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INTERVAL ANALYSIS I

by
R. BE. Moore and C. T. Yang

INTRODUCTION

Digital computations by computers consist of finite sequences of psuedo-
arithmetic operations. On the other hand, the exact numerical solution
of a mathematical problem, if computable at all, often requires an infi~-

nite sequence of exact arithmetic operations,

The study of approximation by digltal computations is the underlying
motivation for the present study. A digital computation and the analysis
of its error as an approximation are usually carried out separately.
However, in the present study an interval arithmetic is devised which
forms a basis for a concomitant analysis of error in a digital computa-
tion. In this system, computations are performed with intervals and
intervals are so produced to contain, by construction, the exact numeri-
cal solutions sought. Hence an approximation and its possible error will
be obtained at the same time, choosing say the midpoint of an interval as

the approximation.

This report is the first part of our study, in which we first examine

some properties of exact or ideal interval arithmetic. After a prelimi-
nary discussion of the space of intervals (§ 1) we study addition, multi-
plication, subtraction and division of intervals (§§ 2-—5). Then we con-
struct arithmetic functions as compositions of these elementary operations
( §6ﬂ. As one may expect, arithmetic functions play exactly the same role
in interval analysis as rational functions in real analysis, so that there

is a relation between arithmetic functions and ratlional functions (§ 7).

-1~
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In the present report we apply interval analysis to the study of the

following problems, Let f(x) be a continuous real-valued function de-
fined on an interval [a,bj . (1) What is the image interval f(ta,b]) ?
(2) What is the definite integral gff(x) dx ? When f(x) is a rational

funetion, the approximations are given in theorems 1 and 2 (§§EL9). In
general, if f£(x) is an arbitrary continuous function, we may still have
approximation theorems 3 and kL (§ lO), although they are not as precise

as the first two theorems.

In forthcoming reports we shall apply interval analysis to differential
equations and report on results of machine computations using a digital
version of interval arithmetic modified to enable the computations to be
carried out with pseudo-arithmetic operations. (See also, IMSD-48421,
"Automatic Error Analysis in Digital Computation,” by R. E. Moore.)

1. PRELIMINARIES
Throughout the whole study R denotes the real line, Whenever a and

b are real numbers with a b, [a,b] denotes the subset of R con-
sisting of all the real numbers x with ag< x b . In symbols,

[a,b] = {%eR | a £ xK é} .
Let o be the set of all such sets [a,b] .

That means,

d = {La,b] | a,beR and a < b}>.

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION
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Then we have natural functions

p : R— d,
a : d —R,
p:+ d—R,
y + f — R,
¢ : d —R,
defined by
p(x) = [X)X] ’
oz([a,b]) = a ,
B [a,b]) =b,
7([8.,10]) = max {lal s ]bl} B
c([a,b]) =b ~a

respectively, where xeR and [a,b]e& .

Whenever x,x'€eR , we let
plx,x") = |[x - x'| .

Then p is a metric on R , that means, P has the following properties.

4

(L) Whenever x,x'eR, pP(x,x') = 0 if and only if x = x

1

(2) Whenever x,x'eR, p(x,x') = p(x',x) .

i

(3) Whenever x,x',x"eR, p(x,x") +0(x",x") >0 (x,x")

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION
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Whenever A,A'ed we let

p(a,a1) = max {o(aa) , o)), o (800) , BAN) }

Then P has the same properties as those p has on R so that P is

a metric on of .

As direct consequences of the definitions of p , P, a, B, ¥y , 0 we

have

(l—l) The function p : R—>Jd is isometric; that means, for any

x,x'eR ,
P <p(><) , p(X')) = p(x,x") .
Hence p maps R homeomorphically onto p(R) .
(1~2) Whenever A,A'ed ,

; o (aa) , ala))< 2(a,0') -

Hence the function o :o—> R is uniformly continuous, that means, for
any € >0 there is a © > O such that whenever A,A ed with
P(A,A7) < 8, we have p (oz(A) , a(A/)> < &,

Since unlformly continuous functions are continuous, it follows that:

(1~3) The function « :f =R is continuous, that means, for any
o Aedl and any &> 0O there is a ® > 0 such that whenever A'ed with
P(A,A'") < & we have p (a(A) s a(A')) <&.

y Just as (1-2) and (1-3), we have
(1~L4) Whenever A,A'ef |,
o (B(a) , B(A") )< P(A,A') .

| e
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Hence the function p:d —> R is uniformly continuous and consequently

it is continuous,

Using (1-2), (1-4) and well-known properties of real numbers, we have

(1-5) The functions 7y :d — R and o :d — R are uniformly con-

tinuous and hence they are continuous.

The following will be needed later.
(1-6) Let A,A'ed and let a>0 . Then P(A4,A') <o if and only
if the following two conditions hold.
(1) For every xeA there is some x'eA' with p(x,x') <a .

(i1) For every y'eA' there is some yeA with o(y',y) <o .

Wheneveyr Ie& we let

eQI = (Aed | AcI}

(1~7) Whenever Ied , “QI is compact; that means, every sequence in

J?I contains a convergent subsequence.

let 9— be the subset of d consisting of all the elements of d not

containing O .,
(1~-8) The set 9— is open in o ; that means, for every Ae9- there

is a positive number vy, such that every A'ed with P(A4,A") <y,
belongs to (}. In fact, we may choose y, =min {|a(A)],[B(a)]} .

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION
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2, ADDITION

There isg a function
®: d xdd—Jd
defined by

® (A,B) = (x + 5 | xeA and yeB)

1

Hi

[o(a) + afB) , B(A) + B(B)] , A,Bed .

The set @ (A,B) is also written A ® B . The function @ is called the

additiqn on &.

(2—1) The function p : R = Preserves the addition; that means,
for any x,yeR ,

p(x)@p (y)=p (x+7y) .

Because of (2-1), the addition @ on o may be regarded as an extension
of the addition + on R . This is the reason for calling @& the
"addition" on o .

(2-2) The addition @ is commutative; that means, for any A,Bed ,
A®B=BaA
(2-3) The addition @ is associative; that means, for any A,B,Ced ,
A® BoC) =(A®B)acC
(2-4) vhenever (A,B) , (A',B') edxd ,

P(A®B, A' ®B') < P(A,A') + P(B,B")

MISSILES and SPACE DIVISION
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Hence the addition & is uniformly continuous; that means, for any
€ >0 there is a & > 0 such that whenever (A4,B) , (A',B') edxd with
P (A,A') <® and P (B,B') <5, wehave P(A®B, A' ®B') <& ,

Proof. Let

A=[a,n], A

[a',0'], B=[c,a], B =[c',a"]

1t

Then

1

P(A®B, A'®B') .:P<[a+c ,b+da], [a +c', D +d']>
=max {p(a+c, a" +c'),p(d+d, Dd +4a')}
< max {p(a,a') +p(c,c') , p(b,b") +p(d,d')]

< max (p(a,a') 3 p(b,b')} + max {p(c;c') 3 p(d’d')]

=P (A,A") + P (B,B')
To prove the uniform continuity we have only to pick 8 = 8/2 ] q.e.d.

Since uniformly continuous functions are continuous, it follows that

(2-5) The addition @ is continuous; that mesns, for any (A,B)edxd
and any € > O ‘there is a& & > O such that whenever (A',B') edxd
with P (A,A') <& and P (B,B')<d, we have P (A® B, A'®B') < €.

3. MULTIPLICATION

Whenever A,Bed we let
® (A,B) = (xy|xeA and yeB} .

We claim that @ (A,B) ed

MISSILES and SPACE DIVISION



LMSD-285875

Let A =[a,®] and B =[c,d] . Then we have the following cases

(1)

(2)

(4)
(5)

(6)

(8)

(9)

If a;,ok and ¢ >0, then
® (A,B) = [ac,bd] .

If 2 >0 and c <0<d, then
® (A,B) = [be,pd] .

If a>0 and 4 0, then
® (4A,B) = [bc,ad] .

If a<0<b and c >0, then
® (4,B) = [ad,bd] .

If a<0<b and ¢<0<d, then

® (A,B) = [min {bc,ad) , max {ac,bd}] .

If a<0<b and 40, then
® (A,B) = [be,ac] .«

If <0 and c¢ » 0, then
® (A,B) = [ad,bc] .

If <0 and ¢ <0< d, then

® (A,B) = [ad,ac] .

If b0 and d g 0, then

® (4,B) = [bd,ac] .

-8
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Because of this result, we have a function
® : dxd>d

called the multiplication on f . Whenever A,Bed , the set @ (A4,B) is
also written A @ B .

(3-1) The function p : R —>d preserves the multiplication.

Because of (3-1) the multiplication @ on of may be regarded as an ex-—

tension of the multiplication on R .

(3-2) The multiplication @ is commutative; that means, for any
A,Becﬂ s

A ®B=B® A.

(5-5) The multiplication @ 1s assoclative; that means, for any
A,B,Ce&_ s

A®B®C)=(AQ® B)® C
(3-4) For any A,B,Cc—:o,o ’
A(Boec)c(A® B)o® (A ® C)
but both sides may not be equal. Hence the distributive law does not hold.
(3-5) Whenever (A,B) , (A',B')edxd
P(A®3B,A ®B')<y(B) P(4,A") + y(A") P(B,B")
Hence the multiplication is continuous.

Proof., Let xyeA @ B , where xeA and yeB . By (1—6), there is some
x'eA' and some y'eB' such that p(x,x') < P(A,A') and
o(y,y') <P (B,B") .

LOCKHEED AIRCRAFT CORPORATION MISSILES and SPACE DIVISION
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Therefore x'y'eA' ® B' and
plxy, x'y') = |xy - x'y'|

ly (x = x") +x'(y - y")|

]

’

y-y'|

<yl fx = ="+ |x!

<7(B) P(A,A") +7(A") P(B,B')

Let x'y'eA' ® B' , where x'eA' and y'eB' . Similarly there is some

xyeA ® B such that =xeA , yeB and

p(x'y" , xy) <y(B)P(A,A) +7(A") P(B,B") .
Meking use of (1-6) again, these results imply the first part of (3-5).

To prove the continuity of ® , we let (A4,B)edxd and let £€>0 .

Take
5 = min{ﬁ/(y(A) + 7(B) + 1), 1} .

Then for any (A',B')ed xdl with P(A,A') <& and P(B,B') < d we
b 2

have

P(A@ B, 4@5) <7(3)5+y(A)8 <7()s + (y(a)+0)0

S(?’(A) +7(B)+l>6 <& q.e.d.

It is not hard to see that the multiplication is not uniformly continuous.
However, since the restriction of a continuous function on a compact set

is uniformly continuous, it follows from (1~7) and (3-5) that
(3-6) Let I and J be fixed elements of o . Then the multiplication

@ "’QI X aQJ-—>-e,0

10~
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is uniformly continuous. In fact, for any A,A'€Il and B,B'€J we -

have

P(A®@ B, A'®B') <y(J) P(A,A") +y(I) P(B,B") .

L. SUBTRACTION

By (3~5) we have

(4=1) Tet E be a fixed element of A . Then the function @ g of
d into o , defined by

®p(A)=E @A, Aed

is uniformly continuous.

In particular, if E = [-—l, -17] , we have

(4-2) The function @ (-1 -1] ° d — d , defined by
1,
is uniformly continuous.

Whenever Acd , we shall abbreviate @ [-1, —1] (A) by -A . Since

)

-(-A) = A, ® [y 1] s & homeomorphism,

2

Combining the addition @ and the function @ [-1, -1] we define the
2
subtraction
© : dxd—d

by
© (A,B) =A® (-B) = {(x -y | xeA and yeB) , A,Bed

~1]1~
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The set © (A,B) 1is also written A© B .

From (2-1) and (3-1), it follows
(4=3) The function p + R = preserves the subtraction.
(4-b4) Whenever A,Bed |,
(-A) ® B = A® (-B) =-(A®B) ,

(-A) ® (-B) =AQ®B

From (2-4) and (4-2) it follows

(1+—5) The subtraction @ 1s uniformly continuous and hence is con-

tinuous. In fact, for any (A,B) , (A',B')ed xd ,

P(A©@B, A'©B') P(A,A") +P(B,B") .
5. DIVISION

For every A =[a,b]e{ (see §1),

ATt = {X—l | xeA} = [b_l, a-l]

is in (. Hence we have a function 7 : Qh—> . defined by

! 7(8) = A7% .

(5-1) Whenever JeQ , oQJ c ¢ and for any A,A'edy,
P(K*,A”)gy(i*}H%&AW.

Hence 1 1is uniformly continuous on oQJ ’ Jeg. , and consequently it is

continuous on 9~ .

! -12-
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Proof. Let A,A'e&J . For any xeA there is, by (1-6), some x'eA'
such that p(x,x') P (A,A') so that

0 (xwl,x'—l> = | x - xt | = | x* || ' x - x'
2 '
<7(3)" P(a,A")
Similarly, for any y'eA' there is some yeA such that

o <y"l)y—l> <y (J)E P(A,A") . Hence the first part is proved.

To prove the uniform continuity of 71 on eQJ s J69, , we let & >0 and
take ’

5= &y (J"l)z

It is clear that for any A,AIGQQJ with P(A,A') < 8 , we have

P(A"I,A"l) < (J“1)2 5=6.

To prove the continuity of 1 we let Ac{ and let £€>0, Take a
Je}  such that

a(Jd) <a(a) g p(A) <s(J) .
Then for any A'ed with P(A, A') <min {a(A)~a(J), B(J)-B(A)) ,
A'eQ». Hence the continuity of 1 on J?J implies the continuity of
T at A . qg.e.d.

Since (A-l)"'l = A,AcQ, 1 is a homeomorphism,

Combining the multiplication @ and the function 1 we define the division

@:&XQ.-*J

-13=
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by

® (AB)=A ® B " = {xy—l|xeA and yeB}, Aed and Be .
The set @ (A,B) is also written A/B .

Since for any real number x % O ,
b - ()
it follows from (3-1) that

(5-2) The function p preserves the division @

From (3-6) and (5-1) it follows
(5-3) Whenever Ied and Jef},

® :dyxdy —d

is uniformly contimuous. In fact, for any (A,B) , (A',B') ed1 x o5

we have
p(a/Ba/8) <7 (37 2(an) + 7 (57 ¥(D) P (5,8')

Hence @ : d x § —d  is continuous.

6. ARITHMETIC FUNCTIONS

Before giving the definition of an arithmetic function we remark that every
arithmetic function has a domain contained in o , an order which is a non-
negative integer, and a finite number of parameters which are elements of

d . An arithmetic function of order n with parameters A,,Ap, ... Ap
is written an)\ or simply F . It is a function from its domain
1B e Ay
BF) to J .
1l
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An arithmetic function of order n 1s defined by induction on n . When
n =0, the number m of parameters is either O or 1 . In the former

case 1t is the identity function p(0) . f — 4 given by
F(O)(X) =X Xed .
In the latter case it 1s the constant function F&O) ¢ o] = 4 given by
Fgo)(x) = A, Xed ,

where A 1s an arbitrary element of o . Notice that every arithmetic

function of order O has J as its domain.

ILet n be a positive integer and suppose that arithmetic functions of

order <n have been defined, Then every arithmetic function

géi Am of order n is defined as follows. There is an arithmetic
function F( s) of order s , 0 s ¢n~-1, with parameters
A1A2 L) A/z
A LA A,,O0¢< L d {thmetic function FL(O"17E)
vhss e Ay $lgm, andan arithmetic function F, = =, v Ay
A+1 f+2

of order n-l-s with parameters «++, Ap such that

A1+1’A1+2’

p(?) = F,° o p{n=15)

(s) o
= is given by
AAs oo Ay AA, ... A2 A2+1A1+2 con Am

5) (n~1~8)
(X)oF (%)
1A2 ces Aﬂ Aﬂ+1ﬁl+2 ‘e Am ’

where o is one of @, O, ® , ® and X is such an element of J that
the right side is well-defined. It is clear that if £ and £, are the

respective domeins of F&Sg . end F&é“lzs) A » ‘then the
e By parhpez 0 A
domain f of F( n) , is given by
AR, ... Ay
n-l—s :
Bn BN Fp ' Am if o is @,
o - TR
b n B, if otherwise.

-15-
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Let F Dbe an arithmetic function of parameters A,,A,, ..., Ay and

domain B(F) . We may write
FA,A,, ..., Ay 5 X)

instead of F(X) and consider F as a function of §" x &F) into d .
Notice that JH(F) depends on A A, ..., Ay .

(6-1) 1If F(B,,B,, ..., Bm ; Y) is defined, then for any
Credlp, 5 Coedln,, -+, Cuedp,, Zedy, F(Cy,Cp «-v) Cp 3 Z) 1is defined

and is contained in F(B,, By, ..., By ; Y)

Proof. If F is of order O , our assertion is trivial. Hence our

assertion holds for arithmetic functions of order O .

Now we proceed by induction. Let n be a positive integer and assume
our assertion for all arithmetic functions of order < n . By definition
every arithmetic function F of order n with parameters A,,A,, ..., A,

is given by
F(A, Ay ooy Ay 5 X) =F (A, ..o, Al;x) o FZ(AQ_HL, coey Ay X)),

where F, and F, are arithmetic functions of order <n and © is one

of ®,0,®, &

If F(By,Byy «+ey Bp 3 Y) 1s defined, then F,(B,, ..., By ; Y) and
Fz(BjLﬂ’ cvey Bp 3 Y) disin Q when O is @ . By the induction
hypothesis, for any Cle&Bl, 026&32, cee Cme&Bm,ZeJY, Fi(Cpy +evy G37)
and Fy(Cpiny +v+, Cpys Z) are defined and
F1(Cyy +vvy Cp 32) € F(By, «vv, Bys Y),
F2(C£+l, vees Cps Z)CFQ(B£+1, veny By Y)
-16~
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So FQ(CL+1, cee, Cm;Z)eg. when o is @® . Hence

F(C,,Cpy +vvs Cm3Z) =F,(Cp, +vey Cp32)0 Fo(Cpprs +ovs Cms 2Z)
is defined and 1s contained in F (Bl,Bz, ceey Bm;Y) . qg.e.d,

(6-2) If F(By, «.., By; ¥) 1is defined, then there is a number k>0

such that whenever Al’AZ'Le&Bj_’ ey A, AT'nz-:oQBm, X,X'edly , we have

P<F(A1, veey Ap; X), F(Ay, ..., A;n;x')>

<k <P (AL,AL) + oo + P(Ay,AY) + P(X,X')> .
Hence F is uniformly continuous on JZB;L X ... X ‘QBm X 'oQY .

Proof, When F 18 of order o it 1s evident that the inequality holds
with kX =1 . Therefore we may proceed by induction and assume the in-

equality for arithmetic functions of order < n .

Every arithmetic function F of order n 1is given by
F (A, «ooy A3 X) = F (A, oony By 5 X) 0 Fellpyy, ooy Am;x) s

where Fl and F2 are arithmetic functions of order <n and o is
one of @, ©,Q®,® . By the induction hypothesis, there exist positive

numbers k, and k, such that whenever A,, A'.lecQBl, cen, Am,AI'nee.QBm s

x,x'edy , we have
P <F1(A1, ooy By 3 X)), Fi(Ags ey A ; X')>
< k1<P(A1,Ai) Foee. P(Al,Ai) + P(X,X' )>
P <F2(AL+1, oy ALX) , Po(Agay oees AI;;X')>
< k2<P AppysBpp) +one t P (Ap,Ap) + P(X,X' )>
-1~
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By (2-4), (3-6), (4-5), (5-3), there exists a positive number k for

which our desired inequality holds. In fact, we can let

2 (k, + k) (7<J‘1>+7<J‘1>27<1>> o is @,
k =

2 (ky + kp) <7(I) +y(J) + 1> if otherwise,
where

I=F1(Bl’ ceey BL;Y)’ J=F2(Bﬂ_+l} AR Bm3Y)-

g.e.d.

(6-3) If F(B,, ..., By; Y) 1is defined, then there is a & > 0 such
that whenever A;, ,.., Ap, Xed with

P(A,,B,) <®, ..., P(Ay,By) <8, P(X,Y) <D,

F(Al, vee, Ay X) is defined and is continuous.

Proof. If F 1is of order O , then our assertion 1s trivial. Therefore,
we may proceed by induction and assume our assertion for arithmetic

functicns of order <n , n>0 .

Every arithmetic function F of order n 1is given by
FA,, ««oy A3 X) = Fi(Ay, .o, Aps5X) 0 Fo(Apyy, «ovy Aps X)),

where Fi and F, are arithmetic functions of order < n and o i1is one

of ®,©,0, 6.

By the induction hypothesis there is a positive number 8 such that when-
ever Ay, ..., Ay, Xed with P(A,,B,) <B, ..., P(A,,B,) <B,P(XY)<5,
both Fy(A;, ..., Ap; X) and Fo(Ag.,, ..., Ap; X) are defined and con-
tinuous. If Fo(Bpyy, «+., BpsY)el, we may choose d so small that
Fo(Bgi1, «oos Aps X)eg-. Hence F (A, ..., Ay ;X) is defined and is

continuous.
q.e.d.

-] 8
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It follows from (6~1), (6-2) and (6-3) that
(6-4) Let F be an arithmetic function with m parameters and let
U= (A, ooy A X)ed™H|P(Ay, ..., Ap3X) defined)

Then U 1s open in &m+1 and P i1s a continuous function of U into

d . Moreover, for every (By, ..., Bp; Y)eU, eQle e XeQBmx dy = U

and F 1s uniformly continuous on e,Qle x&B X&Y . Furthermore,
m

(Ay, «vuy Am;X)eJ?le Xo,QBmx&Y implies
F(Ay, +ovy Ay X)CF(By, +v0y By Y) .

When we write F(X) in place of F(A,, ..., Ap; X) 1t 1s understood that

parameters A,, ..., Ay are fixed. Since

1_)
(F) = (Xed | F(X) defined}

it follows from (6-4) and (6-2) that

(6-5) TFor every arithmetic function F , B(F) is open in d and
F:(F)~ § is continuous. Let Ie(F) . Then JICZB(F) and Xed
implies F(X)C” F(I) . Moreover, there is a positive number Xk such

that whenever X,X'ed; ,
P (F(X), F(X' )> < kP (%,X") .
7. RELATION BETWEEN ARITHMETIC FUNCTIONS AND RATIONAL FUNCTIONS.
In the construction of arithmetlc functions, if we replace d by R and

replace @, ©, ® , ® by corresponding operations on R , then we obtain

rational functions in place of arithmetic functions. Therefore, we can

establish a relation between arithmetic functions and rational function,

-19-
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An arithmetic function is called special if all of its parameters belong

to p(R) .

(7-1) If F is a special arithmetic function of domain B(r) , then
p”l(B(F)> is open in R and for every xep—'l@(F)) , Fp(x)ep(R) .
Moreover, there is a unique rational function f whose domain contains

p"lO9CF» such that pf = Fp or f = p 'Fp .

e

p(B(F) —2— B(x)

As the converse of (7-1), we have

(7-2) Given any rational function f of domain D(f) there is a
special arithmetic function F of domain B(F) Dp(D (f)> such that

£ =p ‘Fp .

Remark. It is possible to have two distinct special arithmetic functions

F, and F, such that p—lFlp = p—lep . For example,

F,(X) =(X®X) ®X,

F (X) = X® (X@ pm) ) Xed ,
give two arithmetic functions F, and F, of domain . It it clear
that ’

(27 Fp)(x) = %%+ x = x(x +1) = (pFp)(x) .
Since

(1, 0]) =110 5wl 0])=[1,0]
F, and F, are distinct.

~20—
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let F be an arithmetic function with parameters Aj, ..., Ay Let

G be the arithmetic function with B, ..., Bp in place of Ay, ..., Ay

respectively; that means, it is given by
G(X) = F(By, .++y Bnj; X)

If B,CC Ay, ..., By Ay , then, by (6=k), E(F)C:B(G) and for every
%B(F) , G(X)CF(X) . Hence the relation that B & Ay, ..o, By & An
will be written

GCF .
let f be a rational function and let F Dbe an arithmetic function. If
there is a special arithmetic function GCF with f = p"le , we say

that f is an associated rational function of F or that F 1s an
In particular, if G = F and then

assoclated arithmetic function of T .
f::p"le , we say that F 1s an associated special arithmetic function of

f and f is the assoclated rational function of F .

8. TFIRST APPROXIMATION THEOREM

Let Xed . By a subdivision of X we mean

‘ £ = {%1) Eoy =v e 5%}

such that

a(x) = ale,) <p(ty) =alty) <plE) =ales) <

. <B(e,,) =alt,) <p(e,) =p(X)

For every subdivision ¢ = {gl, Eoy cooy g;} we let

() = maxo(s,), ole), oo o (8} -

-0]-
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Let f Dbe a rational function of domain D(f) ; let G be an associated
special arithmetic function of f and let F be an associated arithmetic

function of f with F D0 (see § 7.

Let I be an element of o contained in D(f). Then for every xed B
6p(x) = pf(x) is well-defined. Since, by (6-5), the domain &(G) of
G 1is open, there is, for every xeI , a positive number r, such that

whenever Yed with P (p(x),Y) < Ty G(Y) is well-defined. Let

IX = [X—I'X/E, X+ I'X/2] .

Then G(Ix) is well-defined.

Since I 1is compact, there exist a finite number of points of I , say

..., Xt , such that I 1is contained in the union of the interior

Qi = C;i— pxi/E, xi+-rxi/é>

X1, Xp

of Iy ,1=1, .., rt . We abbreviate Iy, Dby Ij .

Let By, ..., By be the parameters of G and let A,, ..., A, be the

parameters of F . By definition,

By, ++oy Bpep(R) ;

B Ay, oo, B Ay

G(Y)=F(@By, ..oy Bys ¥) , YeB(a) ;
F(Y)=F @Ay, +ovp Ap3Y) , YeB(F) .

By (6~3) there is, for every 1 =1, ..., t , a ©;>0 such that whenever
o(Ay)<®;, «.., 0(Ap) <B; , F(I1) is defined. Let

35 = min {al, ey at}

-0
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Then whenever o(A;) < 38, ..., o(Ay) < 38, F(I;) is defined for
all 1.

By a well-known theorem on compact metric spaces there exists a &' >0
such that whenever YeQQI with o(Y) < &', Y is contained in one of

I, -+., It 8o that F(Y) is defined by (6-5).

Let  Xedp and let g:{gl, oy gr} be a subdivision of X with
o(e) < &' . Then
F(X,t) =F(e)U...UF (&) ,

Z(F,X, )= (F(gl) ® pcr(e,l)) @... D (F(ar) ®po(er>)

are well-defined when the parameters A,, ..., Ay satisfy
o(A)) <38, ..., a(Ap) <38.
Clearly =(F,X,t)ed . Since for every J =2, «cv, T,
R(e, ) MRz ) aF(aley) 40

it follows that F(X,t)ed .

By (6-2), there is, for every 1 =1, ..., t , & positive number ky

such that for any Y,Y'e&li,
p(o(v), o(x")) < mE(L,Y')

P(F(Y), G(Y)) < ki<g(Al) + e O(Amb

hold where the parameters satisfy

o(hy) <B, ..o,y o(Ay) < B,

and ky 1is independent of the parameters.

—D%—
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P(F(Y), G(Y')> < k(P(Y,Y') + 0(A) + oo U(Am)>

In fact, there is a finite sequence
Y, = Y,¥s, +ov, ¥Yg = Y'

in &I such that

0(Yy) = ... = o(¥y) = o(¥') ,
alYy) < oo < aYy) = a(Y')
and Yj—l and Yj are contained in the same I; for some 1 . Hence
kP(Y,Y') = k<P(Yl,Y2) Foeee P(Ys_l,YS)>
> P<G(Yl), G(Y2)> el P(G(Ys_l), ,G(YS)>
> P<G(Y) s C—(Y'))
Moreover

k@(A )+ e + o(Am)> > P<F(Y) » G(Y»

Our assertion thus follows.

Now we are ready to prove

Theorem 1. Let f be a rational function of domain D(f) , let G be

an associated special arithmetic function of f and let I Dbe anvelement

of o contained in D(f) . Then there are positive numbers &, 3d', k

such that whenever F 1is an associated arithmetic function of f with

-2l
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parameters A,, ..., A, such that F DG and o(A)) <3, ..., o(A,)<3,

X is an element of JI and & = {gl, veny Er} is a subdivision of X

with o(&) <8' ,
F(X,&) = F(&,) U ... UP(E,)

is defined and satisfies

£(X)C F(x,t)C £(X) @ [~«, K] ,

where

1

£(X) {f(x) | xeX} ,
kG(&) + o(A)) + o0 c(Am)> .

K

1]

Proof. Let 8,3',k be chosen as above. Let F be an associated arith-

metic function of £ with parameters Al, «vs, Ay such that FC G and

o(A;) <8, ..., o(Ay) <B . Let Xedy and let & be a subdivision of
X with o(E)<8' . We have shown that F(X,&) is defined.

For every yef(X) there is an xeX with f(x) =y . Let xeks . Then,
by (6'5);

y = f(x)eFp(x) F(EJ)CF(X,E) .
Hence f(X)C F(X,E) .
For every yeF(X,&) , there is a gj with yeF(gj) . let =xety , Then
1,3<E'J' ,p(x)> < q(gj) < og(t) . It follows that

p(F(ty), op(x)) < k(o(E) + o(A)) + ... + olay))

or

p(F(t,) , p(x) < & -

~25—
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Therefore

yeF(& ) pf(x) @ [~k , «]

c (X)) @ [~«, ]

Hence F(X,t)C £(X) @ [~«, «] - g.e.d.
Corollary 1. Let f be a rational function of domain D(f) , et G Dbe
an assoclated special arithmetic function of f and let X be an element
of J contained in D(f) . Let P De an assoclated arithmetic function
of f with parameters A,, ..., A, such that ¥ DOG . Then whenever ¢

is a subdivision of X with small o(t) and o(A,), ..., 0(Ay) are small,
F(X,t) is defined. Moreover, as o (&) + a(A;) + ... + o(Ay)—>0 ,

lim P(X, ) = £(X) ,

that means,

lim P(F(X,g) , f(x)) =0 .

9. SECOND APPROXIMATION THEOREM

Theorem 2. Let f be a rational function of domain D(f) , let G be
:i an associated special arithmetic function of £ and let I Dbe an element

of 4 contained in D(f) . Then there are positive numbers 3&,8',k such

W‘ that whenever F is an associated arithmetic function of F with parameters
Ay, ..., Ay such that F DG and o(A;) <&, ..., o(Ay) <&, X =[a,b]

is an element of eﬁI and ¢ is a subdivision of X,

Z(F,X,t) = (F(gl) ® pc(gl)) D ... D (F(er) ®po(er)>

1s defined and satisfies

P @bf(x)d% c o(F,Xt)cp <€£bf(x)dx> + [—KO(X) s KO’(X)] ,

A
-6
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where

K:k@@)+c@ﬂ+.”-+d%9.

Proof, Let 8,8',k be as before. Let F be an associated arithmetic
function of F with parameters A,, ..., Ap such that F DG and

o(A,) < B, ..., o(Ay) <B . Let X = [a,b] be an element of dy and
let & = {?l’ Cevy g%}- be a subdivision of X with o(g) <8' . We

have shown that X(F,X,&) is defined.

Let
inf L SUP pryy)
J_xegj £(x) Mj xe-:t:,J (x)
Then
=sF om,o(E,) < fbf(x)dx<z?’ M, o(t.)
J=1 J J' T 4 S Ti=1 ) J

Since gj is compact, there is a point X5 of gj with f(xj) =m. .

J
Then
my = £(x) eFp(x;) CF (&)
so that
mjo(gj) eF(&,j) @ PU(EJ)
Hence
%;lmjc(y)ezﬂﬁ&i)

Similarly we can show that

r .
Eoa My o(gj) e2(F,X, &)

-2~
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Since x(F,X,t)ed , it follows that

b
P Q f(X)dX) c Z(F)X) E,)
Let X3 be as above, Since

P (ej, p(xj)> < c(ej) < o(e) ,

it follows that

P <F(ej), Gp(xj>> < k(cr(e) +a(A) + oo+ G(Am)> = K

so that
F(e,) = p(m,) @ [k, «]
Therefore
(e, ® v0(s ) p(ny o(s)) @[ o(ey), kot )]
Hence

r
Z(F,X,g)Cpéj=l m, a(gj)> @[—K o(X), KU(X)] .
Similarly we can prove that
T
i(F,X,E)C p (23-_-1 m, o(ej)> ® [~r< a(X), « c(X)]

Since x(F,X,t)ed , it follows that

NP, X, ) pC{b f(x)dx> @[—K o(X), « c(X):l .

q.e.d.

Corollary. Let f be a rational function of domain D(f) , let G be
an assoclated special arithmetic function of f and let X = [a,b] be an

-8~
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element of d contained in D(f) . Let F %be an associated arithmetic
function of f with parameters A,, ..., Ay such that FDOG . Then
whenever & is a subdivision of X with small o(g) and

o(A,), «.., o(Ay) are small, x(F,X,t) are defined. Moreover, as

o(t) + o(Ay) + ... + o(4y) — 0,

b
lim =(F,X,&) = [ f£(x)ax ,
a

that means

lim P(x(F,X, &), p(fb f(x)d.x> = 0

10. APPROXIMATION OF A CONTINUOUS FUNCTION BY ARITHMETIC FUNCTIONS

Iet I be an element of of and let f = T —>R be a continuous function.

Let
o)

be a sequence of arithmetic functions such that p(I) is contained in the

domain BX(F ) for ell n . If for every xel,

F,p(x) DFyp(x) D ...

and
(59
N> Fo(x) = p(x)
we say that {fn}‘ converges to f . In symbols,
lim
N> Tp = f .

(10-1) Let f be a rational function of domain D(f) and let I be

an element of o contained in D(f) . Let F be an assoclated arithmetic

29~
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function of f with parameters A,, ,.., Ay . Then for every £>0
there is & & >0 such that 1f o(A;) <, ..., o(Ay) <& , then for

every x€I , Fp(x) is defined and 0(&9(x)) <&.

Proof, Let G be the assoclated special arithmetic function of f with
FDOG end let By, ..., By be the parameters of G . By (6-3) there
is, for every x€I , a &, >0 such that if P(A;,B;) <8y, ...,
P(Ay,By) < 8, and X is an element of of1 with P(X,p(x)) < By

then F(X) is defined and PQ?‘(X), Gp(x)> < &/2, Since I 1s compact
there exist a finite number of points of I , say Xx,, ..., Xt , such

that the uwnion of

contains I . Let

5 = min {ax ) eee axt} :
1

It follows that if P(A,,B,) <& ..., P(Ap,By) <&, then for every xel,

c(%ptx» < &

In fact, there is an x, with Pé)(x), p(xj)> < 8, so that

J
P(FP(X), pf(x)) < &/2 . Hence
o<?p(x)> < € . g.e.d.
Let f be a rational function of domain D(f) and let I be an element
of f contained in D(f) . By (10-1) we can easily construct a sequence
~30-
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of arithmetic functions

F;DFsD...

such that for every xeI ,

0<%np(Xi> <1l/n n=1,2, ... .,

Hence
lim
n>ow fn =1

This result can be extended as follows.

(10-2) For every continuous function f : I — R s Ted , there is

a sequence of arithmetic functions

Fn, n=l,2,...

with

lim
n—>ow Fp =1 .

Proof. It is well-known that every continuous function can be approxi-

mated by polynomials. For every integer n > 1 we let fn, be a poly-
nomial such that for every xel , p(fn(x), f(x)> < 1/(6-3%) . By (10-1),

there is an arithmetic function G, such that for every xeI , an(x)

is defined and
n
P@np(xb an(x)) < 1/(6:3%)
Let Fp be the arithmetic function such that

Fa(X) = 6u(X) @ [-/(6:3%), /(63 ] xeM(ay,)

31~
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Then for every xeI , Fyp(x) 1is defined. Since
P@nP(X), pf(x)) < P<an(X), pf;l(XD + P@fn(X), pf(X))
< 1/(6:37) +1/(6:37) = 2/(6-37) ,

it follows that

p£(x)C Gup(x) @ [-2/(6-5%), 2/(6:3%)]

¢, p(x)C pf(x) @ [-2/(6-3), 2/(6-5%)] .
Hence

pt(x) © [-2/(6:3%), 2/(6:3%) ] € Fyp(x)

Cpe(x) @ [-1/37, 1/37]

Congequently

Fn+l_p(x)<: pf(x) @ [—I/Bn"'l, l/3n+1]C F p(x) .

Since 0<an(x)> < 2/3" and nlf;“w 2/3% = 0, it follows that 1im F, =f .

g.e.d.

et I be an element of J and let

§={§1; ceey gr:}’; n ={711)"") 7]5}

be subdivisions of I . If there exist integers 1g<J(1)<i(2)<...<j(r)=s

such that for every 1 =1, ..., 1, {nj(i—l)ﬂ.’ cray nj(i)} is a sub-

division of E, , we write & <4 n and call 71 a refinement of ¢ .

Let Ied and let F be an arithmetic function with S(F)D p(I) . As
before, there is a positive nunber & such that whenever XGJI with

—5 P
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o(X) <, P(X) is defined. Hence if ¢ is a subdivielon of I with
o(t) <&, both F(I,t) and x(F,I,t) are defined.

(10-3) Let F be an arithmetic function and let & = {gl y ey gr}
be a subdivision of Ied such that F(t;), ..., F(&,) are defined. Then
for every refinement 7 = {nl’ cen, ns} of &, F(ny), ».., F(ng) are

defined so that PF(I,n) and Z(¥,I,y) are defined. Moreover,
F(I,7)cC F(Lt) , %(F,I,n) < (F,1,¢)

(10-4) TLet Ted and let F be an arithmetic function. ILet
E = {gl, cees gr} be a subdivision of I such that F(&;), ..., F(&)

are defined, and let

(2)

e =t 0Py

be a sequence of subdivisions of I . Then _FC[,E(n)> and Z(F,I,E,(nD

are defined for all n and

F I,g(l)) DFGZ,g(2)> i S
z@,l,g“)) :z@,l,g(zb =..
e A oé(n)> =0, then ﬂ::lF<I,§(n>> and ﬂ:=12<F,I,§(n)> are

independent of the choice of €& and {g(n)} .

Proof. Let 1n = {"1: cony ns} be a subdivision of I such that
F(n,)s «-e) F(ng) are defined and let ¢ = {gl, ceoy Ct} be a refinement

of 7 . By definition, there are integers 1 J(1) < ... < j(s) =1

“~53m
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such that for every i =1, ..., 8, {gj(i—1)+1’ ceny Cj(ii} is a sub-

division of =n; . It follows from (6-5) that

F@j(i-—l)ﬂ)‘:F(ni)’ cen, F<§j(i)>c: F(ni)

Henee
F(I,¢) = F(¢,) U ... UF(ty)

cF(n) U ... UF(ng) = F(I,n)

As a consequence of this result we have

FG’E(lD o F(I,g(2)>:>

°‘ @(Cju_l)ﬂ ® P"@j(i—1)+1>> ©.-9 G@J(i) ® P“@J(i)))

- 6@3(1-1)-»1)) "(Cj(i-l)+1> o a@@d(ﬂ)) "@s(i))
>0 @‘“i’) 0<Cj(i_1)+l> e ¥ °‘<F("i)> "(gj(i))

- o (7(ny)) o(ny) = a(Fn,) @ veln,))

Since

and similarly

P @Cj(i-—l)+l ® pc(gj(i—l)H)) ©:r @ @@3(10 ®pc<cj(i)>>>

<p (F(n) ®vo(n,))

~Bl
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it follows that

6@3(1—% ® p"@au—l)u)) ©-® 6@5(1) ® P"(C.jm))

< F(ny) ® pa(ny)

Hence

55,15, = (R(t) ® 95(ty)) @ ... @ (¥(t,) ® voc,)
< (F(n,) @ 2o(n,) @ .. @ (F(n,) ® po(n,)) = Z(F,L,0)

From this result it follows that

Z(F,I,E(l)) o ZG’I,§(2§ ...

Now we assume nl_:;mm UG(HD =0. Let n = {ql g sasy ns} be a sub-

division of I such that F(n-l), ceey F(qs) are defined, and let
1 2
RERO PRSI

be a sequence of subdivisions with nl.ﬂnw GG(H)> =0 .

% (n) -
Let £€>0 . For any ye€ ﬂn_l P\I,t there is a sequence

(1) (2)

51(1)351(2) Denae

(n)

in J . (n) (n)
in such that for every n =1, 2, ..., E’i(n) €t and F E’i(n) 3y -
(n)

Since nlE;noo 0<§(H)> =0, ﬂ:::l E’i(n) contains a single point x . By

(6-5) there is a & > O such that whenever Xedy with P<X,p(x)> <5,

_35_
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F(X) is defined and P<F(X), Fp(x)> < & . Since nl_l,flw UG(H)> =0,

cr<n(n)> < % holds for all large n . ILet n(ln) be the element of n(n)

containing x . Then PG(E)) p(x)> < 8 so that P@G(lnb Fp(x)> < &’ .

Hence for all large n

yeFp(x)C F n(in)> @[-¢,e]c F(I,n(n)> o[-¢,e]

This proves that yenn“;l F<I,n(n)> ® [__ £,&] . Since y 1is an arbitrary

point of ﬂ:ml F(I,é(n)>, it follows that

ne F(I,g(n)>c ”:=1 F<I,n(n)> o[-¢,¢]

Nn=1

Similarly,

N, F(I,n(n)> cn_ F<I,§<n)> o[-e,6] .

N=

Applying (1-6), we have
% (n o < (n)
nn=1 F(I,E, )> = nn:1 F{I,n ) .

In order to prove that ﬂ;o_l Z(F,I,g(n)> =N Z@‘,I,n(n)> , We may assume

n=1

O(I) >0 , It is sufficient to prove that for every integer m » 1 and

every &> 0,

Z@,I,g(mD ® [“8;8] DZ’<F;I;T](H)>
holds for large n . In fact, if this is proved, then

z@,l,e(m)) o[-¢,¢] :nn“;l z@,l,n(n)> .

Since & is arbitrary, it follows that Z@,I,E(m)> on z@,l,n(n)>

‘;56_
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Since m i1s arbitrary, it follows that

2, o) o, o)
Similarly,

Z‘.(F,I,n(n)> :)ﬂI:;l z@",l,g(m)) .

Hence our assertion follows.

Now we let m be an arbitrary integer > 1 and let §<m) :{AI, vy Au} ,
Let €& be an arbitrary positive number < 1 . By (6-3), there is, for
every xe€l , a positive number r, such that whenever Xed with

P(X,p(x)> <ry . F(X) is defined and P< X), Fp(x>< S/uQF<I £ +1

Since I 1s compact, there is a & > O such that whenever Xec!l with

o(X) <5, P@,p(x)) < ry for some xel .

Since nl}_;nw OG(n , there is an integer n, such that
G <m1n€8/u<<<l§ >>+D
for all integers . Let n>ng and let
n(n) = {Bl, ceoy Bv}
For every i =1, ..., u, there is a largest integer j(i) with

B(Ai)ij(i) . Clearly

1< 3(1)gi@) g .. g 3u) =v
Since J(i) , DB Ai)> <%, it follows that
<<J( )> FpA(Ag )>< 5/11((6 (m>> ¥ 1>< 1
...3"(-.
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Therefore
F@j(ch Fpp(a) @ [-1, 1] cr(a) ©[-1, 1]
and then
7€@J(i)>® p“@j(i)>>< G@(AiD * 9 y0))
() ) )
Hence

117<<J<i>®1°° J(i>> <<@€ »*9% Cyn)
<Q€<ﬂ,gm)>>+1>uo<n(n <a

oo sdorudeces

Since, for every k = j(i-1) + 1, ..., 3(i) - 1, B, C A, it follows
that

@é:l(i-l)vu ® p°<BJ(i—1)+1>>® e @ €@J(i)~l>® ? O@J’(i)—l)>
C:F(Ai)®pcr(Ai) s i=1, .., 1

Hence, by adding these equations, we have
ZG,I, n(“%: ZG,I,g(mD o[-¢,¢]

This completes our proof. qg.e.d.

_38_
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Let F be an arithmetic function with domain S(F) . Let 4F be the
subset of o consisting of all the elements X of J with p(X)cH(F) .
Then, by (10-4), we may define a function

F: ff —>d

by

F(x) =N F@,e(n)) ,

: 1 2
where XedF and g( )< g( ).< ... 1s a sequence of subdivisions of X

with 0 “@(no -0

(10-5) Let X and Y be elements of fF with B(X) = a(Y) . Then
XuYeddF and

F(XvY) = F(X) v F(Y)

Proof. 8ince PB(X) = oY), XuYed . Since XuvYedF , p(X)B(F) and

p(Y)C B(F) . Hence p(XvY)C S(F) and consequently XuYedF .

If Yep(R) , then F(Y) = F(Y)( F(X) so that our assertion is obvious.
If Y¢p(R) , then we may have a sequence of subdivisions

n (n)
) = {5(1 )) *> Er(n)
of XvY such that g(l) <4 5(2) { ooey lim 0<§(n)> = 0 and for every

integer n there is an integer s(n) with B(s(n)) B . Therefore

ARGy

2
is a sequence of subdlvisions of X such that 'q(l) < n( )4 .es and

l_iflw o((n)> =0 ; and Q( n) _ { il(lr)l)+1 . gir(ll)l) is a sequence of
_59_
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subdivisions of Y such that z_;(l) < Q(z) < ... and ri"ifnm u@(n)) =0 .

Since :
ot ) <o) 1),

it follows that

F(XvY) = F(X)v F(Y) . q.e.d.

(10-6) TF : §F —> £ is continuous.

Proof. Let YedF and let € >0 . Since F(x(Y)) 15 defined, there is
a 5 >0 such that whenever Zed with o(Z) <& , PQZ, pa(Y)) <B®,
F(Z) 4is defined and P(F(Z), Fpa(Y)>< e/l . Since

F(z) DF(z) DFpa(Y)= FpalY) ,

we have

P(F(Z), Fp a(Y)) < E/n

Similarly there is & &' > O such that whenever Z'ed with P<Z', pﬁ(ZD< 5',
F(z') 1s defined and

p@‘(z' ), Fo B(Y)) < &/

For every Xedp with P(X,Y) <min (8,8"') we have Z, Z'ed such that

P(Z,pa(Y)) <35 , P(Z', pa(y)>% 5'

and one of the f‘oliowing holds:
(1)  ofx) =afz), B(2)=oy), 8(Y)=oz"), p2")=p(X) ;
(2)  ox) =fz), B(X)=0ofz"), B(2)=0c(Y), B(2") =p(Y)
(3)  ofz) = oY), B(2)=ofx), B(Y)=alz'), B(X) =p8(2")
()  ofz) = oY), B(Z)=a(x), B(X)=0oz"), p(2")=p(Y)

- -

.

40~
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In case (1) we have, by (10-5),

F(X) = F(z)vF(Y)vF(z")
Then F(X)DF(Y) . Since

F(Z)CFraY) @ [— g/2, 8/2] CF(Y) @ [—e/e , e/e]

and similarly,

Fz')C Ty @[-92, &) ,
it follows that

FX)CFY) @ [— 5,&] .

Hence P(f(x) s F(Y)>< £ .
In case (2), we have, by (10-5),

F(X)vF(z') = F(2) vF(Y)

since W(2) C F(v) @ [-¢/2, ¢/2] and F(z')C F(Y) @ [— £/, 5/2] , it

follows that F(X)C F(Y) @ I:— &, e] . On the other hand,

P(F(z' ), Fp s(x)) < P<F(Z'), Fp B(Y)> ® PCF_p B(X), Fp B(Y)>

< &/ + &/ = &2
so that

F(z')C F(X) @ [— g, 5/2]

Hence F(Y) C F(X) l: g, €:| This again proves that P@—(X), F(Y)>< €.

-4~
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Simllar argument shows that our assertion also holds for the other two

cases, g.e.d.

(10-7) Let I be an element of § and let f : I -—> R be a con-

tinuous function, Let {Fn} be a sequence of arithmetic functions with
lim
0 —> 0 Fn =T . Then

F,(I) DF,(I)D...

and nn°°=l F (1) = £(1) .

Proof. Let n be an integer > 1 . Ilet &> 0. For every xed
there is an r > 0 such that whenever Xed with P<X, p(x)> <rTg,
Fn(X) and Fn+1(X) are defined and P@nﬂ(x) , Fn+lp(x)> < &. Let

® be a positive number such that whenever XeJI with o(X) < d , we

have PG(, p(x)> <r,  for some xeX .

Let & = {gl, cee gr} be any subdivision of I with o(g) <® . For

every i =1,..., v , there is an x;eI such that P<§i, p(xi)>< rx; -

Then
Fo,(8)CF  p(x)® [- a,e] CF op(x) @ [, e,e]
F(1,8) ® [— &,a]
g0 that
Fa(LE)CF (LE) e I:- 8,8] .
Hence

F (I)CFH(I)@[—E;,&] .

n+1

_ 0
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Since & 1s arbitrary, it follows that

%’ml(I)c Tr'n(l) .

This proves that

F,(I) DF(I)D...

Clearly Fn(:l:) Df(I) forall n. ILet &>0.,
For every n=1,2, ... we let
I, = {xe I I P@np(x), pf(x)>> 8} .
It follows from the continuity of Fn that In is closed in T . Since
L 3 . 13
I.D2I,5... and ﬂnzl In =@ , we infer that there is an integer ng

such that whenever n >n_, P(an (x), pf (x)> < & holds for all xel.

Iet n > nO . Then for any subdivision ¢ = {gl, ceny §%} of I we
have

Fn(gi)c:f(gi)@[-a,a] , 1=1,..., 1
Hence

F (1)C F (5,8 C (1) @ [-¢,¢]

Since € is arbitrary, we infer that

nn=l Fn(I) = £(1) g.e.d.

Theorem 3. Let Ied and let f+:+ I— R ©Dbe a continuous function.

Let {F%} be a sequence of arithmetic functions with n%i?m F =T

—43-
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Then there is a sequence g(l) < 5(2) < ... of subdivisions of I such

that 5" c(E(n)> = 0 and

Fn@’g(nb = £(1)

If, moreover, for every xel and every integer n > 1, Fn+l,p(x) is

contained in the interior of an(x) , then there is a sequence

g(l) < €(2)< ... of subdivisions of I such that nl};noo (g
Fl<[’g(l)> DF2<[,§(2)>3 . ﬂ n;::l <[ g(n)> — f(I
Proof. By (10-7), we have F. (I) Fz(I) D... and ﬂm —ﬁn(I) = £(I)

Let (l) be a subdivision of I such that 0(§<l> <1l and
<<[ g(l)) F(I> < 1 . Suppose that we have subdivisions
{ g( )4 cee 4 g(k of I such that c:<g(n)>< 1/n and
— (k+1) ,
I§ , F(1) <l/n, n:l, ceoy Ko We let & be a refine-
( k+1)> = ) .
ment of & with P\F \ s Fi (1)) < 1/(x+1) . By induction,

we have a sequence l) < g -( ... of subdivisions of I with

PQHG,E(HD ; Fn(1)> < l/n . Hence

N, Fn<I,§(n)> = £(1)

If for every xel and every integer n > 1 , Fn+1 p(x) is contained in

the interior of an(x) , as in the proof of (10-7), there is a 8 >0
such that whenever & is a subdivision of I with o(g) < ‘c‘)n s

Fn(I,g)DFn+l (I,£), n=1,2,... . Now we construct a sequence

e
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E(l) < E(Z)-< ... of subdivisions of I , Jjust as above, satisfying the

additional condition that

a<g(n)><5n, n=1,2,...

Then our conclusion follows. ' g.e.d.

let F be an arithmetic function with domein J(F) and JZF be the sub-
set of o consisting of all the elements T of o with p(I)c B(F) .
Then, by (10-4), we may define a function

gpt £ — d
by
2 (1) = N7 z@,x,g(nD ,
where Te &F and g(l) < §(2) < ... 1is a sequence of subdivisions of I

with 5B 0<§,(n)> =0 .

As (10-5), (10-6) and (10~T7), we have

(10-8) ILet T and J be elements of & with B(I) = a(J) . Then
Tvred’ and

Ep(Ivd) = 2(T) @ 2(9)
(20-9) =, : & — J is continuous.
(10-10) Let I =[a,bled and let £ : I— R be a continuous function.
Let {Fn} be a sequence of arithmetic functions with nl.};noo Fn = I .
-45-
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Then

zFl(I):azFZ(I) o)

and n_l ZF (1) = f f(x)dx

Making use of (10~10) and the definition of Zp We can prove

Theorem 4. Iet I = [a,b]e d and let f : I —> R Dbe a continuous

function. Let {Fn} be a sequence of arithmetic functions with

LOCKHEED AIRCRAFT CORPORATION

nli)l,nm Fn =f . Then there 1s a sequence g(l) < t_-;(g) <{ .o of sub-

divisions of I such that o o(g(n)> =0 and

z @,I,e(nb = fb

If, moreover, for every xeI and every integer n > 1 Fn+1p (x) is

contalned in the interior of F p(x) , Zthen there i1s a sequence

e ¢ (B4 L. of subaivisions of T such thet i GQ,(HD -0

@ 1,e¢ >DZ@ I,e >:> and N z@* Ig(nD.—.fbf(x)dx
Tt — n=1 n’ ™’ a )

-
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