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FOREWORD

This technical report is presented on research conducted during 1958 on
Numerical Analysis for Digital Computers. Work on this study was carried

out under the Lockheed General Research Program.
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SUMMARY

This technical report introduces a systematic approach to the general subject
of digital computation. The objective of the study is to mechanize a complete
error analysis for any digital computation. A method for such mechanization
is described, by which the digital computer is to deliver error bounds along

with every approximation.
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Section 1
INTRODUCTION

We present a formal description of a stored-program, digital computer. The auto-
matic or sequential operation of such a machine forms a basis for the present study.
We investigate finite or terminating computations by such a computer and their
relation to both terminating and non-terminating computations with real numbers.

In particular, we are concerned with automatically obtaining error bounds along with

approximations in digital computation.

We exhibit an interval arithmetic which is the basis for an automatic analysis of

total error in any direct digital computation.

Finally, we consider, briefly, a particular class of indirect computations: iterative

computations.

Previous work on automatic error analysis is discussed in S. Gorn, "The automatic
analysis and control of computing errors, ' J. Soc. Indust. Appl. Math. Vol 2, No. 2,
June 1954, and in 8. Gorn and R. Moore, ""Automatic error control — the initial value
problem in ordinary differential equations,' Aberdeen Proving Ground, BRI Report

No. 893, March 1953.
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We may represent the integers 0,1,..., k-1 by the words 00.,...0, 00...1, ...,
I...1 respectively, hence we will consider the address cell to contain at any

moment the address of some cell in M s m by means of the indicated representation.

By a state of the computer we mean the ordered set of words contained in its cells:

Ho), , @, ..., @1} .

The computer consists of the cell C, the memory Ms m and a transformation

called machine language, or ML , which we shall sketch here and return to in

Section 5.

Let = be the set of states defined above, we will define a transformation MI which
is a function whose domain is 3 and whose range is containedin » . If o isa

stdte, then ML(o) is called the successor of o and we use the notation ¢ = ML(o).

For any state o , the ordered pair of states (o, ) ) is called an operational cycle.

The act of changing a state ¢ into its successor is assumed to involve an interval of

time during which the following takes place:

e The address cell C is examined in state ¢ ; the word (C) is found in C ;
(C) represents the address of some cell in Ms,

e The cell (C) in Ms,m is examined in state o ; the word ({C)) is found
in (C) ; ((C)) is some word in WS which is interpreted in the context of
machine language as represeniing an instruction to carry out a particular
operation on the words in the cells of the computer, i.e. to change the state.
The "interpretation' involves an examination of the word ({(C)) in state o
in order to discover how the successor state o is to be computed from the
state o .

o The interpreted instruction is "executed,'" changing o to o .

A computation by the computer is a sequence of states beginning with some initial

state o, *calle:d al program and proceeding in successive operational cycles to the

p ¥ ,
states o, (00 |
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A state ¢ is called a terminal state if ¢ = o . We assume for at least one word 0

O v iaiia

w in Wé that if ((C))=w in state ¢, then o is a terminal state. af’ g

{i

oo ]

A computation by the computer is completely determined by its initial state or program.
Let ao* stand for the ordered set | Ty cr'o , (cr;)', ... |} of states computed from

o, by successive applications of the mapping ML. We say that ao* is finite if

it contains a terminal state. A program ‘ o produces a finite computation if oro*

is finite. If we call the states U; =0), o'l =0y etc., then the length of a finite
computation is the integer i where a, is the first terminal state in the computation.
. The number of distinct words in WS ig  2° ; the number of distinct words in Wk

is m ; the number of distinct states is therefore m2™ | The number of distinct

terminal states is at least Z(m_ 1) . Any computation by the computer will therefore
be either a finite computation of length not exceeding m2™e , or it will be a cyclic

computation. By a cyclic computation, we mean a sequéhce of states { T 01, cerl
containing a state 0'p such that 0'p+ 1-’~= O'i for some i <p.

Since any state may be taken as a program for a computation, there are m2™s
distinct programs. At least 2(m—1 )8 produce finite computations since we may take

a terminal state for a program.

If we have, for example, a computer with a 4000-cell memory whose cells store words

43,200

of length 36 (binary digits), then there are more than 10 distinct programs which

produce finite computations.
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Section 3

DIGITAL REPRESENTATIONS

3.1 INTRODUCTION

Before we can discuss digital computations, we first consider some means of

representing numbers and other things by computer words.

Clearly there are exactly 2° distinct words in WS and therefore we can represent
at most 2° distinct things by any relation which associates a unique thing with each

word in Ws

3.2 THE FUNCTION R1

We can represeht the integers 0,1,2,... 2S—,1~' by the words 00...0,00...1,...,11...1

respectively. We define the function R with domain W such that if w= bobl° ..b
j

then R, (W)= stl; 27

g-1’

s5-1 :
We say that the positive integer Y b 2 s represented in R, by the word

. s-1-]
j=o0
bobl’ .. 'bs—l .

3.3 THE FUNCTION R2

We define the function R2 with domain WS by the formula

b .
= (-1 ° % J-
R2 (bobl"'bs-l) = (-1) b .2

w
!
—

(SN
i
el
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s-1 1

In R, we have a representation of the set of integers n such that -2 <n<2°

2
by WS° The correspondence is one-one except for the double representation of the

integer 0 by the words 000...0 and 100...0.
3.4 THE FUNCTION R3

Another set we wish to represent is the set of ""fixed point fractional mumbers." We
define R3 on Ws such that

b, &l iy
Ry (b by...b) = (-1) E b, 270
i=1

In this instance each signed (s-1)-place binary fraction in the interval (-1, +1)

is represented by some word in WS . Again the number 0 is represented twice.
This particular representation enables us to approximate any real number in the
interval (-1, 1) by some fractional number representable by a word in Ws with

g7(871)

an absolute error of no more than More precisely, for any real number

x in the interval (-1, +1) there is a fractional number, X , representable in

b. 8-1 1.1 .
Rq by some w in W_, i.e. a number of the form X = (1) ° 'Zl bj (—é)] , with
3:

' i 1S—l
w=bb...b such that |x -%[=(3) .

5-1

We can show this from the fact that any real number x in (0, 1) can be written

o0 Py
X = Z C, (l)] for some choice of C, from theset {0, 1} for j=1, 2, ...
]:_]_ } 2 ]

Let the notation sgn x represent the number 1, if x =20 and -1 if x < 0.

We may then write any real number x in (-1, +1) as X = (sgn x) Z Cj ( % ) L
for some C; « {o, 1} . =
b

If we now choose bO such that (- 1) 0 = sgn x , and bj = Cj , =1, 2, ..., s-1),

(o]
-F = ) 1,]
then x - X = (San)jZ;é Cj(z) .
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Since

ZC( EPVIEIENE The

—
Do
4

we have |x-x| <

- 3.5 THE FUNCTION R4

An interesting representation is that of 'floating point" numbers. If n and c are
fixed positive integers suchthat n+ ¢ + 2 = g - 1, then we define R 4 such that
word bobl' ces bnbn+ 1o b represents, in R 40 the (floating point) number

x( 2y) where

n+c+2

b n
x = (1) © D, b (+)]
j::l j 2
bn+1 c-j
y = (-1) Z bn+2+] 2 :
j=o0

In this way we can approximate any real number v whose magnitude |v| is in the

. -ty ety N
interval 2 , 2 by some floating point number representable
~(n-1)

by a word in WS with a relative error of no more than 2

Suppose v is a real number such that ok-1 _ | v |= 2% for some integer

(2l =k = 2%,

We may write
(sgnv)z e ()} 2

=1

for some ‘cjl such that ¢, = 1.
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Suppose we choose bo such that

bo
(-1) = Ssgn v,
b, = ¢, for j = 1,2, ..., n,
j J
and
bi forj = n+l,..., n+tc+2
such that
c
nt+1 c-j
k = (-1) jZ: Do 2
Let b n K
A 0 1.3 ‘
v o= ) (-1) Z bj 5‘)] 2.
i~
[We call v a normalized floating point number since b1 = 1]
We have
2K - %) - e 3 e (L)
jta
n+1
and
2 V-0 = ("
-1 4 -
Since b, = 1, then | 9] = 2k and YT-X« = (%)n !
v

So far, we have described four ways in which we may represent numbers by words.
In each of these representations a number was represented by a single word., We call

these single word representations, We might also consider representing scveral

numbers with a single word — this we call fractional word representation. Still

another possibility is that of employing several words to represent a single number —

this we call multiple word representation.
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3.6 THE FUNCTION R5

If s=2s we define R5. such that the word bobl’ “ee bs"~-1 bS: «e.b

represents
s-1 r°P

in R. at once the pair of integers

5 1
s-1 S' 1t s-1 -1 i
E bjz s E bs' + 2
j=o J=o

3.7 THE FUNCTION R,

As an example of double word representation, we define R, such that the words

6
! 1 gt ! .-
w = bobl‘ b and w = bobl oo bs—l represent together in R6 the number

s-1

_ b |s-1 . s-1 , s+j
x = 1) b)) Db (3)
j=1 j=o

This representation enables us to approximate any real number x in (-1, 1) by

some fractional niumber representable by an ordered pair of words in WS with an

absolute error of no more than 2 (25 ~ ¥,

3.8 COMPLEX NUMBERS

We can represent complex numbers with pairs of words. We can take the pair
! ! ! 1

= b,....
s-1 " bo 1 bs-l
number 7Z = (X, y} whose real and imaginary parts x and y are fractional

(w,. w') of words w = bob1° ..b to represent a complex
numbers, representable by w and w , Trespectively, in R"'3 .
3.9° INTERVALS

We canirepresent an interval on the real line by a paiv of words.

Let the pair (w, w' ) represent the interval [a.h] where aandb are

fractional numbers represented hy the words w and w respectively, in R3 .
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3.10 OTHER EXPRESSIONS
We can also, of course, represent things other than numbers by words in Ws .

Let the letters a, b, ¢, ..., z of the English alphabet be represented by words of

length 5, say 00000 for a, 00001 for b, ..., 11001 for =z.

Suppose s = 30 , then we can represent by a word w = bobl' ...b

string of six letters taking bob 1b 2b3b 4 to represent the first letter in the string,

etc. If we represent the symbols: (', ™)', "1, v-noon/unnn

99 1N WS any

by the words
11010, 11011, 11100, 11101, 11110, 11111 respectively, then we may set up a digital

representation for an expressionsuchas . (a+b)/(c)+de(f+g/ h-1i/(G))).

which is a string of the symbols mentioned above and which begins and ends with the

symbbl, non The above expression is a string of length 29 and we may represent
it by an ordered set of five words (Wl’ Wo»r Wa, w4', w5)' . Welet Wy represent '
. (& + b) and represent in groﬁps of six the rest of the expression by w

cee W
2’ 5
We may fill out the last six bits of Wy with another '"." . The digital representation

of the expression above will then be (wl, Wos Wg, Wy, Wy ) where

W1 = 11111 11010 00000 11100 00001 11011

=
i

9 F 11110 11010 00010 11011 11100 00011

g
i

3 00100 11010 00101 11100 00110 11110

€
H

4 11010 00111 11101 01000 11110 11010

we = 01001 11011 11011 11011 11111 11111

The periods at the beginning and end of the expression are a convenience to enable us

to determine where one such expression ends and another begins. We can, of course,

establish representation for longer lists of symbols in a similar way.

10
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Section 4

DIGITAL ARITHMETIC

4.1 INTRODUCTION

In this section we discuss arithmetic with the various types of numbers representable
by digital words. It is of particular interest to define arithmetic operations on pairs
of numbers in such a way that the results of the operations are again numbers

representable by words in the same representation as the operands.
4.2 EXACT ARITHMETIC WITH INTEGERS

The first digital representation we described in Section 3, R was a representation

1 b
of the first 2° non-negative integers by WS , the set of words of length s .

Let pandq be integers with p = q; andlet I [p, q] be the set consisting

of all integers 1 suchthat p=<i=q.

The range of R1 is 1]o0, 2S—1]. If i, and i, arein I{o, 2° - 1], then

1 2
what can we say about i + i, 1, -1, i xi,, and 11+ i, ? We can say only
that i, + i, willbein 1[0, 25t _ a7, i, - i, willbein 1[-(2° - 1),¢° - 1];

ilxi2 will be in 1[0, (2° —1)2] ; and if i, # 0, i1 + i, will be a rational

number expressible as the sum of an integer in 1[0, 25- 1] and a proper fraction of
the form i3/i2 for some i, in ilo, i, - 1]. Theset 1[0, 2°-1] of the

first 2° non-negative integers is not closed with respect to any of the ordinary

arithmetic operations.

11
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If we wish the numbers +i,, 1, -1 + i, toeach be representable

T L T L Tl B B
by a single word, we must suitably restrict the domain of each of the arithmetic

operations involved.

If i and i, are in 110, 2° - 1] (and hence representable in R, ), then we may

represent in R, the results of the four arithmetic operations on i, and i_ by

restricting the (]iomain of "+" to integers i1 and i2 such that i1 }r i2 = 22S -1,
by restricting the domain of "-'" to integers il and i2 such that i1 = i2 , by
restricting the domain of "x'" to integers such that i1 X i2 =2°-1 and by re-
stricting the domain of "+" to integers i, andi, suchthat i, -i_ is an integer.

1 2 1° 2

With these restrictions we can perform exact arithmetic with non-negative integers,
the result of each arithmetic operation again being representable by a single word
of length s .

4.3 FINITE PRECISION ARITHMETIC - SINGLE PRECISION, FIXED POINT

Another type of digital arithmetic we wish to consider is finite precision or '"rounded"

arithmetic. In this case approximations to the exact results of the arithmetic
operations are computed which involve saving a limited number of the leading signifi-

cant digits of the results.

The third representation described in Section 3, IL3 , was a representation of
"fractional' numbers or "single-precision fixed-point digital numbers." We recall
thatif w=b b_...b_ ., then

o1 s-1

b 8-1 .
R, (w) = (-1) ° z b, 27
j=1

The range of R, is the set Sy = le(w) | w e W, I *,

If r is areal number, thenlet [r] stand for "the greatest integer less than or
equal to r ",

* We use the notation {pl q} to mean the set of p such that q is true, e.g.
{R3(W)|w € W, } is the set of R, (w) such that w isin W .

12
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We define single-precision fixed-point arithmetic operations, @, @, ®, @ as

follows :
For a, b such that a e S3, b e SS’

a®b = (sgn ab)[labl 28—1] g S+1
For a, b suchthat b # 0, be S8, lal < |b}

a®b = (sgn ab)_[la/bl 28_1] g8+l
For a, b suchthat beS,, ae 8, | a+b|<l,

a@b = a-+b
For a, b such that beSS, aeS3,|a—b|< 1,

a®b = a-b

If r is a real number with the signed binary expansion

T = (i)b_nb_m_1 bo' b1b2
i.e. L) .
r = (%) Z b, "2
i=-n

+1

then the operation (sgn r) [ [r] 2%~ 1] 978 truncates the series above at the

term i=s-~-1 i.e.
s-1
s-1} ,~s+1 _ I
(sgn r)[l r|2 ] 2 =@ b_...b . b1°"°bs-1 = (f.)z b, 2
i=-n
For example, if s =7 and r =- 1/5, then
(sgn T) [|r| 23“1] o St (—1)[ |- 1/5] 26] 576

-1) [12 4/5] 976

i

it

- 3/16

13
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or in the binary expansion

(sgn r)[[ r| 28"1]: (-1) [(.00110011..,) 26] 576

= ~ ,001100

= - ,0011

Clearly, we have |r - (sgn r)[l r| 25—1] 2-S+1| < o7S*1

The operations @, O, ®, @ may be regarded as functions mapping certain sub-
sets (as described in their definitions) of S3>< S‘3 into 83 . In other words, if

(a, b) is in the domain of the operation & , then a ® b is representable by R3 , ete,

1

.
»

If aandb are in S3 , then a ® b is in S3 and we will have |a @ b - ab]< 9 75*
and if [a] < |b] also holds, then a @ b is in 8, and we will have

Ia@b'—a/b|52—8+1, for b+0.

The first inequality in the above statement is easily seen, for example, from the identity

la@®@b - ab| 2% = | ab|zs"1—-[|ab|zs‘1 ]
The relations a @ b =b®Da, @b Dc=a@® bdOc), a@b=Db®a

are obviously true for a, b, c inthe domains of the respective operations while

the relations a @ b ®@c) = @ @b @c and a@ b D c)=@a@ @ bB(a @ c)

are not satisfied for every proper triplet a, b, c.

For example, let s =4, a=,111. b=.101, c¢=.010,

then S a®b = .111 ® .101 = .100
E@®b)®c = .100 ® .010 = .001
but b®c = .101 ® .010 = .001
a®@d®c) = .111 ® .001 = .000
7 @@®@Db)®c;
also b®c=.,101® .010 = .111
14
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a@b®c = .111Q® .111 = .110
but a@®b = .111Q .101 = ,100
a@®@c = 111 ® .010 = ,001
@®b @ (a®c) = .101
# a@b® c).

Single precision arithmetic operations do not, then, enjoy the same relations as

ordinary arithmetic operations.

The particular definitions given above for &), & are "unrounded" versions of single
precision arithmetic. We could have chosen instead to give the "rounded" versions

which would be

a@®, b = (sgn ab) [l ab | 2571 1/2] g St1

and a@.b = (sgnab) [I a/b | o871, 1/2_] g 8*1

If we recompute for s =4, a=.111, b= .101, c=.010 as in the above example
but with the rounded operation ®r’ we will find that

a@b = .111@, .101 = .100

@@D@, ¢ = .100Q, 010 = .001

and b®rc = ,101 ®r .010 = .001
a@r(b®rc)ﬁr <111 ®r .001 = ,001

= (a®,b) @, ¢ ;

also b@c = .101® .010 = .111
a®, b@c) = .111Q®, 111 = .110

and a@rb = ,111 ®I‘ .101 = ,100

a ®r0 = ,111 ®r .010 = ,010

a@b) @ @@.c)

i

.110

a@®, (b® o)

i

15
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However, if we take s = 4, a = .010, b = .110, ¢ = .110, then
a®rb = ,010 ®r .1310 = 010

(2@, D@, c

but b®r c = ,110 ®r .110 = L 101

a®r (b ®r c) = .OlO@r .101

£ (20, D)@, c;

Rounding, then, does not restore associativity or distributivity.

i

.010

i

010 @ 110

il

.001

Without ambiguity we may also use the notation Wy ® Wos Wy ® Woy Wy ® Wos Wy @Wz

to stand for words Way W, We, W in WS such that Rg(w3) = R3(w1)® R3(w

4 75 6
Ra(wy) = Ro(wy) O Ry(w,), Ra(Wg) = Ro(wy) @ Ro(wy), Ry(we) = Ro(wy) @ Rg(w,),

2) ’
whenever (R?(Wl) » Ro(wy)) is in the domain of the operation in question.
[ J

4.4 FINITE PRECISION ARITHMETIC - DOUBLE PRECISION, FIXED POINT

The sixth representation described in section 3, RG , was a representation of double

precision fractional ‘numbers. If w = bobl' ..b and w' = b:) bl...b' then

s-1 1 s-1"

b s-1 i s-1 Vmgei
R, (w,w) = (1) °1{ 3 b2+ Y b 2™

The range of R 6 is the set

- 1 1
8, ° IR6(w,w) (w,w)ewsst} .

We will use the notation w = 0 when bO = b1 =L, = bs—l = 0 if no ambiguity

results.

16
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We define double-precision fixed point arithmetic operations, @2 , @2, ®2, @2 as
follows:
for a, b such that aeS6 , b686 :

1) a®,b = (sgn ab) By 225-1] p 28+ ,

2) if b#0, [b| > |af,

a®, b = (sgn ab) ||a/b] 22s~1] 728+l

3 if la+ b| <1,
a@2b=a+ b,
and 4) if |a - b| <1

a({-)zbma—b.

The operations @2 , Q ®2 s @2 may be regarded as functions mapping certain

subsets (described in their definitions) of SG X S6 into 86 .

We use the notation (wl,w'l) @2 (wz,w'z) , etc. to stand for pairs of words (WS, w'3)

1] 1 1]
such that RG(WS,W3) = RG(Wl’Wl) @2 R6(w2,w2), ete.

For pairs of words of the form (w,0), the operations @)? , B, ®,, @2 , are related
to the operations @, @, ®, @, in the following way:

(W, 0) @y Wy, 0) = (w; @ w,,0)

(W), 0) Oy (W,,0) = (w; O w,,0)

(Wl’O) @2 (WZ’ 0) = (Wl @ W2’W4)

where Wa and w, are words representing the '"less significaht halves" of the results.
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To illustrate,

let s = 4 and let W, 0111 , Wy = 0101 ,
then R,(w,,0) @, R,(w,,0) = .1110000 @, .1010000 = .1000110

or (Wl, 0) ®2 (WZ,O) = (0100, 0110)

The word 0100 is, in fact, W1®W2 ; i.e.,

R,(0111) @ R,(0101) = .111 @ .101 = .100

= R,(0100) .

We observe that RG(W’O) = R3(w) for any word w in WS ; conversely RS(W) 686
for any w in Ws since if we choose w' = 0, then R,%(w) = Rﬁ(w, 0) and

R6(W,O)E{R6(W,w') I (w, w') €W >< W}

If a= Rg(w) and b = R3(W'),
then Ia + bl < 1 implies a@z b=a®b=a+ b,
and Ia. - bI < 1 implies a@z b=a@®b=a+ b,
1 o8-1] -s+1
and a® b = (sgn ab) |a®2 bl 2 2
andif b # 0, |b] >|al , then

a®b = (sgn ab) [la@z bl 25"1] 2—5+1

4.5 EXACT ARITHMETIC WITH INTEGERS WITH FINITE PRECISION
ARITHMETIC

From the arithmetic operations we have already defined we can construct restuidted

exact arithmetic operations with integers.

18

LOCKHEED AIRCRAFT CORPORATION MISSILE SYSTEMS DIVISION



LMSD-48421

The second representation described in section 3, R2 , was a representstion of the

integers in 1 [—(28”1—1) , + (28"1—1)] .

I w= bobl" 'bs—-l , then

bO s-1 i-1
Ry(w) = (1) ng bs_jz

We observe that R, (w) = ps-1 Ry(w) , i.e.,
s-1
Eb 2oy {(1) szl}
= s =

1-
Therefore if w and w' are in Ws , we have R3(w) = ot Rz(w) ,

Ry(w') = p1-8 Ry(w) and Rg(w) @ Ryw)) = 2 S R,w) @ 2" ® Ry(w') . But

Ry(w) = Ry(w,0) and Ré(w') = R (w' 0) ; and Rz(w) and iRz(w') are integers,

21 2"‘28'{'1
say Dy and P, respectively. Then 2 1®) 2 = (sgn plpz) |p1p2| '
-28 + 2
= Pypy 2
. s-1
Furthermore, if IplpZI <2 , then
1-s 1-s - ~25+ 2 ~s+ 1
Iz Py ®, 2 pzl"'lp1p2 2 |<2
1-s 1-s -5+1
and {2 Py ®2 2 pz} @Z 2
28+ 2
PyPy2 2s-1] _-2s+1 _ o5+ 1
= (sgn p;P,) “——z':g:i“* 2 2 = PyP, .
We have shown that if w and w' are words in Ws such that l Rz(w) Rz(w') < 28-1 ,

then {R (w, 0)® 6(w 0)} @2 1

= R6(w",0) such that Rz(w") = Ry(W) Rz(w') .

19
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The number o7 5F 1 may be represented in R, by the pair (00...01, 0) . Beginning

6

with the words w and w' representing in R_ integers Py and P, respectively

2
such that Iplpzl < ZS—l ., we may compute the exact product p4P, and represent it

~3+ 1

in R, by the word w'' such that RG(W",O) == {RS(W,O) ®, RG(W',O)} @, 2

For the addition of integers, we note that if w and w' are words in Wq repre-

. . s TS R - T e c
senting in R2 , integers Py and P, such that RZ(W) Py Rz(w) Py » and

1 l-s

1""S [} e
, then R3(W) = 2 Py RB(W) = 9

"P1+p2l<28— P, » and

i

IRB(W) + R3(W'), <1, hence R3(w)® Rg(w’) R3(W) + Rg(w')

-8+ 1
(py + Py) 2

#

i

Rg(w") for w''

Ry(w) + Rz(w') .

i

such that RZ(W”)

For subtraction if lpl - pzl <2571 , then

-g+1
(p; = Py) 2

il

Rg(w) © Ry(w')

]

RS(W' "y for w''

1

LR - t
such that RZ(W ) Rz(w) Rz(w) .

For division, if P, # 0 and p, 0 (mod p,) , then lRG(w,O) 2_S+1‘<|R6(w',0)'

and
p 2—s+1
. 22s—1 2-2s+ 1

-s +1 1 —
Re(w,0) 2 @, Rg(w',0) = (sgnp,p,) P,

«g+ 1

il

R3(W") for w'"'

[

such that Rz(w") Rz(w)/Rz(w') .

20
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In other words, if w and w' are words in Ws representing in R_ integers Py

2

and P, respectively such that Py £ 0 (mod pz) , then we may compute the exact

quotient pl/p2 and represent it in R, by a word w'' such that
[} — -S+1 ]
R (w",0) -«(RG(W,O) @, 2 )@2 R (w', 0) .
4.6 FINITE PRECISION ARITHMETIC — SINGLE PRECISION FLOATING POINT

The fourth representation given in section 3, R 4 Was that of floating point numbers.

We recall that n and c¢ are fixed positive integers such that n+c+2 = s-1, and the

word w = bobl' .o bn bn+1' . bn+c+2 represents in R 4 the number

R, (w) = m(w) 5¢(W)

c
where m(w) = (—1)]OO E b2
=0
bpi1 & c-j
and c(w) = (-1) ]}% by ?

If b1 = 1, then we call R 4:(w) a "normalized" floating point number. Call V/R\/S the

set of words w = bobl_“bs-l in Ws such that b1 = 1; call By = {R4(w) IW eWS};
o~ {_ A

and call 5, = R4(w)| weWS} .

. ‘ Y1 a1 e Yo o
If aand b are 1n_S4 , then a = Xy 2 and b = X, 2 for some Xqs X9 yl, Yo

1/2= x| <1, 1/2= |x | <1, 0=y l= 2 o1, 0= |yyl= 2 -1,
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Let y = max (yl, yz), then
y y Y.y Yor¥
- 1 2 1 2 y
a+.b._x12 +x22 ._(X12 +x22 ) 2

1

and la+b|< 2y+1 . Hy+1 =< 2 -1, i.e. ifmax(yl, y2)520+ -2

then the floating point sum a b defined by
a’® b =sgn(a+ b) [la + bl n—~1] AR

is in S4 . Furthermore,

la+b) - @2m)] - 2Y =]a+bl2? —[|a+ b} 2"5’“"1]2"n+1

-n- A
ntlty g a=x, . 2¥1 s in Sy but b is

N . A A
zero, i.e. x2:0,thenwedef1ne a¥Ybsb+a=a.

hence [(a+b)-(@?h| < 2

To illustrate floating point addition, let n =3, ¢c=2 and s=n+c + 3 =8, then

2 - _ 1, ,0
the numbers . 101.2100 = (2"1 + 2_3) . 22 , and —.110.211 = - (2 1, 2 2) . 22 t2

N
are in S4 and y = max (100, 11) = max (4, 3) =4, We have

191.27°% + (- 110 . 2"y = 1010.0 - 110.0 = 100.0 =4 ;

also

100, A

(01. 2199 2 (-. 110, 211

11
]

_ (+1){'4, 2—4+3-1] 92

= 4

0 1 A

However if a = .101.210 and b=.110.2", then a and b arein S, ; but

42
a+b=1010.0 + 1.1=1011.1 =11 /2 while a ¥ b = (+1) [I11 Y2 | 2‘4+3'1] 2= 8.

In binary notation, a + b=1011.1, a b= 1000.0; and in floating point notation

A 100
a+b=.10111. 290  afp=.100 . 2.

-n+1+y _ 2-—3+ 1+4 _

Finally, {@a+b) - @ % b) | =[111/2-8]= 31/2 and 2 4

and 3 1/2 < 4 as promised.

22
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The floating point numbers .100.2°°° , .010.2'%1 , . 001.211°

100

are all in S 4

"~ and all represent the integer 8 , however only .100.2 is in §4 . The definition

. A . A AL,
iven above for "+'' guarantees that if a and b arein S then a + hisin S, .
& 4 4

If x. 2 isin S, andif 172 = |x]|. oP for some integer p such that
4 A

p =yt ZCH -1, then x . 99 is in S4 . To show this let p be the smallest p for
which p=<y + 2°*1 _ 4 and 1/2 = |x] . 2P, since |x| < 1, p is non-negative.
i L2
x = (-1)° z b, 27
j==1
and c
s (=117 \ -]
ye (~1) n+1z.b +2- 2
j=o
then

- n . -
x. 2P (—1)bo z bj PR

j=p+1
with bﬁJrl =1, and -2°*1- 1) =y-p=y, therefore x.2¥ = (x.2P) . 2P ig
A

in S4 .

As a matter of fact if x.2Y isin S, » then either x =0 or x| = 2™, 1 x40,
then |x| . o1 o 1/2 andif n-1 = y+ 21 4 , then there is some p such
that p = n-1 and 1> |x]. 2P > 14 and p = y + 20+1—1. Therefore, if

- A
y = n-2 °© 1, then either x =0 or x. 29 isin S4.

o A . | Yo
Again, if aand b are in S4, then a=%, . 2" and b =X, 2 “ for some
. c+1
X11 Xgs Vs Vg such that 1/2 = 'Xll <1, 12 = |x2| < 1,0 = lyll = 2 -1,

0 = |f'y2,|j- < 2°" _y. Nowif |y1 t Y, 2 , then we define the floating

-¥Y1 Yo + n ] o Rt Yl + y2

I - 20 ""'1 _

point product a%b = sgn (ab) [labl 2 Clearly a b

Y1+ Y '
is in S4; in fact it ig in §4 . Since agbmx .2 1+ 2for some x such that
A
1/4 = |x| <1. K a in 8 and b is 0, then we define aXb=b<Xa =0.
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For floating point multiplication we evidently have for a and b in §4 .

ab-aX%b
a

< 2-n+ 2

¥ a and -b are in the domain of the operation % defined above, then we define the
floating point difference a 2ph=al (-b) .
M

A y
i aand b arein S, and a = x,. 21 , b = x_,. 2 2, then when

1 2
1y 1T Y2| = 20+1 -2, we define the floating point quotient

-y y -11 1 -5, -
a?b-—:(sgnab)[la/blz 1+72+n 1]21 z-n+1

A A
Clearly a <+ b isin S4 and

a/b-a=h -n+ 2

a/b

N\
For a=0 and b in S4 we define a /—\ b = 0.

(@a+b) - (a2 b)
a+b

Note that we cannot bound the expression even for a and b
A

in S4 since a + b may be zero.

24
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Section 5
ARITHMETIC COMPUTATIONS BY THE COMPUTER

5.1 INTRODUCTION

In the previous sections several digital representations of numbers have been considered.
For some of these representations digital or "rounded" arithmetic operations have been
defined in such a way that the result of an operation is égain representable in the same
representation as the operands. In doing so, it was necessary to design the operations
to take care of twd things: the number of digits in the result and the numerical size

of the result. The former was required because of the fixed length of the words used

in each representation and the latter was required because the range of each represen-

tation was a bounded set of numbers.

In order to make possible a sequence of digital arithmetic operations in which the result
of one operation is to hecome an operand of a subsequent digital arithmetic operation,
the sequence of operations must be so arranged that each pair of operands will lie in
the domain of the operation that is to be performed upon them. This is called scaling

the computation.

For example, in single precision fixed point arithmetic we may compute a - b + ¢ for
s=4 and a=.111, b=.101, ¢ =.010 providing we order the computation as
(a@Ob)@c. Wehave a@b = .010 and (2a@Ob)Pc=.010®. 010 = .100 . The
computation (a@® c)(Od is impossible. Since a +c¢ = 1.001 > 1, the pair a, c

is not in the domain of the operation @ .

In this section we will describe the types of operations which will be included in machine
language in order to obtain the automatic computer execution of the computations with
which we will be concerned. We will then show how a computation by the computer in-

volving digital arithmetic may be programmed.

25
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5.2 MACHINE LANGUAGE

We recall that a state ¢ is an ordered set { (C), (0), (1),..., (m ~ 1) | whose
elements are words contained in the address cell C and in the cells of the memory
M . We recall that for a fixed positive integer k, m = Zk ; sothat (C) is in

s, m
W, i.

Kk e., (C) is a word of the form bobl' .. bk—l .

We define RO to be the representation mapping Wk onto the set of positive infegers

- = i = 2 ]
1[0, m-1], such that for u=bb...by_; isin W, R ( g 1452,

In the state o , ]R.0 ((C)) is aninteger in 1[0, m -1] and hence the address of some
cell in MS m 52y Ro ((C)) = A . Alsoinstate o , (A) is some word in Ws s
say w= bob1 - .bs_ 1"
Assume that s = 3k + 4. We define four functions Al’ A2, A3, and T in the
following way:

1) Al’ A2’ A3 are mappings from Ws onto Wk such that

AL (bbby.ob ) = bbby

= b b b

Ag (bybybgr e by y) = Dybyy g e Poyey

A3 (boblbz' .o bs-l) =, b2kb2k+1‘ .. b3k—1 .
2) T is a mapping from WS onto Ws—3k such that T (boblbz’ o bs—l)
= b, b b

3k 3k+1" " "s-1

For any word w in WS , Al(w), Az(w), and A3(w) are words in Wk and are
therefore in the domain of R . In fact, R_(A;(W)), R/ (Ay(W) ), R (Ag(W))
are intergers in I [0, m-1] , hence addresses of cells in M, . We call

3

Al(w), Az(w), A3(w), the first, second, and third address parts of w ,

respectively.
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The word T (w) has length at least 4 , since s -~ 3k =4 . It will be used to
represent the type of operation to be executed in computing o¢' from o. We
chose 4 asg the minimum length of T (w) because we wish to list 15 distinct

operations. We can identify an object out of a set of 15 things by a word of length 4,

If « and B are addresses we use the notation (a) — g to stand for the act of
replacing the content of the cell g with the word in cell o . We say that "(«) goes
to g ". This act is assumed to involve the passage of some time and changes the
state of affairs in such a way that upon completion of the act we have (a) = (g8) ;
whereas before the act it may have been that (a) 4 (8) . The act is assumed to
leave (q) intact. It merely "copies' the word («) into the cell g, obliterating

whatever was there previously.

We will describe 15 operations each of whose names will be the symbol given first.

The descriptions will list the sets of acts of which the operations consist. The operations
in the list are chosen for illustrative purposes and the list is fairly redundant; for
example a ® b may be replacedbya ® (0® b).

I u isawordin W, let u be the word in W, such that R (W)= R (u) + 1 (mod zk'),

Istate o , let R ((C) = A, let (A) = w, andlet R (A} (w)) = o,
RO (AZ w)) =g , Ro (A3 W)) = 7y .

@ : (@@ @~y

(C) - C (called a "unit increase’ of (©) )
O : (@ B) —v

(€) - ¢

@ : (@ @ B~y
(€) - C

27
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@, ((@), (@+1)) @, (), B +1)) — (v, v + 1)

: | € —~ ¢

Oy ((a), (@+1)) O, (), B+ 1)) — (y, v+1)

(C) - C

@y ((@), (@+1)) @y ((B), (B+1)) — (y, v + 1)

(C) - ¢C

@2 : ( (o), (a+1) ) @2 ((B)’ (B +1)) "'(‘Y» 'Y+1)

(C) -~ C

In operations @2, @2, ®2, @2 we mean of course that into (y, v + 1) go words

(y), ty +1) suchthat R ((y), (v +1))

A @ F @ -y
(C) - C

2 @t e~y
(C) - C

T @ %@y
(C) - C

VAN A\

T (@) T @ —v
(C) - C

LOCKHEED AIRCRAFT CORPORATION
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The operations &, (J, ®, ® put words into + such that
R, (7)) =Ry ((@)) @ Ry((8)), ete. The operations + , = |

A
Q, + put words into vy such that

Ry () = Ry((@) % R, ((8), ete.
e: I Rg((a)) = RS( (B) ), then y — C, otherwise, i.e. if
Ry ((@) > Ry ((8),
(€) — ¢
@, ¥ Rg((a), (@+1)) = R, ((8), (B+1)),
then y - C,

otherwise (C) — C

>

¥ Ry (@) = Ry (@),
then y — C

otherwise (6) - C

We represent the operations listed above by words in Ws—3k . Let OP bea
mapping from Ws—3k to a set containing the operations above and such that

0P(00...00) = @
0P(00...01) = @
0P(00...10) = ®

L . . A
0P(00...01110) = =

A
The operation =< , for example, is represented in 0P by the word 00..01110 .
The number of 0's preceding the four 1's will be s-(3k + 4) .

29
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The operations we have listed consist of three sets of five each, Each set consists
of four digital arithmetic operations each with an accompanying "unit increase' in
the address contained in C . The fifth operation in each set is a "conditional
transfer'" and compares the numbers represented by the words in « and B8 (or

by the pairs of words in («, @ +1)and (8, g +1) ). If the number represented

by (o) is less than or equal to the number represented by (8) , in the representation
of concern, then the address vy goes to the address cell, C , otherwise the usual

"unit increase' takes place.

By now, we have already defined the transformation ML which carries a state o

“ 1
into its successor o .

We recapitulate the definition of ML . Let o= {(C), (0), (1), ..., (m-1)} and
o= {(C), (0),...,(m-1)"}. |

If (C) =A, and (A) = w, such that RO (A.l(w)) =, RO(A2 w))= g, and
OP (T (w) ) = op, then

y if: op=( and R, ((@) = Ry ((R)),
op=@,and Ry ((@), (@ + 1)) = Ry ((B)), (B+1)),

C':-s:
(© or op= 2 andR, ((@)) = R, ((B)) .
C otherwise
@op () L op ¢ [@,0,0,0 %, %, ¥
W, ifop € [@, 0, ®,, @,]
() = where (w,, W)= ((@), (@ *+ 1)) op ((B), ( p+1))

for some Wo s

(y) otherwise

30
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(y+1)'= where (()', w,) = ((@), (@+1)) op ((B), (B+ 1))

(y + 1) otherwise

() =) for ie1[o, m-11, i# y, y+1.
5.3 PROGRAMMING A DIGITAL COMPUTATION IN MACHINE LANGUAGE

I i is the address of some cell in MS me Ve may denote the structure of the word
L
in that cell as an instruction by

@ :a By op

meaning (i) is a word w in WS such that R0 (Al(w) Y=o, RO(AZ(W) )= B

RO (AS(W) )= vy and OP(T (w)) =op. Using this notation we easily see that if in
state ¢

€ =i

and

0:a ai@®,

then o is a terminal state.

Clearly, for any « , R3 (a) = R3 (o) , therefore (c)' = (c), (’y)' = (y), (y+ 1)'
= (y + 1), i)' =) for ie1f[o, m-1], i # v, v+ 1 and hence c'=g.

If in state ¢, (c) = i, then the following also imply that o is a terminal state:

(i):aai@z
() 0 o i 2
31
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If x is a number in 83 , the range of Rq, we can "'program' the computation

of |x| as follows: choose gy =€), ©0) . M) ;... (m - 1)t such that for
distinet o, g,1i,i+1,...,1+ 5, we have x =R3 ( (a)o), (c)o = 1, (i)O R

i+1 )0, ... as indicated in the following table:

Instruction List Comments
@, : @ op o computes the number 0,
0— g
. L . yes: take i + 4
(1+1)0.Ba1+4@ 0 =x7 no : take i + 2
(i+2)ozﬁoz-y © 0-x — vy for x<0
i+3) :aai+3 @ produces a terminal state when
© (C) = i+3.
(i+4):Bay ® 0+x—-y for x =0
(i+5),: aa it ® "Transfer" to i + 3. Note that

we coulduse i+ H: v v i+ 5
as well.

J e
a

The program a, just described will produce the computation Oys Oy s 0"0' BN

1
o)
with (c) running through the values i, i +1, i+ 2, i+ 3 if x< 0 i.e. if
R3 ( (oz)o )< 0. However, if x = 0 i.e. if R,_3 ( (oz)o) = 0, then the computation
' 1 tee ey )

o, 0., 0 , ¢ , 0 will result with (c) running through the values
o o 0 0 0

i, i+1, i+4, i+ 5, i+ 3. The two computations begin with different programs,
of course, since (oz)o is part of o, - In either case, however, the computer is

left in a terminal state with |x| in v .

Since the program uses 9 cells, we must have m = 10 for the program not to exceed

the memory "capacity" of the computer.

32
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. ; 1 ;
If Xyr Xgs o0y X oarein S,3 and |xl| < for = 1, 2, ., n, we can program

the computation Xy ® Xq ® Xg ®... @xn in two essentially different ways.
a) The '"straight line' program.
Choose o _ = \ (C)ys (O, (M) ,---, (0= 1) | such that

X, = RS((l - 1)0) for i=1, 2, ..., n and (c)o = n, with

(), (1) e, (2 n-2) , as indicated in the following table:

Instruction List Comments

M, : 01y®@ X @ xy —
m+1), : yv2 vy @ R3((v))@x3ﬁ~‘=xl@x2@x3—»y
(n+2) . y3 vy ©) X1®X2@X3@X4~>'y
(n-2)  : yn-1y @ X, ® X, ® --- @xn —y
(mtn-1)  : 0 0 ntn-1 &) produ ces terminal state

The program will produce a finite computation ending in a terminal state in which cell

vy (which may be chosen to be cell 2n, for example) will contain word (y) such that

33((y));»:x1®x2® ..... @® x

b)  The "inductive" program.

Choose 0 =1 (C), (0),. (1),,.-- (@ - 1), | such that
Ry ((0), ) = 0, Ry((i-1) ) = x fori =1,2,...,n and
(C)O = n+ 3, with (n + 1)0, (n + 2)0. e, 0+ 7)0 as indicated

in the following table:

33
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Instruction List Comments
(n + 1)0 : 0no ® "program constants"
(n + 2)0. : 010 0
m+3), :0 10 ® Initially 0 @ x — 0 ;

during computation, becomes
(o) + X 0

(n + 4)0 : n+1n+30+7 O " X n=sk, (i.e. n=k), taken + 7
if n>k take n+ 5

(n + 5)O :n+2n+3n+3 @ Since k < n, put Rg Ok+10 @) @
R3 (0100) —n+3 so that (n+3) be-
comes 0k+10 @

(n+6) :0 O‘ n+3 (¥ (since 0 < 0) take n + 3

(n + 7)0 : 0 0 nt7 @ Produces terminal state, i.e.
halts computation

The program produces a finite computation ending with Xy ) X, ® ... @xn incell 0.

Note that the "straight line" program described in a) requires that m =2n + 1 and
produces a computation of length n - 1. The inductive program given in b) requires
that m>= n + 8 and produces a computation of length 4 n-2. If n > 7, then

the straight line program in a) requires more memory cells than does the inductive
program in b) . I n > 1, then the computation produced in b) is longer than that

produced in a).

We say that a program uses cell a if a appears as an address part of some
instruction during the computation produced by the program. That is, if (C) =w
in some state ¢ in the computation such that Al(W) =a or Az(w) = a, Or

A3(w) =a .

34
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If Py and p, are programs which produce finite computations using mutually
exclusive sets of cells Sy and Sq then Py and p, may be "joined" by replacing
the terminal instructions in Py by transfers to the first instruction in Py -

For example, if in the program above for |x|, none of the cells «, g, vy,

i, i+1, ..., i+ 5 are among the first n + 8 , then we may join that pro-
gram to the inductive program in b) above for computing x,, ) Xos ®D...® X

by changing (n + 7)_ from l 00n+73 ] to ‘ 00i @ }and starting

with g, as the composite program such that (0)0 =n+ 3, x = Rg((oz)o) )

(O)O s vee, (M + 6)0 as indicated in the table in b) above and (i)0 , @ 1)0 . nens
(i + 5), as in the table for [x| above, and with (n + 7) = 00 i©) as just

mentioned., The composite program will produce a computation which terminates

We might also join the two programs just discussed in the same way as described

except choosing 0 for y . Then the pumber Xy @ X @~ - -® Xy will be
taken for x and the composite program will produce le C) X, ®---® );nl
incell 0.

We may test for the equality of two numbers in S, represented by words W,
v R
g 8 ygsively testi R.(w,) = R,(w,,) and R (w,) = B (w,). I
ind Wo by successively testing, 3( 1) 3( 2) ¢ 3( 2) 3(Vl) I
both inequalities are satisfied, obviously RS(Wl) = Rg(wz) . For numbers in
83 , we would use the operation , for numbers in SB we use (), , and for
£
A . A s
numbers jn 8, , weuse =. The oporations ®. (@, . = arc called comparison

operations.

Using comparison operations we can obviously program such computations as:

min X oy Xy I? max le, Kor oees an . for numbers

Xis Xy e

X, in the range of some digital representation available on the computer.
1 .
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Section 6
~ APPROXIMATIONS TO REAL ARITHMETIC

The field, R, of real numbers is closed not only with respect to the arithmetic
operations +, -, x, + (division by 0 excluded) but also with respect to convergent

sequences of real numbers.

If x, y are real numbers and o is one of the operations in the set l+, - X,
then

"
Z= X0y

is a real computational step or simply a real step. If r and t are real steps, and

4, v € R, then

"if u=<v, do r; otherwise,do t '

is a real step.

Let S be a finite set of real numbers. If ¢ is computable in a finite number of real
steps from the set SU [0, 1 | , then c¢ is directly computable from the set 8.

If Cip Cgs---s € are directly computable from 8, then the computation of the set

Cps Cooves cnl is called a direct real computation.

I c, c,,... is a sequence of numbers each of which is directly computable from S,
1’ "2

is an indirect real computation. If

then the computation of the sequence ¢, 02, ..

the sequence is convergent, its limit is indirectly computable.

36
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Example 1) For x, y€R, «'—1— - X; is directly computable from the set
lx, yl in the steps L+y

1. cl=1-x

2. If c1 < 0,do 3.;otherwise, do 4.

2 1
4 cz=0&cl
5 c3=y2
6 C4=1FC3

7. .l..l.:.z%.! = c, /C
14y

Example 2) For a, b, ¢, din R, {ac-bd, be + ad

is directly computable from the
set{a, b, ¢, d} inthe steps

1 cl—ac
2 02“—'bd
3 ac—bd“—cl—cz
4 c4= be

5. c¢.= ad
)

6. bCiadr—c[}w 05

Any number in S is directly computable from 8 since if xe S then x= x: 0.

If a number is directly computable from § for arbitrary S then it is directly compuiable

Any integer n is directly computable. We reach n in n+ 1 steps by

N
¢
I}
e
—

n - 1» n =6 i G -+ 1

for non-negative n, andin -1 giens hy
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1
2 Cy= € - 1
n n=c = c -1  for negative n
-n -n-1

A rational number is directly computable as the quotient of two integers obtained

as above,

A real number is indirectly computable as the limit of a convergent sequence of

rational numbers.

There are natural correspondences between direct digital computations, that is,

finite computations by the computer and direct real computations. A real step corresponds
to an operational cycle. The direct real computation given in example 1) above corresponds

to a finite computation by the computer produced by a program describing say:

12

2 1
N
4 02=0+c1
5 03=y9<y
6 =1%
Cg ™ "7 %3
7. |1'—\x|’+\(l-’+\-y§y)=c'-'?c

27 4

for 0, 1, x, y in R4.

The real computation in example 2) above corresponds to a finite computation by the

computer produced by a program describing say:

1. c1=a®c

2. 02=b®d

3. (a@® c)O(b ® d)= 01@ ¢,
4. c4=b®c

5. 05=a®d

6.

(b ® 9O @ = ¢, @ o
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Since a complex number can be represented by a pair of real numbers and since the
results of complex arithmetic operations on pairs of complex numbers are direct real

computations, the evaluation of a complex rational function is a direct real computation.

If u=(a, b)and v = (¢, d) are complex numbers with a, b, ¢, d in R, then we
recall that '

u+v = (a+c, b+d)
u-v = (a-c, b-d)
uv = (ac - bd, bc + ad)

= fac + bd be - ad
u/v (2 . 5 2) for v # (0, 0) .
¢ +d I's) +d

n
If 2, 29y Bgy ... A are real numbers such that la_|<]and l Zai |<| for positive
2 3 n n 1=1

integer n, then we can define digital numbers

Ei = (sgn a;) [Iail Zshl] g s+l

in S3 such that

The digital number
S, = al®a2a3@ a4®. NG a

in S3 may be regarded as the result a direct digital computation approximating the

directly computable number n

in which case the absolute error in Sn is

39

LOCKHEED AIRCRAFT CORPORATION MISSILE SYSTEMS DIVISION



L.MSD-48421

We recall from Section 4 that digital arithmetic is not associative or distributive.
Although for real arithmetic we have a(bc) = (ab)c and a(b + c) = ab + ac, it may

be the case that for a, b, ¢ in S3 the digital numbers (a @ b) @ ¢ and a @b ® ¢)
are distinct andthat a @ b D ¢) #@ @ V@@ @ ¢) .

The digital versions of algebraically equivalent real forms do not always produce
identical digital approximations. The error in a digital approximation to a real
computation will depend on the precise arrangement of operations in the digital

approximation.

We will give now an example of an a priori analysis of the total absolute error in a

direct digital computation.

Let .a, b, ¢ be real numbers such that | be] <|d| and |a + bc/d|<1, then we can

- approximate the real computation r = a + be/d by the direct digital computation.

3 :@"@ & @ a)@ P

with numbers a, b, ¢, d in 8, such that |a - al = Zﬁsvvlal, o - bl = g 811
- -5t — PR
[c-of =278 1g.q1=27%"1
Assume that |bc| < |d] and|a+ be/d | < |.
We decompose the total error as follows:
rofear 2 (6@ @doa |
.7 4 be _ be
= a-a ] 3

(2 i) [beo edo i)

40
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Now L .
bc bc 1 CEm o, be =
4T T g (bc bc)! ad (d-d
TR N O P
=g e-or g (b~ b) + o (d -~ d)
And 'k‘)"" . . . A .
(-ECM +a) - K(b ®c)® d)@ a ]
e Dol
= =~ @c)@d since x@y =x+y.
Furthermore

Finally we have

M prang € - " . p——- —-— -—: A
r-r=(a-a b3 (c~c¢)+

be - | -

22 @d-Br = (he-b ® o

AR R TRk

(e (heved)
d

The total error is found to consist of six terms containing the contributions from six
sources of error involved: the approximation of the numbers a, b, ¢, d by a, b, ¢, d

and the approximation of the real arithmetic operations bc by b ® c and (b ® c)/d by
b®c)Dd.
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Recalling that for x, y in 83

|x®y - x y|<2—s+].

and for x, y in 8, with | x/y | <1,

that I x®y - x/y| < Z_SH’,
we find Ir- by P 2-—s+1 (2 +— — )
[d]
. L - -15 - - . -14
As a numerical example, take s =27, a=a=-2 ", b=b=c=c=2 , and
ded=2 13 . We have r=a + be/d =0 and T = (b ®)Od@a-= o710 ,

since b ® ¢ =2 @271« 0 for s=21.

— -1 5
Then r-r =+ 2 15 . In this example, we started with "exact" digital numbers, i.e
a-a=0, b-b =0, ¢c~-c=0, d-d=0 andour digital arithmetic was "good' to
26 binary places.  Yet after three such digital arithmetic operations the number

computed was only "good' to 15 places'!

While it is clear in principle how an a priori error analysis for a direct digital
computation could be carried out - see for example: A.S. Householder, "Principles
of Numerical Analysis" (1953), and J. von Neumann and H. Goldstein, '"Nume rical
Inversion of Matrices of High Order", Bull. A.M.S. Vol. 53 (1947), it is enormously
tedious to do so. Even after such an analysis is carried out the resulting bounds may

still be complicated expressions, difficult to evaluate, or not very sharp.
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Section 7
RANGE ARITHME TIC

7.1 INTRODUCTION

We wish to develop in this section a number system and an arithmetic dealing with

closed real intervals. We call the numbers range numbers and the arithmetic

range arithmetic. Numbers of this type were mentioned by P. S. Dwyer in "Linear
Computations, "' Wiley (1951). :

A modified digital range arithmetic will serve as the basis for the automatic analysis

of total error in any direct digital computation.
7.2 REAL RANGE ARITHMETIC

Let R be the field of real numbers and let Q be the set of closed bounded intervals

of real numbers. The elements of & are called real range numbers,

We define two mappings « and g fromd into R such that if 169 and
x €I, al=x = BIl. Wecall a I theleft end point of I and g1 the
right end point of I, We represent I by the notation [« I, 81 ]. Then I is

the set of real numbers x|al=x=pI}.

For any real numbers a, b such that a<b, there is a unique I ind such that
al=a and 81 =Dh.

For Ted and Jed , we make the following definitions

DI, I=Jdifandonlyif al=aJ
and I =8 J.
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D2. -1={-y| yel}

D3. I+Jd={x+y|xel, yeJ}
D4. I-d= I+ (-J)

D5. IJ={xy|xel, y ed}
D6. INJ = {x|xel, xeJ)

I NJ is the intersectionof 1 and J as sets of real numbers.

D7. I = J if and only if INJ is non-empty. i.e.

I ~J iff dx 3 xel, xed.

DS8. I#J iff 1N J is the empty set.

D9. 1 T1#[0, 0], then T '- {% | xe1}

D10. I J %[0, 0], then 1/J = 13-
pit. C {1 cIla1 =p1}

C is the set of all real intervals containing a single real number, i.e. the set of all

real intervals whose left and right end points are identical.

D12, 1 CJ iff xe I = x ¢ J. This is the ordinary set inclusion

relation for I, J as sets of real numbers.

Obviously, C is isomorphic to R and hence is itself a field.
From properties of real numbers and the definitions D1 to D11 . the following
propositions are true for I, Jin 3

Tl. I1+J€d and 1+J= J+ 1

T2. IJGCQ and I1J =J I

T3. I+ [0,0]=1

T4, I [1, 1] =1

T5. I~1
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T6. I1~J = J~]
T7. 1 - 1={0,0]

Since I-1={x-y| xel, yel}

choose x=y= al.
8. 140, 0 > 1 ed and U1 ~ [1, 1].

Since I/T1= {x/y |xel, yell,

choose x=y= o L
T9. For C, € & and CZGC’, C, » C, iff Cywm C
T10. 1~J=>dCeC D1~ C and J~C.

2

Since I~J =>dxeRIxel, x ¢ J.
choose C =[x, x]
Ti1. ¥ dc¢c ¢ Cr1~=C, J~C then I~ d
T12. 1=J iff IC J and JC I.
T13. I C ¢ € and I+ J~C, then

3 Cy 026631%01, J~C,

and C = Cl+C2

T14. ¥ CeCand 1 J =~C, then

301, C,€ ¢ 1~Cc, J~¥C, and C= C,C,-

1’ 2

For I, J, K in :>9 we have
Ti5. I+ (J+K)= (I+J)+K
T6. I (JK)= (IJ) K

Mooy @k

Ti7. I K# [, 0l , 3
T18. I(J+K) CIJ+IK
Ay al 1+d ’
T19. For K#00 —g— < /K + J/K
45
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Notice we do not have I~J and J~K implying I~K, since [0, 1]~[1, 2]and

[*. 2] ~[2, 3] butfo, 1] # [2,3].

We do have
T19.% If I~[0, 0] J~[0, 0], then I+J~ [0, 0]
T20. I I~[i,1] J~[1,1], then 1 J~ [1, 1]

That we do not have the distributive relation I (J + K)=1J + IK may be seen from the
example: I= [1, 2] Jz[—z, 1] K':::[l, 2]  we have J+K=[-1, 3], and
1(J+K) =[-2,6] while 15=[-4,2] and 1K =[1, 4] so that TJ+ 1K= [-3, 6]

The following easily established formulas for end points establish that in the representation

I= [oz I, BI] , the range numbers I+ J, I-J, IJ, andI/J are directly computable:
F1. a(I+d)=al+tad '
B Ad+J)=B I+ B J
Fz. a(-I)= -1
B(-1)= -al
F3. a(@-Jd)= al-pJd
BA-J)= B I-ad
F4. a(@d)= min {eTad, ol BJ, BI «d. BI B J}
B J) = max falad, ol BJ,81 ¢J.B1 BJ}

The end points « (I J), B(IJ) can also be computed using a table of sign discriminations.

Let + stand for a non-negative number and - a negative one.
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F5. sd { a1 |81 | aJd |BJ
1 + + } 4
2 + b - }
3 + 4 - -
4 - + 4 +
5 - + - +
6 - t - -
7 - - | +
8 - - - b
9 - - - -

) a(@d)=alad, BAJI)=RIBJ

2 a(@d)=p1 adBANH=pBI18J

3 " = pglad, " =oqalfd

4 " = aIBJ, " = BIBJ

5 " = min(plad, alfd), AJ) =max (alald, g1 8J)
6) " = Blad, B = alpd

7 " =aIfd, " = Blald

8§ " =qlpd, " = alald

9 " =pI BJ, " = alad

In Fb, we compute only one product for each end point, except in sign discrimination 5).

F6. a(l'l) = E’lT
- 1

pah = =
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LOCKHEED AIRCRAFT CORPORATION MISSILE SYSTEMS DIVISION



LMSD-48421

We perform now some illustrative computations in range arithmetic.

[a, ] + [c, c] = [a +c, b+ c]
[a, b] (e, c} = l:_ca, cb] for ¢=0
[0, 1] f:c, c] = [O, c] for ¢=0
0, 1] [c,e] = [e,0] for e<o
1, 1} [, 1) = [-1, 1]
.:a,b]— (a, b]z [a«b, b—a]
fa, b]/ [a, bl = [a/b, b/a] for a>o0
Lo 1 - [ 2
[al, a] - Ea, a_l = [0, 0]
[a, a] /Ta, al= [1,1] for a #0

From the uniqueness of 1+ J and 1J, we have

T21. I=Jd F I+K = J+K

and I1K=JK
From F1 and D1 we obtain,
T22. I+ J=1:1+

but [1, 1]#[0, 1].
If A and B arein< and A ~ [0, 0],

for any K in 9 .

K, then J =K

the equation A X + B‘:-EO, 0] will have a

solution for X in <& if and only if A and B are in C

Abbreviate [0, 0] by 0 and[1, 1] by 1.

T23. If I=~0, then JCI + J
T24. If Izi, then JC 1 J
T25. If ICJ, then K+ICK + J for K in <
T26. If ICJ, then K ICK J for K ind.
T20. If A is ind for k=0, 1, 2,...,0 and Xisind , then
A+ X (A + X (Ay+ oo+ X(A D). )C A+ A Xb. 4 Aan
T28. I + J=~0 iff I=-J.Choose x€1 and yedJax+y=0
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T29. 1 Jx0 iff Ix0 or J=0 ]
T30. I I~J, then K I ®KJ and K '+€i1;§K—!~J for K in 9.
T31. If ICJ and I~K, then J=K for K in J.
T32. Hf I~0 and I CJ, then 0 C J.

~gince I~0, then 0C1I CJ.

T33. ¥ -Al Bcx  for A B, X ind, then AX+B ~0

i -7l BC X, then —AA'chAx, and

B-AA1B cAax+ B

1

Since AA™L ~ 1, then BCAA  Band B wAA'lB, and
1

B-AA "B ~0, and AX+ B~ 0

: . - ! ] N n - “ ) ! n
In fact, if p(x) a +ax ba X and P(X) ‘AO4 A1X4.... + AnX .

with aieAi, then P(X) ~0 whenever X contains a zero of p(x).

We define a partial ordering relation < for the set Y by the definition
D13. I <J ifandonlyif x€l and yeJ =>x<y.

D14. I &J iff 3 xel, yed 9 x=y.

From properties of the order relations for real numbers and the definitions D1 to
D13 we obtain
T34. I<J iff 1 < a J.
T35. - I<J and J<K=] < K
T36. I<J = 1 #J.
T37. Id iffeither I <J or J<I
In the representation [oz LB I] for elements of J , the following are directly computable.
F7. I <J if pl <ad (D.13)

149 if pl=ad
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F8. IN[X, x] iff a1 =x=pI
F9. I~J iff 14J and J41
F10. I #J iff 1< J or J <1
F11. Icd iff ad=al=BIsBJ

F12. 1€ Ciff @ 1=F1

If a ta; X+ ooda x" is a real polynomial with a, €Ai and x € X, then
- -] O T Y n 4. T i -
P(x) = a + a X - ba XD €A+ AL X4 4Aan)MP1(X)
In fact, since
n
p(x) = a jta; x4 ax = ao+x(a1+” . x(an) ) )

then p(x) €A + X (A + X (Agt,,, +X(A)) " )= P, (X

In T27 above we stated the interesting theorem Pz(X) C Pl(X)’ (T27. follows easily
from T18, T25, and T26).

In other words, if p(x) has coefficients such that « Ai = a, 5ﬁAi , then
p(x) € PZ(X) C Pl(X) for x suchthat o X = x = X.

The range polynomial Pz(X) may not be minimal for p(x), however, as can be seen

from the following example.

Take p(x) = x - xz; then Py(X) = X(1 - X) and for x such that

0=x=1, ie. for x=[o, 4, fo, 1 ([t, 1 - [o, ] )= [0, 1][0, 1] = [o, 1]

50
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Therefore p(x) € [0, 1] . Since p(x) = x(1 - x)= 1/4 - (x - 1/2)2,
then also p(x) € ([1/4, 1/4]- (x-[172, 12]) 2)

so that p(x) € ([1/4, 1/4] - ([o, 1]-[i/2, 1/2] )2)
Since [1/4, 1/4] - ([o, 1] - [1/2, 1/2])2

=[1/4, /4] - [1/2, 1/9]?
={1/4, 1/4] - [-1/4, 1/4]
=[1/4, 1747 + [-1/4, 1/4]
=0, 1/2]

then p(x) € [0, 1/2] c[o, 1].

Of course, the actual range of values p(x) =x (1 - x) for 0 =x =1, is the interval

[07 1/4] .

But what is the range of values for p(x) = 2 - 9x —‘6x2 - 5x4 - 7x5 + 5x6 + 2x7 + 2x8

- x9 + 8x10

when 0=x=1 72
Putting A = [2, 2] , A=[-9, 9], ..., A& [8 8 and x=[0, 1],
we find P,(X) = [-25, 2] and P, (X)= [-25, 19] for the range polynomials of

type P, and P2 described above.  Therefore - 25 =p (x) =2 .

1

7.3 DIGITAL RANGE ARITHMETIC

If the end points of range numbers are restricted to lie in a set S of digitally

representable numbers, the resulting range numbers are called digital range numbers.

Thus if o I, BI € 83 , the digital range number I= [cu I, B I] is the set of
real numbers x such that ¢ I =x =8 1. With apair of numbers a, b in S3 ,

representable in R, by words w, and w

3 1 2
real numbers x is represented by [a, b].

in Ws , the interval a =x = b of

The following digital range operations are defined for I, J in 9 such that
al, B, od,B J arein S3 and in the domain of the appropriate digital arithmetic
operation.
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D15, 1@J=[c1®@« J, 81 @BJ]
restrictedto I, J smuch that |a I + o J|<1

and | B1 +BJ|< 1as we recall from Section 4.

D16. I1QJI=[a IQBJIBIO a J]
DI7. 1@JI=[ac A@JT) B0 ®J)

where '
AI@IN=min el @ad, al®®BIL,LIR@Rad,B1®pJI}
BA®@N=maxlol@ad, a1l @BLJ,BID e 1,81 ® BJ)
and _ , —_
o (I®J) if ¢ @ >0
oI@®@J) = {0 if ca=0
sa®J o 25! if oa<o0

By o o we mean (sgn xy) where x, y are the factors in the term which produces

min for a ., Similarly for ¢ B .

Bl ® J) @275 if 0B > 0
mdpa@a = Jo if 0f =
BI®J if op <

The computation of all four products in the formulas for a and 8 may be avoided
in all but one of nine cases by using the table of sign discriminations as given

above in TF5.

D18.  For J#0,
1 © J=la@®@9,80® 9]

where _
cI@NH=min{al @ad, al®BLILLIE aJLIOBJI}
B IO =maxf{al@®ald, ¢l@LLAI® aJ,PIER I}
and a(I®J) if ca>0
a (I®J) = {0 if g d=0
IO 2% i sa< o0
and ' Iy @25t if ¢ >0
BIAG J) = 0 if 0B=0
B ® J) if ¢ 8<0

52

LOCKHEED AIRCRAFT CORPORATION MISSILE SYSTEMS DIVISION



LMSD-48421

Again, the number of quotients to be computed may be reduced by a table of sign

discriminations.
D19. I <J if a J> B
145 if aJ =g I

The digital range operations I® J, 1@ J, 1 ®J, 1 ®J, 1< J canclearly
be programmed as digital computations in machine language, (see Section 5. 3).

The range step, "K=1 o J", for oef{+, -, x, +} and the corresponding digital
range computation automatically bound the real step " z=xo0y'" and the corre-

sponding digital computation. In fact, if x€ Iand yeJ, then z €K and K is

contained in the digital version of I« J.

The operation I@J should be programmed so that the following range step is

represented:

nif I@J, do r ; if J< I, do t ; otherwise stop" where r and t

are range steps.

Note that, by D8 and D13, exactly one of the following is true for I, J in 9.
I <
J <

d
1
I J

4

Furtbermore, by D19, if 1(®)J, then x®)y for xel, yeJ.

Therefore, the range step just described chooses r as the next step if x@y for
every x€l, ye€d, and chooses t as the next step if x>y for every xel, ye€d.
It halts the computation in case neither x=y, nor x>y is true for every

X€el, yedJ.
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~-s+1

The 'round-off factor'" 2 was used to extend the result of a digital range

arithmetic operation only where required in order to guarantee that

I +JCc1@®J
I ~-Jc1OJ
IJ ¢ I1®J
/] € 1®@J

From Section 4.3, in particular from the definitions of @, ©, ®, @ for

pairs of numbers x, y in S3, it follows for example, that if xy > 0, then
s-1 -s+1 -
xX@®y= (Sgnxy)[ |xy|2 ] 2 and x @y = xy =(x ®y)@28+1

s+1 s+ 2

Notice that if x = y = 1 -2 , then x ®y = 1-2" and the operation

~g+1 g+ 1

-3+ 2
° ) © 2 =1-2 . On the other

@O 575" is valid; in fact, (1~ 2
hand, if x y < 0, then (x @ y)©O 7S+ _ Xy = x®7y.

In any case, e(I@N=a(1N=AN=1 @ I

Similarly,

a(I@N=al/N=BA/H=0@J).

As an example of digital range arithmetic consider R = ((B ®C @ D)@ A,
D#0, for A, B, C, D in & with end points o« A, BA, ..., aD, D in Sg -
If aeA, beB, ceC, deD, then r=a + be/d € R

. . -15 -14 -
In Section 6, an example was considered with a = -2 , b=c=2 , d=2
and s =27 . Choose A = [—2'15, -2“15], B=C ==[2’14, 2"14], D= [2"13, 2"13],

then B @ c:s[z'M, 2'14] ® [2‘14, 2”14] = [0, 2'26]

® ®0) @D =)o, 2@ [0, 2% 7%

13

R =(B®0 0ODO A=[O, 21 2% @ -2 2717

-13 _-15 —26]

R =[—2'15,» 2 2 + 2

54
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Then r =-271% 4 2 - 2 = 0 € R aspromised, i.e.

~2_155 r = 2_13 —2_15 + 2_26 .

Notice also that for T ::((b ®c)® d)@ a, the apriori bound developed in

Section 6 gives
r-7 <271 (24 4
I | T -8+1
ld] -2

= ,-26 4
lr-r| <2 2+ —5 35
o 13 =26

;_:((2—14 ® 2-14) o 2-13)® 218 o 5715

or

Since

then the a priori bound gives

-11 ' -11
-2 — - o152 2 — - o715, 525
1-2 1-2
Digital range numbers can also be defined with end points representable in R & RG’

etc. and appropriate definitions can be given for
I@zJ, I QZJ, I ®2J | ®2J

and for
"N N
Jd, I xJ, 1 +J, etc.

A computer program written for a direct digital range computation will produce as

results sets of real intervals with digital numbers as end points. In these intervals

will lie the exact results of the corresponding real arithmetic computations.

A computer program has been written for the 1103AF (with built-in floating point)
computer at Lockheed Missiles and Space Division for performing direct digital
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computations in range arithmetic. The program is called RANGE and it contains
operations providing for digital range computations in two digital representations:
single precision fixed point fractional numbers, as in our representation Ry, and
single precision floating point numbers, as in our representation R 4
Computations using RANGE have included: the evaluation of polynomials of high
degree with coefficients defined by recursion formulas, the inversion of matrices
and the solution of systems of linear algebraic equations by direct methods, and the
solution of systems of rational difference equations. In each case the machine
solution abtained consisted of intervals containing the exact infinite precision solution

of the corresponding real eamputation.
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A particular class of indirect computations is the set of iterative computations.

If €y Cop 03, ... is a sequence of directly computable real numbers, then the
computation of the sequence is iterative if i1 is directly computable from the
set {xl, xz, .. .xn, ci}

and _ C1 = f(X1X2' ces xnCo)

and i = f(xl, Xz“"XnCi)’ i=1

for some function f which is rational in all its arguments.

The evaluation of the function f is a direct computation consisting of a finite number

of arithmetic steps

= = v
p. f(xlxz, vy Koo ci) rp up o P

where in the kth step o is one of the arithmetic operations +, -, x, + and

uk, Vk is a pair of numbers from the set {0, 1, x

for k=1, 2, ..., p.
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Suppose that X_, X_,.. ‘Xn’ CO are range numbers in & such that

1’ 72
XkGXk,coeCO

and

y)=R=U0Ov
1, z"“’ Xn,cl) p p p

defines a range computation such that O in the kth step is the range arithmetic

operation corresponding to the real arithmetic operation o in the kth step of

the real computation defining - Assume that if O is a division at the kth
step, then Vk #0, so that Uk O] Vi = Uk/Vk is defined.
We have I € Rk for k=1, 2, .., p
In particular, if
1l - F (Xl, ) OVERRRE Xn’ C:)
then rp € Rp or ¢, € C.,
Since Ci+1 is a bounded interval, f(xl,xz,. X, C ) is continuous in ¢ for c ¢ Ci .

A bounded rational function is continuous.

If Cio+1C Cio for some i~ then for each set {xl, Xos «oos xn} such that
Xk € Xk’ f (Xl’ xz, C ey Xn’ ¢ ) has a fixed point ¢ such that ¢ ¢ Cio + 1and
c = f(xl, Koy oo X c).

Since 1CJ (by T25 and T26 in Section 7) impliesthat I+ KCJ+ K, IKCJK,
I-KCJ-K, I/KCJ/K for K #0, for K in o , then evidently
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forms a nested sequence of range numbers with

c € C, . for j=0,1, 2,...
i +3
o
3+ rz
As an illustration, consider the iterative computation defined by L = i
4
for i=0, 1, 2, ... with r_suchthat 0 =r_=2. Choose R = [0, 2] and
define
2 .
R,,, =([3, 3] +R") / [4,4]for i=0,1,2,...
Clearly,

2
Rl . [3,3l[£4g01 2] :l3/4’ 7/4] I Eo

In fact, Ro’ Rl’ Rz, ...isa nested sequence of intervals converging to the interval

[ 1, 1'] containing the single real number 1 which is indeed a fixed point of

3+r2

f(x) = =
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