T))y +(T,)) = (T,); = (£(y),

(1/(J'+1))(f(y))jA = (y)j_,_1

Notice that, by identifying constants, a reduction in the com-
plexity of the resulting recursion formulas can be achieved. For
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£

example, if Q, is constant, (9.3),(9.4),(9.5) become

2
(QI*QZ)J.=QI,j (i =1,2,...)

(Ql' Qz% =Q, - QLj (i =0,1,2,...)
(Ql/Qz)j = (I/QZ)Ql,j (i =0,12,...) .

In the above example, we may write the recursion formulas as
1) v-y=T
2) 3-y= T2

3) Tl + T2 =f(y)

and for j =1, 2,...

4) (.1/1')(f(y))j_1A = (Y)j

)
5) 2 (y).(y), . =(T),
i=0 i j-1 13
6) 3+ (), =(T,),

)T (T = )

1

The numerical computation of a set of values for
¥)15(¥) 2, ., (y)y from a given value of y would be carried out
by evaluating in order 1), 2), 3) above and then repeatedly evaluat-
ing in order 4),5),6),7) for j =1,2,..., N. The quantities (y)j ,
(Tl)j s (TZ)j , (f(y))j are all saved for j =0,1,2,...,N. Thus the
storage requirement is 4N cells and there are altogether N(N+1)/2+
3N multiplications (N(N+l)) /2 additions, and N divisions required.
Each new (y)j computed requires j+4 multiplications, j+1 addit-
ions, and one division after the previous (y)j, ..., (y)j_l have been
obtained.

For an equation of the form

dy/dx = f(x,y)

in which the dependent variable occurs explicitly, we add the equation
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dx/dx =1

or

(X)l = A

to the list of recursion formulas.
For a system of first order equations

dyr/dx=fr(x,yl,y2,...,yM) (r=1, 2, ... , M)

with rational f;, we construct as before the auxiliary equations for
the T3, T3, 0 Tqr for each r =1,2,..., M and the corresponding
recursion formulas” by substitution in (9. 3), (9.4), (9.5). The stor-

age required will be
M

(M+ 2, q)N
r=l

cells and the number of additions and multiplications to obtain (yr)j
for r=12,...,M; j =1 2,..., N will be less than (N(N+1)/2)Ng,
where Ng is the number of operations needed to obtain the first der-
ivatives alone, i.e., to evaluate the f;, r=12,...,M.

For differential equations of higher than first order, the usual
reduction to a system of first order equations can be made with the
substitutions

y = dyr_lldx .
Suppose the system is ''autonomous', i.e.,
dyr/dx =fr(yl,y2, ...,yM) (r =l, 2,400, M),
with x missing from the fr, and expansion in Taylor series is de-
sired about the point (Yl’ Yo ¥ ); and suppose we compute the
quantity

m?x I fr(}-’l’;’Z’ cee s {’M)I

If this quantity is zero, the solution is constant (assuming the fr
are analytic at (yl, .. ,yM)) Otherwise we can put

A= l/merlx |fr(§l, e §M)| .
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If the system is not autonomous, add the equation

Wy !
-

and substitute Y4l for x in fr’ (r=12,...,M), and again we

can use the above choice of A .

In floating point computation the number 1.0 is symmetrically
placed with respect to the range of exponents and the above choice
of A '"normalizes' to 1 the vector of ''rates of change' in the solution
components at each point where a series expansion is carried out.

The solutions of rational differential systems include virtually
all the special functions used in scientific computing. They include
sin x, cos x which satisfy

(9.7) dy1/dx=y2
dyZ/dx =-v

exp x which satisfies

(9.8) dy/dx =y

x® which satisfies

(9.9) dy/dx = ay/x

etc., etc., etc.
In fact, given a differential equation of the form

(9.10) dy/dx =F(y)

with an expression for F containing a finite number of rational op-
erations and compositions of non-rational functions which themselves
satisfy rational differential equations, we can substitute new vari-
ables for each of the non-rational functions and add their defining
rational differential equations to obtain a rational system in place of
(9.10).

For example, given

(9.11) dy/dx = a cos (exp y2)+y"'15 ,

substitute
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2
(9.12) y  =expy
Y, =cosy,
=15
Y3 =Yy

then equation (9.11) becomes
(9.13) dy/dx =ozyz+'y3

and we derive the additional equations needed from the 'chain rule'
for differentiating composite functions,

(9.14) df(g(x))/dx = f'dg/dx

and known rules for the differentiation of the functions exp, cos, etc.
Thus

(9.15) dy,/dx = (exp y*) 2y)(dy/dx)

or

(9.16) dy,/dx = (y,)(2y)(dy/dx)

and

dyZ/dx = -(sin yl)(dyl/dx)
d(sin yl)/dx = (cos yl)(dyl/dx)

or substituting

(9.17) y4=sin ¥y

we obtain

(9.18) dyZ/dx = -y4(dy1/dx)
(9.19) dy,/dx = v, (dy,/dx)
and finally we have

(9. 20) dy3/dx=-.15y3/y .

Now equations (9.13), (9.16), (9. 18), (9.19), (9. 20) are rational in
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the variables vy, v],¥2» Y3,¥, SO that the technique of the previous
section applies and will provide recursion formulas for the determin-
ation of the Taylor coefficients (y)j (j =0,1, 2, ...).

This process of reduction of a differential system to a rational
differential system by the substitution of new variables and the addi-
tion of rational defining equations can evidently be carried out for any
system of equations expressed in a finite number of rational operations
and compositions of functions which themselves satisfy reducible
systems.

An alternative approach to the handling of non-rational func-
tions occuring in the differential systems is available.

Rather than adding more differential equations to a given
system in order to define such functions as sin, cos, exp, etc., we
can instead proceed as follows. We prepare interval-valued exten-
sions of these functions in the form of computer "subroatines" as
discussed in section 4 above. In addition, we augment the set of
basic formulas for the jth normalized derivatives of sums, products,
and quotients, (9.3), (9.4), (9.5), by the addition of formulas
which recursively define higher derivatives of the non-rational func-
tions in question.

For the functions, sin and cos, for example, we have, using
the notation defined by (9.1), the following formulas:

j-1
L (it)(cos Q) ,(Q)

(9.21) (sin Q), = (1/§)
) i=0

i+l
j-1

L (i#)(sin @) ) 4(Q)

(9.22) (cos Q)j = (1/j)
i=0

i+l

In order to obtain (sin Q10> for example, we would compute
successively the pairs of values, using both (9. 21) and (9. 22),
(sin Q),,(cos Q) (sin Q),, ..., (sin Qg (cos Qlg» (sin Q)5+

The formulas (9. 21), (9.22) are derived using the chain rule
(9.14) and formulas (9.4), (9.6).

10. The Automatic Selection of Approximation Parameter Values

In section 8 above, we presented a procedure with an explicit
formula (8.14) for the computation of intervals containing solution
values for systems of ordinary differential equations with given in-
itial conditions.

The procedure is based on local expansions in Taylor series
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with remainder term of order k. The remainder term is to be evaluated
by interval computation over regions denoted by B, where B = (Bj,
Bpyeee s Bnm) is a vector of intervals By,Bp,... ,By for a differential
system of order m.

The procedure further requires the determination of an interval
X#* such that for x e X*, the solution y(x) = (yl(x) y Y2(X) 5 eee, ¥ (%)
lies in the region B. That is, y)(X) € By, ..., yp(x) € B .

Finally, the interval X* is subdivided into n parts and for-
mula (8.14) is evaluated yielding intervals y I} containing y(x(i‘))
whose widths are bounded, according to (8.15), by

k
w(y?) < M,

In section 9 above, we discussed a procedure for getting the
computer to derive recursion formulas in the form of '"coded sub-
routines' which will evaluate the '"'normalized" Taylor coefficients

(10.1) (Y)J.=1/;!F“‘”(Y>A"

required by (8. 14} . In (10.1) and throughout this section the quanti-
ties Y and pli- (Y) are assumed to be m-dimensional interval
vectors Y = (Yl"" ,Ym), F = (Fl, ,Fm).

Actually the formula (8. 14) as given does not exhibit the
normalization factor A. We can rewrite the sum occurring in (8. 14)
as

(10. 2) Y+j§l () {——=—) +(N) {—5—

We have omitted the arguments of the functions F(J_l) in
writing (10. 2) and have used the simpler notation afforded by (10.1).
The last term in (10. 2) is split off because it is the "remainder' term
and has a different set of arguments than the other terms, see (8.14).

As in the previous section we will assume here that the diff-
erential system has been made autonomous by adding, if necessary,
the equation

dy.m+l
dx

=1

and replacing x by Ve in the functions Fl, FZ’ ee s Fm of the

1
system
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dy

r
= =Fr(x,y1,...,ym), (r=1,2,...,m).

The resulting system to be solved has the vector form

(10.3) %ﬁﬂ—"(y), v(xg) =y, -

We will consider now the design of a program based on (8.14).

We assume the program will use subroutines which perform
the required rounded interval arithmetic using normalized floating
point machine numbers whose fractional part consists of a fixed num-
ber of binary digits, s; (on the IBM 7094 computer, s = 27 for single
precision floating point arithmetic and s = 54 for double precision
floating point arithmetic).

The approximation parameters intrinsic to the method in ques-
tion are s,k, n, B, A and X*. Values of these parameters must
be selected at the initial point Xg,Yq and at each subsequent point
xj, Yy where a Taylor expansion is to be carried out. We will dis-
cuss the automatic determination of all these values by the computer
during the course of a particular solution.

Providing only that the selection of X* satisfies the inclu -
sion relation

(10. 4) Y(X*) Cc B,

any set of values for s, k, n, B,A, and X* yields a computation
resulting in intervals Y; guaranteed to contain the exact solution at
X-

i

y(xi) €Y, .

Furthermore, (8.14) will produce for any desired x ¢ X*, an interval
Y(x) containing the exact solution at x

y(x) € Y(x) .

The manner in which s, k, n, B, A and X* are chosen will
determine the widths of the computed intervals Y; and the amount of
time required for the computation. The storage space required in the
computer depends mainly on s and k.

The problem of "overflow' and ''underflow', i.e., computations
producing numbers exceeding the range of exponents in machine float-
ing point representation, depends mainly on k, B and A and also on
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how far the solution is carried in case the range of actual solution
values or the range of Taylor coefficient values grows large.

The design of most computers, with their fixed word length
arithmetic, restricts a sensible choice of s, the number of binary
places carried in the arithmetic operations, to values corresponding
to single precision, double precision, etc. so we leave that decision
to the '"'user' of our program and we will determine the rest of the
parameters as functions of s.

In section 9 above we have already mentioned a choice for A ,

namely
(10.5) & =8y =1/max Ie (vl .

If, during the computation of a set of Taylor coefficients (Yl) ,
(Y) 25+ 5 (Y)y , using a particular value of A, say Ap an over-
flow or underflow should occur, the program can be designed to try

i i i A A = 24 A =1/2A
again with an alternative A, say pHl 2 P or P+l 1/ o

depending on the situation. The program can be designed to terminate
the computation printing a message concerning the source of trouble
in case overflow persists, say, after a certain number of such re-
scalings have been tried.

The interval function A occurring in (8.14) is defined by the
expansion (8.13) and has a remainder term with a factor (Y)k eval-
uated over the region B, (see also figure 3).

In using a value og n larger than 1, we arrive at a first in-
terval solution value vy r; using (8.14) with some predetermined B
which is wider than we would get by using n =1 and B = A(X ri),
X0 Y()) .

In fact if we could somehow find a B such that

(10. 6) yDixx) =8

for a given X* = X(i) , then y(%) would be the narrowest possible
interval the method could produce at the end of one step for a given k.

The cost of using a new B for each new interval solution
value is the added cost of evaluating the Taylor coefficients (Y)j ,
j=1,2,..,k, over anew B at each solution point instead of once
for each set of n solution points.

For n>1, however, we would need n sets of coefficients,
within a given B, evaluated over the successive interval solution
points y ril) , anyway.

All things considered, (or at least several), we will set
n =1 and seek to determine, for given k and s, aregion B rea-
sonably close to that which minimizes the width of a one step inter-
val solution over X*, with X* chosen as wide as possible keeping
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the contribution of the remainder term to the ''relative'' width of the
resulting interval solution y; about as small as 275 .

This is similar to a ''variable step size' procedure based on
keepingthe "local truncation error'' approximately constant.

For the choice n =1, the intersection in formula (8. 14) auto-
matically yields the second term and can be dropped since we are
going to choose X* and B subject to the condition that

) CB.

(10.7) A(X*, %, ¥

In this case, the formula for the interval solution y; at X5 +Xx° a,
w(X*)

for 0 <x< , and using (10.1), becomes

-1
_ j k
(10. 8) v, =¥, +;E=1 (¥), % + (¥, x

where the coefficients (Y)j , i =12,..,k-1, are evaluated at the
previous interval solution, yq ; the coefficient (Y)g is evaluated
over the region A(X*,xg,yqy) given by

k-1 X*-x 0\ j X* - %0\ k
(10.9) A(X*,Xo,yo)=yo+j§/1 (Y)]< = > +(Y)k<——A—'—>

In (10.9) the coefficients (Y)j ,3=1,2,...,k-1 arethe
same as in (10.8); however, the coefticient (Y)x in (10.9) is to be
evaluated over the region B. The interval X* - xg can also be
written X* - xo = [0, w(X*)] = w(X*)[0, 1].

After describing our procedure for automating the selection
of B and X* we will finally get to the choice of k.

The remainder term in (10.8) is (Y)kxk and has width
w((Y)k)xk , (see the end of section 4 above). Since we are hoping
for a wide X%*,i.e., a large "step size', we will compare the width
of the remainder term with an estimate on the change in the solution
values rather than the solution values themselves. We take this
estimate to be (Y);x. On account of our normalization, ((10.5),
(10.1)) we therefore seek to determine X* =[xg,Xg + X A] with
X satisfying

(10.10) w((¥),) xk-27%%

where (Y)y is evaluated over the region A(X*,xq, yo) .
For numerical evaluation of the solution we use the ""nested"
form for the polynomials (10.8) and (10.9) in order to obtain smaller
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interval widths! See sections 3 and 4 above, and also compare (7.9).
From (10.9) we can expect the width of A and hence of (Y)

in (10. 8) to increase with the widths of the components of B, there-

fore we want the narrowest set of intervals for B = (Bl’ BZ’ cee Bm)

satisfying (10.7), namely Br = A(X*,xq,Yg). Inthe subsequent
discussion the arguments Xxg,yq are fixed and we will drop them and
write simply A(X*) = A(X*,xq,Yq) -

We recapitulate the implicit relations we have derived for the
determination of the desired X* and B.

(10.11) X*=x0+[o,>'<-A]
k-1 . i
(10.12) AX*) =y + L (V)10 %]+ (), (B) [0,%]
j=1 7
(10.13) w((Y), (A(X*)) 3K -27%%
(10.14) B = A(X*) .

In any case, if we use any X%, B which satisfy (10.7), in
the evaluation of (10.9) and (10.8) we will obtain an interval solu-
tion y) which contains the exact solution at the corresponding argu-
ment, (Theorem 6). Notice, in (10.12), that for a fixed B which
properly contains yo we will have A(X*) C B for sufficiently small
X .

There are many possible approaches to an iterative solution of
the equations (10.11), (10.12), (10.13), (10.14) for X* and B. We
have tried several with varying degrees of success.

The method we present here is slightly less elaborate than the
one actually used in the program "DIFEQ', [24], referred to in section
9, but it has also been used successfully.

For the first solution point computed from the given initial
values yg, we proceed as follows.

Assume that a region B and an X* will be chosen such that
w((Y)k(A(X*)) =1 with A(X*) given by (10.12). Then from (10.13)
we compute that

or

-s,1/k-1

(10.15) x=(27)

Using this value of X, we set
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(10.16) B=y,+(Y),[0,x] .

We then compute X*, A(X*) by (10.11), (10.12) and testthe
relation (10.7). If it is satisfied, we compute (V) (A(X*)) and
evaluate the interval solution Y1 by (10.8) at any desired points
x ¢ X*, in particular, at xg + X.4A for the beginning of a new Taylor
expansion.

In case the relation (10.7) is not satisfied, we compute a
new x using (10.13) and substitute our previously computed A(X¥*)
for B.

We then compute a new X*, A(X*) by (10.11), (10.12) and
again test (10.7).

Following satisfaction of (10.7) we always proceed the same
way.

In case of failure to satisfy (10.7) we alternate between the
procedure just described and the following: Replace % by (1/2)x
and reevaluate X*, A(X*) by (10.11), (10.12) again testing (10. 7).

For successive solution points, after the first, we use the
same process where y, is now the last computed interval solution
except that instead of (10.15) for the first trial value of X, we put

(10.17) B =y, +(Y),[0,x%]

where x* is the final value settled upon for x in the computation
of the last computed interval solution (i.e. » what we now call y,).

Using the B computed by (10.17) we get a trial value of %

from
-k -5 -
(10.18) w((Y)k(B))x =2 "x

We the compute X*, A(X*) from (10.11), (10.12) and repeat
the same process as was described for the first solution point, alter-
nately replacing B by A(X*) and cutting x in half until A(X*)C B.

It can be proved that after a finite number of replacements of
B by A(X*) not greater than the order of the differential system, m,
the resulting region B will at least have the correct number of dimen-
sions.

Areplacement of B by A(X*) with A(X*) ¢ B will usually
lead to a smaller x and, of course, so will halving %, hence we
can expect that eventually an x will be reached which is sufficiently
small to cause A(X*) C B.

Actually, in practice, we have observed that the process most
often terminates after the first replacement of B by A(X¥*).

Should an overflow, an underflow, or an attempted division
by an interval containing zero occur during the determination of the

bt
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Taylor coefficients being evaluated over a trial region B, which would
happen for example if B is large enough to contain (or even approach
too closely) a singularity, then the program we are designing should
be made to try again with a reduced region. _

This can be done effectively by halving x or x* and repeat-
ing the computation of B. A limit to the number of such halvings
allowed for each new solution point should be set no greater than the
number of binary places in the arithmetic used. The number of allowed
halvings will affect the distance of closest possible approach by the
program to a singularity of the solution..

The main difference between the procedure just described for
the automatic selection of X* and B and the one used in the pro-
gram, "DIFEQ", [24] is that in [ 24] we defined a certain quantity d
by the relation

(10.19) w((Y), (A(X%))) =>-<dw((Y)k(B))
and in place of (10.13) we use
(10. 20) w((Y), (B)) gkoltd _ ,-s

in order to compute X .

In many cases, this variation gave a suitable X* and B on
the first iteration. The form of the relation (10.19) was motivated by
a number of observations on actual computations and is of no parti-
cular importance for our purpose here. We have mentioned this vari-
ation because we will quote some numerical results obtained using
DIFEQ, [24], in the last section of this paper.

We have disposed of the selection (either by legislation or
an automatic process to be carried out by the computer) of the approxi-
mation parameters, A, n, B, X*, intrinsic to our interval method for
solving ordinary differential equations. We have left to describe the
selection of k, the number of terms to be used in the Taylor expan-
sions.

The procedures we have described thus far will yield solution
intervals whose widths vary little with k except that for very small
k, like k =1 or k =2, we can expect a considerable growth of in-
terval widths due to accumulation of roundings by the rounded inter-
val arithmetic over the necessarily large number of steps required.
For k =1, we will get very small values of x from (10.13).

On the other hand, the time required to carry out the computa-
tion in order to reach a given value of the independent variable x
will depend very much on k.

As can be seen from section 9 above, the time required to get
a set of values of the coefficients (Y)l, (Y) PERE (Y)k is roughly
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proportional to k¢ for a non-linear differential system.

Assuming that the computation time for a given point is pro-
portional to the time spent obtaining sets of values of the Taylor co-
efficients, then we wish to minimize T(k) = kZN(k) where N(k) is
the number of points required to reach a given value of x by the
successive expansions in interval-valued Taylor series which we
have described.

To get an approximate solution of this problem, we make the
simplifying assumptions that w((Y)x (A(X*))) =1 in (10.13) andthat
all the steps will satisfy X = 1/N(k). Then we have the following
relation from (10.13)

1 VKb
(10. 21) (m) =2 .
This gives s
(10. 22) N(k) = P

So we wish to minimize
(10. 23) T(k) = k%exp == log 2}
: = P19

as a function of k.
We take (10. 23) to define a function of a continuous variable
k and we put T'(k) =0 so that we determine k from

s
(k-1)

(10. 24) 2k - k%

> logez} =0 .

By this reasoning, then, we should choose k to be, say, the
nearest integer to the solution of (10.24), namely
(10. 25) k = nearest integer to {2 + (.346...)s} .

For example, (10.25) gives

k=11 for s

27, (single precision);

54 , (double precision) .

k =21 for s

Case studies were made using the program, ''DIFEQ", [24],
with variable k for a number of differential systems and the results
indicated that k = 9 gave close to the fastest computation times in
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all the equations tested with the single precision rounded interval
airthmetic on the IBM 7094 computer. We were able to determine this
by testing a clock built into the computer and we printed out the
actual computing times for various values of k.

As a result of the tests made we decided to incorporate the
fixed choices of k =9 and k =19 in our single and double precision
verisons of "DIFEQ'", [24], respectively.

More than likely, further research will result in a more sophis-
ticated automatic procedure for the determination by the computer of
an efficient choice of k depending on the particular equation being
treated and even on the particular point at which the Taylor expansion
is being carried out.

11. Numerical Results Obtained with the Interval Differential
Equations Program

In section 8 above, we derived a famliy of kth order methods
for computing intervals containing values of solutions of ordinary
differential equations.

The "interval solutions'' are obtained in a step by step fashion
by means of expansions at each step in Taylor series with remainder,
truncated at the kth term. The remainder term is evaluated in interval
arithmetic over regions made up of intervals constructed about each
new solution point. The step size is chosen so that the solution re-
mains in the constructed region for all intermediate values between
one solution point and the next.

In section 9 above, we presented a means by which the com-
puter can be made to derive recursion relations for the efficient com-
putation of both real and interval values of Taylor coefficients as
required by the interval differential equations method.

In order to take into account the finite precision of machine
arithmetic, 'rounded interval arithmetic', sections 2 and 3 above,is
used to evaluate the formulas, (8.14), etc.

We have made several references to an operating machine
program, "DIFEQ", [24], which incorporates the procedures just
described. In this section, we will quote some numerical results
obtained with the program. But first we will summarize the features
of the program which result from its incorporation of the methods des-
cribed in this paper.

1. Along with each computed approximate solution value Y, the
program produces a rigorous upper bound, e, on the total error. If y
is the exact solution value approximated by Y, then |y -Y| <e
holds. In order to obtain results in this form, the program, which
computes with interval numbers, simply prints the midpoint, Y, and
one half the width, e, of the interval solution.
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2. The only required input to the program is the differential system to
be solved and the initial values defining the particular solution desired.
The program during its execution on the computer determines all the
approximation parameter values intrinsic to the method such as initial
''step size', subsequent ''step sizes', etc. If the user desires, he
may specify values of the independent variable at which he would

like solution values; otherwise the program will print each solution
point it obtains along with a set of Taylor coefficients for interpolating
intermediate points.

3. In specifying initial conditions and equation constants for a par-
ticular solution, inexact data is allowed, i.e., data of the form, C+e.
These "initial errors' will also be taken into account by the program.
The program will then compute intervals which contain simultaneously
all solutions beginning with real values chosen from the given intervals
of initial conditions.

Example 1.

Davis, [5], has computed a table, (his Table I, Appendix 4),
of values of solutions of the equation defining the "first Painleve
transcendent",

(11.1) dzy/dx2 = 6y2 + A x

for the initial conditions X9 =0, yg =1, yb = 0 and for each of the
values \ =0,1, 2, 3, 4, 5,

The values are given to five significant decimal digits for
x = 0(.01)1. 00 except near 1. 00 where only three or four figures are
given.

Using the single precision version of our interval differential
equations program, ''DIFEQ", values and error bounds were computed
for x =0(.01)1.00, x =0,1, 2, 3, 4, 5,

This computation required a total of 1.5 minutes on the
computer.

The largest error bounds we obtained were 2 in the seventh
decimal digit for y and 4 in the seventh digit for y'. These oc-
curred at x =1, 00, =5,

By comparison, we were able to verify that the results given
in [5], (Table I, Appendix 4), are substantially correct except that
a number of values are off in the last place or two. For X\ =0, for
example, the values of y at x =0.79, 0.80 are given in [ 5] as
5.5570, 5.8277 whereas the correct values were determined by
DIFEQ to lie in the ranges 5.558583+ 1.6 - 10~ ,5.829493+],7- 10'6,
respectively.
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Example 2.

In [5] on p. 480 there is a table of values to ten places of

y(x) =2/(1+ e® ), for x = 0(.02)1.00; this function is the solution
to the equation

(11. 2) y' =xyly - 2)

with the initial condition y(0)=1.0. The equation (1l. 2) is used in
[5] to illustrate various numerical methods for differential equations.
We submitted equation (1l. 2) with y(0)=1.0 to DIFEQ; and
interval solutions were computed at x = 0(.02)1. 00.
The time required forthe computation was 0.1 minutes on the
computer.
The maximum width of the computed intervals occurred at
x = 1. 00, where the program obtained

-7
y(l) =.53788284 % 1.3 10

or
v(1) ¢ [.5378827], .53788297] .
The correct value, according to [5], to ten places is

y(l) =.5378828427 .

Example 3.

The equation

(11.3) v = y2

was given to the program DIFEQ with y(0) =1.

: The program computed interval solutions at 87 values of X;
the successive values of x at which solutions were computed and
at which Taylor expansions were made by the program grew close
together as x approached the value 1.

The solution of (1l.3) with y(0) =1 is, of course,

y(x) =1/(1 - x)

The last interval solution value computed was at x = . 99986639
where the program obtained
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y = 7486.06 = 5.68
or

y € [7480.38, 7491.74]
and printed the message:

PROGRAM UNABLE TO BOUND DERIVATIVES OVER -

. 99986639
7486.0641 £ 5,6762085 .

X
Y

The correct solution value rounded to six figures at
X =.99986639 is y = 7484.47.

Since the method used by the program, sections 8-10 above,
includes the bounding of derivatives of the exact solution over the
whole interval of values of the independent variable between succes-
sive solution points, it cannot integrate past a singularity where
values become infinite. It will stop short, in fact, at a point where
the range of machine numbers is exceeded, see section 10 above.

In [5], (especially pp. 263-266), Davis discusses the num-
erical analytic continuation of solutions into the complex plane in
order to integrate around singular points.

Example 4.

The differential equations for the so-called restricted problem
of three bodies are usually given as

(11. 4) XMooyt =y o BT W) (1 - p)x tp)
3 3
r R
y" o+ 2x! =y_ﬁ3l’ _(L'.?’L)X
r R
1
where r={(x-1+ u)‘2+yz}2
1
and R={(x+p)2+y2}2

Putting p =.01215, the equations become a mathematical
model for the motion in a plane of a space vehicle in free fall in the
earth-moon gravitational system.

With this value of p and the initial conditions
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x = 1.2
= 0
at t =0 (indep.var.)
x'= 0
y' = - 1. 0493575

We made a study of the effect of changing the number of terms carri-
ed in the Taylor expansions in the single precision version of DIFEQ.
The table below shows the results of the study. Since in equations
(11. 4), one of the dependent variables is denoted by ''x", we denote
the independent variable by '"t". For each of the values 5,6,7,8,9
for k, the number of terms carried in the Taylor expansions, we
have called for DIFEQ to integrate the system (1l.4), with the initial
conditions given above, up to the value t =1.00. The table shows
the computation time in minutes, the number of intermediate points,
(i.e., the number of Taylor expansions which the program actually
used in reaching t = 1.0), and the maximum error bound produced by
the computation, (which occurred in every case in x' at t =1.0).

No. of terms Computation No. of computed Max. error

in expansion time (min.) points bound
5 4.26 171 1.65. 107>
6 3.48 98 1.0l - 107>
7 3.21 67 7.30 - 107°
8 3.15 51 6.18 + 107°
9 3.38 43 5.61 ° 10°°

A similar case study was made with the same equations (1l. 4)
but with the initial conditions x = -1.98012-102, y = -1, 51 0621072,
x' = 9.5560068, y' = -4.856878 with the following results:

No. of terms Computation No. of computed Max. error

in expansion time (min.) points bound (at t =.0l)
7 4.28 89 2,95+ 107>
8 4,09 66 2.46 - 1077
5

9 4.00 52 2.33 10
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Example 5.
On pp. 85-86 of [16], Henrici considers the equation y' =-l6xy

with the initial condition y(=0.75) = 0.00221 59242 ... He computes
numerical approximations to the solution values at x=-0.50(.25)0.75
using the Runge-Kutta method with a constant step h = 27P for

p = 4(1)9; and lists actual errors and errors predicted by analytical
methods developed in the book. The agreement is very good; for ex-
ample, the errors for p = 7 are:

x=0 x =0.25 x = 0.50
actual predicted actual predicted actual predicted
18.10°% 19,1078 11078 12,1078 21078 2.1078

Using the program DIFEQ, [24], we obtained interval solutions
with the following actual errors in midpoints and automatically com-
puted error bounds, (half the widths of the interval solutions):

x =0 x = 0,25 x = 0.50
actual bound actual bound actual bound
-8 -8 -8 -8 -8 -8
2.10 14.10 1.10 23.10 .5.10 105.10

The time required to obtain the single precision interval solu-
tions at x = -0.50(.25)0.75 was 0.14 minutes on the IBM 7094
computer.

A corresponding run was made with the double precision version
of DIFEQ resulting in actual errors in midpoints and automatically
computed bounds on these errors as follows:

x =0 x =0, 25 x =0.50
actual bound actual bound actual bound
2102 110 L2107 21078 61079 8.1071°

The '"actual errors listed are only estimates based on departure
from symmetry. We did not have the exact results available to 16
places.

The time required for the double precision run was 0. 36 minutes,
on the IBM 7094 computer.

12. Conclusions

If a real number, x, is defined as the result of a finite sequence
of arithmetic operations beginning with a finite collection of real
numbers with known decimal representations, then the execution
by the computer of the corresponding finite sequence or rounded in-
terval arithmetic operations produces an interval, X, containing the

iy
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real number, Xx. By carrying enoutgh places, the width of X can be
made arbitrarily small. If s binary places are carried, then the
width of X will be proportional to 275,

Remainder terms in the truncation of Taylor series, etc., can
be bounded over regions with interval computations.

In fact, the concept of interval valued functions provides a
basis for the design of computational schemes for digital computers
which yield, as results, intervals of arbitrarily small width contain-
ing, for example, exact values of solutions to differential equations.

At the same time, the computer can be programmed to deter-
mine relatively efficient values of the various approximation para-
meters required by such schemes in order to guarantee desired
accuracy.

The use of Taylor series oncomputers is made practical for a
wide class of differential systems by a scheme enabling the computer
to derive recursion formulas for the efficient evaluation of Taylor co-
efficients.

The techniques for automatic error analysis we have presented
are for the determination of upper bounds to the overall error including
round-off, truncation, initial, accumulated, generated, etc. Infact,
our point of view was to consider computations designed to yield in-
tervals known by construction to contain exact solutions. Then the
half widths of such intervals are upper bounds to the actual errors in
the midpoints, regarding the midpoints as approximate solutions.

In order to study a given source of error in a computational
scheme, it is possible to modify some of the procedures we have
given by eliminating certain contributions to accumulated interval
widths. For example, by modifying the rounded interval arithmetic
programs so as to bypass the rounding procedures, we can cause the
interval arithmetic computations to ignore round-off errors generated
during the course of a computation. On the other hand, we can drop
the addition of remainder terms in the truncation of series, etc.

We have tried a number of such modifications of our error
bounding procedures. The errors predicted by computations of this
sort were, of course, smaller than the strict upper bounds obtained
by the rigorous bounding procedures. In many cases they were still
actually upper bounds, but in some cases the actual error was much
larger than the non-rigorous predicted error. In fact, with non-rigor-
ous error prediction, one can obtain numerical inverses of singular
matrices and can integrate past singularities of solutions of differ-
ential equations.
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