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Section 1
INTRODUCTION

It is the purpose of this paper to describe the use of a novel program,
DIFEQ, written for the IBM TO94 computer for "solving" systems of or—
dinary differential equations, that is to say, for finding mumerical

values of particular solutions with assigned initial conditions.

The instructions for the use of the program are supposed to be self-con-
tained and ensble the reader to use the program with little or no pro-

gramming experience,

The program has several features which distinguish it from other integ-

ration routine:

1. In addition to providing approximate solution values, the program

supplies a rigorous upper bound on the total error of each solution

component at each computed point. The user may think of the results
as having the form Y + e where Y is the approximate solution and e

is the error bound. If y is the exact solution at the given point,

then | y - Y r s e holds.

2. In order to use the routine, all the user has to supply is his dif—

ferential equations and initial conditions. The program itself de-

termines all the intrinsic parameters such as initial and subsequent
step sizes, etc. If the user desires, he may specify values of the
independent varisble at which he wishes solution values; otherwise
the program will even select these. In case he leaves the choice

of output points up to the brogram, the first nine Taylor coefficients
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will be printed, along with solutions values, for interpolating
intermediate points. Instructions for the use of these coeffi-

cients will appear with the output.

The routine is applicable immediately to any system of ordinary
differential eqQuations which can be written
dy.

i = Fi(yl, Ypr eees yﬁ) 1=1,2, ... , m
= .

where the functions Fi are rational in their arguments. 'There
is no loss of generality in assuming that the independent vari-

.e@ble x is missing from the arguments since the substitution

= X
yﬁ»l

and the addition of the equation

dy .

o

= 1
can be mede in order to remove the variable x from explicit occur-
rence in the functions Fi should it so occur.
Square roots are also permitted to appear explicitly in the

functions Fi'

In order to apply the routine to the solution of differential
systems in which functions other than rational ones and square root
occur explicitly, the system must first be rewritten in such a way

that those occurrences are made implicit.

A large number of functions commonly)océurring in the physical
sciences satisfy rational differential systems themselves and can
thus be replaced for our purposes by their defining differential

equations. For example, sin and cos satisfy

y+y=0 or §y =¥, , ¥, =¥,
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and the function tan-'l satisfies

yl
and exp satisfies

y' o=
etc., etc., etc,

1/(1 + x°)

As an example, we can reduce the pendulum equation

¥4 siny=0

to a rational system as follows. First reduce the second order

equation to a pair of first order equations.

Substitute
¥ =
Yo =
then
v =
¥, =

= y2

= ¥ = -sin ¥1

We must still remove the non-rational function sin ¥y from explicit

occurrence. We define a new variable

then

But now we must add

Y3 =
Again we substitute

N =
and write

h,

sin y..L H

Yo

= —y3

another equation defining &3. We have

(cos y,) ¥, = (cos ¥;) v,

cos y,

==(sin y1) §; = -y v,
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Thus we have replaced the original 2nd order equation
Yy+siny=0

by the following system of four first order equations involving

only rational functions

¥y =y,
Yo = =3
y3 =9, ¥,
Sy = =3 9

We recall that

Yy =¥
Vo =¥

y3 = sin yi
y), = cos ¥y

Thus if our original initial conditions were y(to), &(to),

we INnow use
¥1(tg) =¥ (%)
¥ (%)

y3(ty) = sin y(t)

v5(t)

7y (tg) = cos y(t,)

3. In specifying initial conditions and equation constants, inexact
data is allowed; i.e., data of the form, x +e. These initial

errors will also be taken into account by the program.
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Section 2

HOW TO USE DIFEQ

Reduction of the differential equations to "basic steps"

. — —————— ———— or—

of "m" first order equations, m = 20. The system so obtained must give

an explicit expression for the first derivative of each variable. These

expressions may be any sequence of constants and variables connected
by the following operations: addition, subtraction, multiplication,
inverse, and square root. Each division must be rewritten as a re-—

ciprocal, or "inverse", and a product; for example,
U/V is to be rgwritten
U (v)“l or (v)‘l U,

Example l}:

The equation

1/2

L
YU+ 3yyt +b (¥ - 1) = 0

must be rewritten in a form such as the following:
Let y =y, 5, ¥ =9, ,
then
1 =9

2 1/2
1 — - -
v} 3y, ¥, = b (y] - 1)

Example 2}:

If we wish to apply the routine to the equation

y'= ¥ 4 (xy)l/2
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in which the independent variable "x" occurs explicitly, we must

add the equation

xt =1,
Example 32:
The equations
T = -
Yy =2-9, ,
1/2
't =
vy = v/ (b +yp)

are almost in proper form as they are originally stated. All we

need to do is rewrite the division in the second one as

)1/2 )L

1 -
vp =¥, ( (b 4y

After having put the system of equations to be solved into the

form just described, the next step is to revise the notation to

correspond with that acceptable to the routine DIFEQ.

Rename all variables occurring in the expressions for the de—
rivatives so that each variable is denoted by Y(i,0), for some
i=1,2, ... , m. The first derivatives of the Y(i,0) are de-
noted by ¥(i,1). A maximum value of i = m in a particular set of
equations requires that a unique definition be given for each
¥(i,1), 1 =1, 2, ... , m. Constants are denoted by CK CONSTANT

where the maximum value for K is 39; for example, we might have
the constants C1 CONSTANT, C2 CONSTANT. If the user's constants
include any of the integers 0, 1, 2, ... s 10, he may specify them
by their alphabetic names together with the word "CONSTANT™ ; i.e.,
ZER$ CONSTANT, QNE CONSTANT, ... , TEN CQNSTANT.
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Example:
For the last example given a&bove, the revised notation is:
Y(1, 1) = T™W$ CONSTANT - Y(2,0)
1/2.~
¥(2,1) = ¥(2,0) ( (c1 comsmanr + ¥(1,0) )¥/2)™

L1}

In order to fulfill the requirements of DIFEQ & further reduction
of the system is necessary. This final reduction yields basic

steps of one operation each, with one or two arguments (depending

on the operation), and one result per step. The user may thus
have to define one or more intermediate results for a given deri-

vative,

These intermediate results are to be denoted by T(j,0) for j = 1,
2, «-+ , mj n = 200. Each T(j,0) must be uniquely defined by an
explicit expression, and a maximum value j = n requires that a

unique definition be given each T(J,0); j =1, ... , n.

There are six operations allowed in basic steps:

addition: ADD p + q = T(j3,0)
subtraction: SUB p -~ q = T(j,0)
multiplication: MULT p*gq = T(j,0)
inverse: FIND INVERSE OF p = T(J,0)
square root: SQROOT p IS T(j3,0)

defining a derivative: DEFINE p AS Y(i,1)

The arguments p,q in the basic steps may be the names of constants,
e.g., C3 CNSTANT, variables denoted by Y(i,0), or intermediate re—
sults denoted by T(j,0).

Note the following restrictions on the use of the T(jJ,0):

1) A given T(j,0) must appear as the result of a basic step, (i.e.,
on the right hand side of an equation), Pbrior to its appearance
as an argument, (i.e., on the left hand side of an equation).
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2) No T(J,0) may appear on both sides of a given equation.

3) No T(j,0) may appear on the right hand side of more than one

equation.

Each step is to be punched into an IBM card, with one step per card.
The following example shows the spacing which should be used in
punching the equation cards. This is then the final form of the

last example mentioned above.

The first letter may be punched in any column from 8 through 15
inclusive. One blank column must appear between the words and
symbols except no blanks should be between the "=" sign and the

symbols on either side.

SUB TWd CONSTANT - Y(2,0)=T(1,0)
DEFINE T(1,0) AS Y(1,1)
ADD C1 CONSTANT + Y(1,0)=T(2,0)
SQRT T(2,0) IS T(3,0)

FIND INVERSE ¢F T(3,0)=T(4,0)
MULT ¥(2,0) * T(4,0)=1(5,0)
DEFINE T(5,0) AS Y(2,1)

Preceding the equation cards asn additional card is required. It

hag the format:
INITIALIZE M = , N = , C =

where M is the number of variables of the form Y(i,0), N is the
number of intermediate results T(J,0), and C is the number of con-
stants CK. The value of C does not include any of the integer con-
stants written by names other than CK C¢NSTANT, e.g., ONE C¢NSTANT.
The first letter of INITIALIZE may be punched in any column from

8 through 15. One blank column must appear between the word
INITIALIZE and the letter M. No blanks should be used in the re-
mainder of the statement. The number of equation cards will always

be exactly equal to M+N, if correctly prepared.



IMSC 6-90-64-6

For the equation deck in the above example we would have:
INITTALIZE M=2,N=5,C=1

Additional examples illustrating the preparation of the dif-

ferential equation cards are given toward the end of this manual.

Next we will describe the preparation of initisl conditions on

punched cards.

B. Input Data

The input data deck consists of data for one or more sets of
initial conditions and parameter values for a given set of equa-
tions. Each set is composed of five types of data. We may think

of each of the types of data as comprising a card group.

Card Group I. consists of any number of cards. An "*" must be the

first symbol punched on each of these cards. On the remainder of
each card may be punched any information which is desired as an out—
put title. This might include such items as user's name, problem

title, date, and case number.

Card Group II. gives the initial conditions for the varisbles. An

initial value must be assigned to each Y(i,O) used in the "equation
deck". Each initial value Y(i,0) is identified by punching "Yi=" to
the left of the value, e.g., "Y2=" would identify the initial value
of Y(2,0). The value itself is given by a pair of numbers "y,e", in~
terpreted by the program as y+ €. The numbers "y" and "e¢" are se-
parated by a comma on the punched card. If exact data is used, i.e.,
"e"=0; "e" may be omitted if and only if the comma is also omitted.
The numbers "y" and "e" each have the form of a decimal number with

a maximum of eight significant digits, and may be followed by an
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exponent if desired. If the decimal point is omitted, it is
assumed to be at the right of the number. Values greater in ab-

38

solute value than 10” and values between zero and J.O-38 cannot
be handled by the program. An exponent is interpreted as multi-
plying the number by the given power of ten. Use of an exponent
is indicated by punching an "E" after the number, then the sign

of the exponent, finally its value.
Note: Only one"Yi= ..." may be punched per card.

Card Group III.gives the values of all constants used in the

"equation deck". Each constant is identified by punching "Ck=",k=1,2,..C,
to the left of the value. Values have the same form as those in
Card Group II. Similarly, a separate card must be used for each

Ck.

Card Group IV. (optional) consists of three cards. On the first
card is punched the word "XZER)" or "XO" and a decimal number* , (fn.p.11),

giving the initial value of the independent variable. The second
card contains the word "XFINAL" or "XF" and the maximum velue¥* to
be attained by the independent varisble*. The last card is iden-
tified by punching the word "PQINTS" or PTS" onto the card and an
integer indicating the maximum number of points at which the solu-
tion is to be evaluated. This nunmber corresponds to the maximum
number of integration steps computed by the program. Thus, it may
have no relation to the number of solution points actually printed
if the user selects a print option to control output. (see Card

Group V.) Equal signs are optional in Card Group IV.

Card Group IV. or any part of it is optional. If omitted, the
value of the independent variable associated with the initial con-
ditions, X0, is assumed to be zero. The upper limit on the inde-
pendent variablé, XF, if omitted will be assumed to be 1038, except
in option (1) under Card Group V. where it is taken as the largest

value of Xi given. If

- 10 -
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not specified, the maximum number of points allowed will be set

to 32,767.

Card Group V.(optional) may be used to control program output.

(1) If the user desires solutions at specific predetermined values
of the independent variable: Xi> X0, X2> X1, ... s XTF;

he should prepare a set of cards punched as follows:

}(2= s
X3= ... ete.

The value of each Xi is to be punched as a single decimal
number on a separate card. A maximum of 199 values may be

used, These cards then constitute Card Group V.

(2) Should the user desire printed solutions at even increments

of the independent variable, i.e., at
X0 + Ax; XO + 24, X0 + 34x, ...

he should punch a card with the word "DELTAX" and the de—
*
cimal print increment value , Ax. In this case Card Group V.

will consist of one card only. Equal sign is optional.

(3) If card Group V. is omitted, solutions will be printed at

each integration step selected by the program.

* Values for "XO", "XF", "X1", "X2", ... , and "DELTAX" are to be
punched as single decimal numbers according to the rules for punching

a number "y" in Card Group II.

- 11 -
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There are no restrictions as to specific column designations for
the input data. However, the items on each card must appear in
the prescribed order, and no extraneous informetion may appear

on & data card. The ordering of the cards and card groups within
a given set of data is also arbitrary, except that a card with
the word "END" punched in it must follow each set of data.

(See examples)

Timing

The program requires a variable amount of time per integration

step depending on such factors as number and complexity of equations
and proximity to singularities at a given point. Another factor of
uncertainty in estimating computation time is the number of integ~
ration steps required to obtain a solution at the maximum value of
the independent variable. The timing experience on the sample
problems given at the end of this manual may be helpful to the

user.

If the solution is stopped by exceeding estimated run time, the
user may input the last solution values printed and re-submit the
program to continue integration. At all normal program exits a

message will indicate computation time in minutes.
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Section 3

METHEOD

Solutions are obtained in a step by step fashion by means of expansions
in Taylor series truncated at the ninth term. The remsinder term in the
Taylor series is bounded by the program over regions it comstructs about
each new solution point. The step size is chosen so that the solution re—
mains in the region for all intermediate values between one solution point

and the next. This containment is tested by the program.,

Thanks to "interval arithmetic", (see Ref. 1), the program is able to

bound the errors due to rounding of the finite precision machine arithmetic.
(Single precision, about 8 decimal places, floating point arithmetic is
used.) In fact, interval arithmetic is used throughout the computations
and this is what enables the program to produce rigorously correct upper
bounds on the overall error, even including error due to inexact initial

conditions, conversion of decimal input to binary in the machine, etc.

Thanks to a compiler type program which is part of the DIFEQ routine

and which makes use of a "macro-expander" program called XPOP, (see Ref.e)’
the required coding for the computation of values of the Taylor's coef-
ficients is generated by the program itself. We have been able to do this
in such a way that the computing time to get the nth Taylor coefficient
.goes up only linearly with n for all equations which can be reduced to

the basic steps as described in the Previous section of this manual. Due
to this fact we are able to compute efficiently with nine terms of the

Taylor's series.
A complete description of the program would be too long for inclusion in

this manual. Reference 1 may be consulted for the main feastures of the

methods used.

-13 -
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Section L

EXAMPLES

Each of the following sample problems is traced through the preparation
of the equation deck and input data deck.

Example 1:

Problem: = y2; y (0)= 1.

gle gle

Step 1: =y .y

Step 2: ¥(1,1) = ¥(1,0) . ¥(1,0)

Step 3: MULT Y(1,0) * ¥(1,0)=T(1.0)
DEFINE T(1,0) As ¥(1,1)

Thus, the equation deck should be punched as follows:

INITIALIZE M=1,N=1,C=0

MULT ¥(1,0) * ¥(1,0)=T(1,0)

DEFINE T(1,0) AS ¥(1,1)

The input data deck mey be punched:

* EXAMPLE 1 DY/DX =Y#¥%2

Yl = 1.0

END

Example 2: o

) ' a
Problem: d_x% +y =05 x =0; _a%-.:—'—’-#ﬁé, y(0) =0, 'é% (0) =1

Step 1: ILet ¥y =

then &l

1
l\)%
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Step 2: Y(1,1) = ¥(2,0)
Y(2,1) = -¥(1,0)

Step 3: Equation deck may be punched as a sequence of three

basic steps:
INITIALIZE M=2,N=1,C=0
DEFINE Y(2,0) AS ¥(1,1)
SUB ZER) CONSTANT ~ Y(1,0)=T(1,0)

DEFINE T(1,0) AS ¥(2,1)

Input data deck:
¥ SIN/cds EQUATIONS 1/15/6k

Y=
Yo=1,
XZERO=0.
DELTAX=.5
XFINAL=9.00
END

An alternate input data deck:
* SIN/CYS EQUATIONS CASE 2 1/15/6k

Y1=0
Yo=1.
XZER$=0
X1=,123
X2o=, 234
X3=, 35
K=, b56
X5=.567
X6m1.0
X®=1,57

- 15 -
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Example 3:
Problem: ¥, ~ 2% = x. = u(Xl -1+ ) - (l_“)(xl + 1)
1 2 1 3 3
r R
¥ +2% =x_ =M _ (2-u) *2
2 1 2 3 3
r R
r = {(x -l+lu)2+x2) 1/2
1 2
2 2,1/2
R={(xl+u) +x,°)
Step 1: Let vy =%
Yo = %
y3 =%
Iy = *
2 2,1/2
then r = ((Yl - 14 u) + Yo }
2 2,1/2
¥1 =3
. -1+ 1- +
y3=2yh+y1"u(yl W) _ (1) (v + w)
r3 R3
» l-
R e A RN R
r3 R3
Step 2: Iet u be represented by CJdC¢NSTANT. Reduce equations to

steps of single operations, and punch cards with the

following format:

-16 -



INITIALIZE M=k N=33,C=1

DEFINE Y(3,0) AS Y(1,1)

DEFINE Y(4,0) as Y(2,1)

SUB ¥(1,0) - ¢NE CONSTANT=T(1,0)

ADD T(1,0) + C1 CYNSTANT=T(2,0)

MULT T(2,0) * T(2,0)=T(3,0)

MULT Y(2,0) * Y(2,0)=T(}4,0)

ADD T(3,0) + T(4,0)=T(5,0)

SQrRY¢T T(5,0) IS T(6,0) [r]
ADD Y(1,0) + C1 CONSTANT=T(7,0)

MULT T(7,0) * T(7,0)=T(8,0)

ADD T(k,0) + T(8,0)=T(9,0)

SQROYT T(9,0) 18 T(20,0) [R]
SUB QNE CQNSTANT - C1 CONSTANT=T(11,0)
MULT T(6,0) * T(6,0)=T(12,0)

MULT T(12,0) * T(6,0)=T(13,0) [23]
FIND INVERSE ¢F T(13,0)=T(14,0)

MULT T(10,0) * T(10,0)=T(15,0)

MULT T(15,0) * T(10,0)=T(16,0) [R3]
FIND INVERSE §F T(16,0)=T(17,0)
MULT T(11,0) * T(7,0)=T(18,0)
MULT T(18,0) * T(17,0)=T(19,0)
MULT C1 CONSTANT * T(2,0)=T(20,0)

MULT T(20,0) * T(1k4,0)=T(21,0)

- 17 -
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[ (l—u)(xl+u)]

RS

[H(Xl‘l‘H—l) ]



SUB Y(1,0) - m(21,0)=T(22,0)

SUB T(22,0) - T(19,0)=T(23,0)
MULT TW) CONSTANT * Y(%,0)=T(24,0)
ADD T(24,0) + T(23,0)=T(25,0)
DEFINE T(25,0) A3 Y(3,1)

MULT C1 CONSTANT * Y(2,0)=T(26,0)
MULT T(26,0) * T(14,0)=T(27,0)
MULT T(11,0) * ¥(2,0)=T(28,0)

MULT T(28,0) * m(17,0)=T(29,0)
MULT Tw$ CONSTANT * Y(3,0)=T(30,0)
SUB ¥(2,0) - T(27,0)=T(31,0)

SUB T(31,0) - T(29,0)=T(32,0)

SUB T(32,0) - T(30,0)=T(33,0)
DEFINE T(33,0) AS Y(4,1)

1/27/64 3-B¢DY PROBLEM

Y1=-1,98012E-02
Y2=-1.50162E-02
¥3=9.5560068
Yh=—4s 856878
XZER(=0.0

C1=.01215
END

- 18 -
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Example L: Illustrating reduction of non-rational systems

Problem: dyl
dx
]
dx

v, cos(xy,)

2x x2

exp(x2+ 2x1nyj)= ¥, e

let

then

We must add variables and rational expressions for their first derivatives
in order to obtain a first-order system in which the derivatives of all
variables are defined in terms of the basic arithmetical operations allowed
by the program. Thus we introduce the new variables

yh=y3yl

y5=1nyl

= 2+2
Y6—Y3 Y3Y5

y,=cosy,
y8=eXP(Y6)
y9=sinyh.

Then using the facts that (lnyl)'=(-§i)yl'; (cosyh)'=—(sinyh)yh'; (sinyh)'

=(cosyh)yh‘;(expys)‘=(expy6)y6'; we can "reduce" the irrational system

given for Yy yé to the following rational system in the variables

MK y2) Y3) seey y9'

- 19 -
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¥1'=VoY o
Yy'=¥g
y3'=l
yh'=y3yi'+yi

ye'= ¥y
5 .
1

y6'=2y3+2y3y5'+2y5
y7'= g 0,'
¥g'=yg¥g'
V' =V W,
After the above eguations are reduced to basic steps, the
equation deck should be punched as féllows:
INITIALIZE M=9,N=13,C=0
MULT Y(2,0) * ¥(7,0)=T(1,0)
DEFINE T(1,0) AS ¥(1,1)
DEFINE ¢NE CNSTANT AS Y(3,1)
MULT Y(3,0) *‘T(l,O)=T(2,0)
ADD 7(2,0) + Y(1,0)=7(3,0)
DEFINE T(3,0) A4S Y(k&,1)
FIND INVERSE ¢F Y(1,0)=T(k4,0)
MULT T(4,0) * 7(1,0)=7(5,0)
DEFINE T(5,0) AS Y(5,1)
MULT Y(3,0) * T(5,0)=T(6,0)
ADD 7(6,0) + ¥(3,0)=T(7,0)

ADD T(7,0) + ¥(5,0)=T(8,0)

- 20 -



MULT TWwQ CONSTANT * T(8,0)=T(9,0)
DEFINE T(9,0) AS Y(6,1)
MULT ¥(9,0) * T(3,0)=T(10,0)

SUB ZER} CQNSTANT - T(10,0)=T(11,0)
DEFINE T(11,0) AS Y(7,1)

MULT ¥(8,0) * T(9,0)=7(12,0)
DEFINE T(12,0) AS ¥(8,1)
MULT Y(7,0) ¥ T(3,0)=T(13,o)
DEFINE T(13,0) AS Y(9,1)

DEFINE Y(8,0) As ¥(2,1)

- 21 —
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Section 5

JOB DECK SET-UP

After preparing the equation deck and the input data deck the user

will combine these two sets of cards with "DIFEQ program cards" and
prepare the deck for submigsion to computer operations. It is assumed
that the program will be run under the IBSYS monitor system. The
"DIEEQ progrem cards" together with instructions for setting up the deck

may be obtained from

R. E. Moore, DIFEQ

Dept. 52-20

Bldg. 201

Lockheed Missiles & Space Company
3251 Hanover Street

Palo Alto

California

Phone: 324-3311
Ext. hshaT

- 22 —
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Section 6

SAMPLE OUTPUT

The final pages of this manusl contain sample output obtained from
Examples 1, 2, and 3. Note that the form of print-out corresponds with
the print option selected (Card Group V.) in each case.

In addition, the user should be aware that the following forms of out-

put may occur:

(1) Illegal data will cause an error message to be printed, in-
dicating the source of the error.

(2) The message "Error in above assembly" indicates the format of
the punched equation cards is not compatible with program re-
quirements.

(3) In cage a numerical difficulty is encountered in obtaining a
solution (such as overflow when the solution is approaching a
singularity), the progrem will automatically attempt to over-
come the difficulty by a "rescaling process®. Should a cer—
tain number of trials fail, an error message will be printed
indicating the last region over which the program was attempt-
ing to bound the remainder term in the Taylor's series. This
error message is an Indication of a singularity near the solu-—
tion.

(+) In case the solution is a polynomial of degree less than or
equal to eight, the program completes the solution in one step.
The Taylor's expansion coefficients printed are valid for all
values of the indgpendent variable. In this case the user

should ignore the error message.
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We repeat once more that the actual error in the computed solution values
is guarenteed to be less than the computed error bounds. In some cases
the actual error will be considersbly less than the computed error bound.
In the sample output to follow, for the sin/cos equations the computed
solution is found by comparison with published tables to have a maximum

actual error of 6 x 10-8 at x = 8.5.

In example 1, the exact solution 1is  Y(1,0) = 1/(1-X)
since Y(1,1) = -(1/(1-x)2)(—1) = Y(l,0)2.

Notice that the program stopped short of the singularity at X=1. Since
the program rigorously bounds the exact solution even at points inter-
mediate to those at which Taylor expansions are made, it can never go

past & point where the solution becomes infinite. In most other inte—

gration routines such singularities can escape detection.

We have included only part of the output for exasmple 1, namely the 1st,
end, 25th, 46th, and 8Tth computed points.

EXAMPLE 1 DY/DX = Yxa2
INPUT DATA
XZERB= Q. XFINAL#% 1,7014100€ 38 MAXIMUM NO. POINTS=32767
YU 1,005 1.0000000€ 00, ERROR BOUND= 7.4505806E-09

FOR EINTERMEDIATYE VALUES, IF X IS BETWEEN X(Q) AND X{Q+1l), SEYT X = X(Q} + TeDELTA
(WHERE TeDELTA IS T MULTIPLIED 8Y DELTA)
DETERMINE T AND COMPUTE Y(P,0) AT (X(Q)+T#DELTA} = SUM OVER J OF (T TQ THE POWER J TIMES Y{P,J4))

THIS VALUE WILL BE AT LEAST AS ACCURATE AS Y(P,0) AT X(Q+1l).
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SOLUTION AT X( 1)= 4,.4199569E-02

Y

Y(
Y
Y(
Y{
Y
Y
Y

R
Y
Y(

SOLUTION AT X{ 2)= 1.7553912E-01

Y

Y
Y
Y
Y
YA
Y
Y1
Y
Y
Y

110)'-‘

COEFFICIENTS FOR X BETWEEN X{

DELTA=

lyvO)%

COEFFICIENTS FOR X BETWEEN X{

DELTA=

1,0)=
i:1)=
1»'2)=
1*3)=
11'4);
1,5)=
1'-6);
10-7)=
19-8)2.
1+9)=

1.046242358 00,

9.9999995E-01

1.0000000€ 00O

3.9999998E-01
3.99993994¢£-01
3.99999893E-01
9.9999987E-01
9.9999983E~01
9.9999980E-01
F.3993976c-01
9.9999974E~01

1.2857740E oOC

1.2129139E 00,

9.1355442£~C1

1.0462435E 00
9.9999395E-01
9.5580035e~01
9.1355435-01
BeT7217550E-G1
8+3458159E-01
7.9759341E-01
T«.6243E6TE-0}
T.287353ZE-01
1.8754066E 0C

ERROR BOUND=

ERROR BOUND=

-25 -
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T.4505806E-08

1.1920929E~07



IMSC 6-90-64-6

SOLUTION AT X( 25)= 9,2183263E-01
Y{ 1+0)= 1.27930567E 01, ERROR BOUND= 1.5974045E-05
COEFFICIENTS FOR X BETWEEN X{ 24) AND X({ 25)
DELTA= T.5048791€E~-03

Y{ 1+0)= 1.1543238¢ 01

Y{ lel)= 9.9999781E-01
Y{ 142)= B8.6630421E-02
Y{ 143)= 7.5048463E-03

Y{ Ly4)= 6.5014942E-04
YU 155)s 5.6322842E-05
YU 1s6)= 4.8792822E-06
YU 1a7)= 4.2259520E-07
Y{ 148)= 3.6618344E-08
YU 159)= 6.0203208E-09

SOLUTION AT X( 45)= 9,9097500E-01
YO 1,0)= 1.1080359E 02, ERROR BOUND= 1.2378693E~03
COEFFICIENTS FOR X BETWEEN X( 45) AND X{ 46)
DELTA= 1.0004043E-04

YU 1,0)s 9.9978788E 01
Y{ 1lsl)s 9.9997989E-01
YO 152)= 1.0001719E-02
YU 193)= 1.0003540E-04
YU 1y4)= 1.00035562E-06
YO 145)= 1.0007483E~08
Y({ 146)s 1.0009405€E-10
Y{ 1ls7)3 1.0011328E-12
Y{ 1+8)s 1.0013251E~14
YU 1,9)3 1.9C0735%4E-16
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SOLUTION AT X( 87)= 9,9986639E-01
Y{ 1+0)= 7.4850533E C3, ERROR BOUND= 5,6754150E 00
COEFFICIENTS FOR X BETWEEN X{ 86) AND X({ 87)

DELTA= 2.1880206E-08

YU 1+0)= 6.7558077E G3
YU 1sl)= 9.9863358E~01
YU 142)= 1.4T61552E-04
Y{ 1+3)3 2.1820492E-08

YO 1y4)s 3.22547T7E-12
YU 145)= 4.76785276E-16
YU 146)= T7.0478013E~20
Y{ 1,7)= 1.0417985E-23
Y{ 148)= 1.5399764F-27
Y{ 1,9)= 4.3312046E-31

PROGRAM UNABLE TO BOUND DERIVATIVES OVER-
X = 9.9986639E-D1
Y{ 1,0)= 7.4860541E 03, ERROR BOUND= 5.6762085F 00

TIME REQUIRED FOR COMPUTATIONS 0.50 MINUTES

- 27 -



IMSC 6-90-64—6

Example 2 concerns the sin/cos equations, (see Pp.14-15). The two

cases presented illustrate output options, first of pringtin at every
DELTAX=.5 up to XFINAL=9.0 and secondly at the table of values indicated
at the bottom of page 15. Notice that the Taylor coefficients are not

given.

A third run was made in which we allowed every computed point to be
printed along with the Taylor coefficients. We have not included those
results. We can summarize them by stating that the program required 17
proints to reach a value of X greater than 9.0. The average step size,
i.e., increment in X betwen computed points was about 0.54. The compu-—
tation took 0.1l minutes.

SIN/CES ECWATICNS 1/15/64

INPUT DATA

XIERGB= O, XFINAL= 9.C000000E 00 MAXIMUM NO. POINTS=327567
Yl 140)= 0. 1 ERROR BOLND= (.

Y{ 240)= 1.0000000€ 00, ERROR BOUND= 7.4505806E=-09

SCLUTICON AT X= 5.0000000E~01
Y{ 140)= 4.7942554E-01, ERROR BOUND= 1.8626451E~08

Y{ 240)= B8.7758256E-01, ERROR BOUND= 2.2351742E-08

SCLUTICN AT x= 1.0000000E OC
Yl 140)= 8,4147098E~-01, ERROR BOUND= 4,8428774E-08

Y{ 240)= 5.4030229€~01, ERROR BOUND= 5.5879354g~08

_928 _



SCLUTICA
Y( 140)=

Y{ 240)=

SCLETICAN
Yyt 140)=

Y{ 240)=

SCLUTION
Y{ 140)=

Y{ 240)=

SCLUTIOCN
Y{ 140)=

Y{ 240)=

SCLUTION
Y{ 140)=

Yt 240)¢

AT X= 1.5000000¢
949749498E-01,

T<0T737193E-02s.

AT X= 2.0000000E
9.0929741E=01,

-4.1614684E-01,

AT X= 2.5000000E
549847T212E~01,

-8dJd01143€0E~01,

AT X= 3.0000000E
1:4112000£-01,

=9.8999248E~01,

AT X= 3.5000000E
=3.5078322€~-01),

-~9/364566TE~01,

ERROR

ERROR

00
ERROR

ERROR

00
ERROR

ERROR

00
ERROR

ERROR

00
ERROR

ERROR

-9 -

BOUND=

BOUNDS

BOUND=

BOUND=

BOUNDE

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

IMSC 6-90-6l4-6

B8.940696TE~-08

9.5460564E-08

1.6763806E=07

1.75088¢64E~-07

2.9429793E~07

3.C174851E-07

4.5722€25E~07

4.9918890E- 07

8.326023BE-07

843446503E~07



SCLYTICON
Y{ 1¢0)=

Y{ 240)=

SCEETION
Y{ 140)%

Y{ 240)%

STLUTION
Y{ 140)¢

Y{ 240)=

SCLUTICN
Y( 140)=

Y{ 240)=

SCLUTION
Y( 140)=

Y{ 240)=

AT X= 4.0000000E oOC
=7s5680248€-01, ERROR

=6.5364360E~01, ERROR

AT X= 4.5000000E 00
=94T753009E-01% . ERROR
-2J1079578E-01, ERROR

AT X= 5.0000000E 00
-9.5892423E=-01, ERROR

2.836b6219E-01y ERRDR

AT X= 5.5000000E 00
-1.0554028E-01, ERROR

750866975E‘011 ERROR

AT X= 6.0000000E 00
~2.7941547E-01, ERROR

9+6017025€-01, ERROR

- 3o-

BOUND=

BOUND=*

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

BOyUND =

BOUND=
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1.3932586E~06

1,3858080E=06

2+3096800E~06
23115426E-06

3.8221478z-06

2.8221478E~Cé

6.3218176E~06

€.2218176E~Cé

1.C436401E-CS

1.0438263E~05



SCEuyTICN
Y{ 140)=

Yt 240)=

SCLGTICN
Yy{ 140)=

Y{ 240)=

SCLUTICH
Y{ 140)=

Y{ 240)=

SCLUTICA
Y{ 140)=

Y{ 240)=

SCLUTICA
YU 140)=

Y{ 240)=

AT X= 6.5000000E 00
2.1512000E~01, ERRDR
9.7658757E~-01, ERROR

AT X= 7.0000000E CC
6.5698658E=01, ERROR
T<5330'220E~01, ERROR

AT X= 7.56C0000E 00
9.3799993E~-01, ERROR
3.4663527€-01, ERROR

AT X= 8.0000000t 00
9.8935819E-01, ERROR

-1.4550005E-01, ERROR

AT X= 8.50000600E 00
T+9848705E~01, ERROR

-640201188€-01, ERROR

-—\31\ m—

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

BOUND=

IMSC 6-90-6k-5

1.7217360E~05

1.7218292E-05

228412789E-05

2.8405339E~05

4.6852576E~05

4.6849251E-05

T.7251345E-05

1.7255070E-05

1.2738258t-04

1.2728¢3CE~04
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SCLUTION AT X= 9.0000000E 0O

Y 140)= 4.1211843E-01, ERROR BOUND= 2.1CC3745E-04
Y{ 240)= =9<1113021E-01» ERROR BOUND= 2.1003932E-04
TIME RECUIRED FOR COMPUTATION= 0.05 MINUTES

SIN/COS EQUATIONS CASE 2 1/15/¢€4

INPUT DATA

XZERG= 0. XFINAL= [+5700000E 00 MAXIMUM NO. POINTS=32767
Y{ 140)= 0. ) ERROR BOUND= 0.

Y({ 240)= 1J000G0000E 0O, ERROR BOUND= 7.4505806E-09

SCLUTICN AT Xx= 1.2300000E-01
Y( 140)= 142269009E-C1, ERROR BOUND= 2,255629CE~CS

YU 240)= 949244503E-01, ERROR BOUND= 1.1175871E-08

SOLUTION AT X= 2.3400Q00E-01
Y( 140)= 243187036E-01, ERROR BOUND= 6.5192580E-09

YU 240)= 9.7274669E-01, ERROR BOUND= 1.1175871E~08

SOLETION AT Xx= 3.45C0000€E=01
Y{ 140)= 3.3819668E~0], ERROR BOUND= 1.3038516E-08

YU 240)= 9.4107546E-01, ERROR BOUND= 2.2351742E-08
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SCLETIEN AT x= 4:5599999E-01

Yt 140)=  4,40385036E=01, ERROR BOUND= 1.4901161E~08
Yt 2409 8J9782112E~01, ERROR BOUND= 2.2351742E-08
SCEUTION AT X= 5+.6899999E=01

Yt 140)= S5.3710392E-015 ERROR BOUND®= 2,60T7032E-08
Y{ 240)= B8J4351608E~01, ERROR BOUND= 2.,6077C32E~C8
SCEUTION AT X= 1.08600000E€ 00

Y{ 140) B8i414T098E~01, ERRDR BOUND:= 418428774t~ 08
Y{ 2490)x 544030229€-01, ERROR BOULND= 5,5879354FE-(08
SOLUTION AT X= 1.5700000E 00

Y{ 140)= 949999948E=01, ERROR BOUND= 6,€857548E-08
Y8 2400 Ti9632643E~04, ERROR BOUNDO= 1.0523945E-07
TIME RECUWIRED FOR COMPUTAT ION= 0.01 MINUTES
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The equations given as example 3 on page 16 are those of the "restricted

three-body problem™.

The value we have picked for u or Cl maekes these

equations a mathematical model of the Earth~Moon system in which the solu-
tion for Y1, Y2, Y3, Y4 describes the position and velocity components of
a small third body, e.g., a lunar spaceship, in "free flight" starting near
the surface of the Eérth end reaching an altitude of sbout 13,400 miles at
We include only part of the output, namely the

the last computed point.

1st, 2nd, 30th, 31st, 55th, and 56th points.

Notice the special message

printed at the end of the run by the computer showing how to continue the

solution.
1/27/764 3-B0DY PRORBRLEM

INPUT DATA
XZERO= 0. XFINAL= 1.7014100E 38
Y{ 1,0)= -1.9801200E~-02, ERROR BOUND= 1.1641532E-1C
Y{ 2,C)= ~-1.5016200E-¢2, ERROR BOUND= 5.8207661E-11
Y{ 3,C)= 9.5560068E 00, ERROR BOUND= 5.9604645E-08
Y( 4,C)= —-4,8568780E 00, ERROR BOUND= 2.9802322E-08
Cl 1)= 1.215G0C0E-02, ERROR BOUND= 5.8207661E-11
(W4 1« U00COCOE 00, ERRQOR BOUND= 7.450580§E-09
C{ 3)= 2.00000060F 0C, ERROR BOUND= 1.4901161E-08

FOR INTERMEDIATE VALUES,

IF X IS

BETWEEN X(Q) AND X(Q+1),

SET X

(WHERE T#DELTA IS T MULTIPLIED BY CELTA)

DETERMINE T AND COMPUTE Y{P,0) AT {X(Q)+T=0ELTA) =

THIS VALUE wILL BE AT LEAST AS ACCURATE AS Y(P,0) AT X(Q+1).

-3l -

SUM OVER J OF

MAXIMUM NO. POINTS=32767

= X{Q) + T«DELTA

(T TC THE POWER J TIMES Y(P,J))



SOLUTION AT X( 1)= 7.6371821E-05

Y (
Y
Y

Y(

Y
Y(
Y
Y
Y(
Y (
Y
Y (
Y{
Y

Y(
Y (
Y
Y(
Yo
Y
Y
Y (
Y
Y(

Y
Y (
Y
Y
Y
Y
Y
Y {
Yo
Y

Yo
Y (
Y
Y(
Y
Y (
Y (
Y
Y{
Y

14C)= -1.9066961E~02,
2yC)= ~-1.5378076E-02,
3,0)= 9.6700418E 00,

4,C)= -4.6189236E 00,

ERROR
ERROR
ERROR

ERROR

COEFFICIENTS FOR X BETWEEN X{

DELTA= 3.2469636E-04

140)= -1.9801200E~02
1,1)= 3.1028007€-03
1,2)= 8.2722484E-C5
1,3)= -1.1198839E~05
144)= -5.9016575E-07
1y5)= 1.1815480E-07

14€6)= T7.3164756E-(C9
1y7)= -1.6601855E~-C9
1y8)= -1.1098340E-10

1,9)= 4.7531084E-11

29C)= -1.501€200E-02
2y1)= -1.5770106E-03
292)=  1.6234816E-04
293)= 5.7348511E-06
294)= -1.1495333E~-06
295)= -6.0963887€E-08
296)= 1.4144252E-08
297)= 8.6305473E-10
298)= —-2.1295118E-10
299)= -9.60C0516E-12

3,0)= 9.5560068E 00
3,1)= 5.0953748E£~-01
3,2)= -1.0347057E-C1
393)= —-7.2703709E-03
3,4)= 1.8194660E-03
395)= 1.3519971E-04
346)= ~3.5791278E~C5
3,7)= =2.7344539E-06
3,8)= T7.4071255£-07
34S)= 4.9471424E£~08

4,C)= —4.8568780F 00
491)= 9.9999988E~01
492)= 5.29826590E-02
493)= -1.4161332E-02
494)= -9.3878301€E-04
495)= 2.6136884E~04
496)= 1.8606254E-05
497)= =5.246T77TT71E-C6
498)= —3.8795230E-07
499)= 2.2740258E-07

— 35_
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BOUND= 1.1641532E-09

BOUND= 5.8207661E~-10

BOUND= 5.9604645E-07

BOUND= 3,2782555E-07

o)

AND X{ 1)
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SOLUTION AT X{ 2)= 2.,2234346E-04

Y{ 1,C8)= —-1.7641402E6~02, ERROR BOUND= 1.3969839E-(C9
Y{ 2,C)= -1.6018386€-C2, ERROR BOUND= 1.1641532E-09
Y{ 3,C)= 9.8544878E 00, FRROR BOUND= 7.1525574E~07
Y( 4,C)= -4.1519712E 00, ERROR BOUND= 4.,4703484E-07

COEFFICIENTS FOR X BETWEEN X{ 1) AND X{ 2)
DELTA= 3.1754189E~04
Y{ 1,0)= —1.9066961E-02

Y({ 1y1)= 3.0706434E~-03
Y{ 1,2)= 7.1386980E-05

Y{ 143)= —-1.0931352E~-05
Y{ 1y4)= -4.0789376E-07
Y{ 1,5)= 1.1314722E-07
Y{ 1,6)= 3.8855979E-09
Y{ 147)= —-1.5514925E-09

Y{ 1,8)= —-4.25032736-11
Y{ 1,9)= 6.0577383E~11

Y{ 2,0)= -1.5378076E-02

Y{ 291)= ~1.4667017E~03
YU 2,2)= 1.5877092E-04
Y{ 243)= 4.3244277E~06
Y{ 254)= ~1.1060457E-06
Y{ 245)= -3.5926131E~-08
Y{ 2,6)= 1.3317593£-08
YU 2y7)= 3.7667362E-10
Y({ 2,8)= -1.9518116E~19
Y{ 259)= 3.4794702E-11
Yt 3,0)= 9G.6700418E 00
YU 3,1)= 4.4962244E-01
Y{ 352)= -1.0327474E~-C1
Y( 3,3)= -5.1381410€-03
YU 344)= 1.7216110E~03

Y({ 3,5)= T7.3418934E~0C5
YU 3,6)= —3.4201621E~-05
Y( 3,7)= -1.0708073E-06
Y{ 3,8)= 6.8724109E-07
Y{ 3,9)= —1.2124519€~-07

Y{ 4,C)= -4.6189236E 0D
Y{ 441)= 9.9959986E~01
Y{ 4,2)= 4.0855343F-02
Y({ 443)= -1.3932596E~C2

Y( 444)= -5.6569121E-04
Y{ 445)= 2.5163784E~-04
Y{ 4,6)= B8.3035197E-06
Y 4,7)= -4,9175535E~06 - 36 —

Y({ 4,8)= ~1.1720724E-07
Y( 4,9)= 3.1836481E-07



Y (

Y(

Y{

Y(

Y
Y{

SOLUTION AT X{ 30)= 3.983420€6E-03
1,0)= 1.6266221E-02, ERROR
2+40)= ~1.5465707E-02, ERROR
3,C)= T.29141828F 00, ERROR
49C)= 2.3622525E 00, ERROR

COEFFICIENTS FOR X BETWEEN X({(
DELTA= 1.1661213E-03
1,C)= 1.5015231E-C2
1,1)= B8.6697815E-03
1,2)= -5.8305927E-04

Y
Y(
Y
Y (
Y
Y(
Y
Y

Y
Y
Y
Y (
Yo
Y{(
Y
Y {
Y (
Y

Y {
Y
Y(
Y
Y(
Y
Y
Y(
Y
Y(

Y(
Y
Y {
Y{
Y {
Y
Y
Y
Y
Y

1,3)= 5.2393462E-05
1y4)= ~1.7069411E-06
1,5)= -1.1371837E-06
146)= &4,695C7G9E~-07
ly7)= ~1.2532781F~07

1,8)= 2.6247373E-08
199)=  4.3660293E~-09
29C)= —-1.5260547E-02

2y1)= 2.6631263E-03
292)= 3.3212605E-04
2+3)= —-8.5546925FE-05

2+94)=  1.7244976E-05
295)= -2.9798751E~06
296)= 4.0212132E-07
297)= —-2.2970689E-C¢
298)= —-9.5260284E-09
299)= —-1.0903094E~-C8

3,0)= T7.4342877€ 00
391)= —-9,.9999759F~(1
342)= 1.3478905E-01
343)= -5.8551062E~03
344)= —4.8759233E-03
3,5)= 2.4157417F-03
396)= —7.5231849E-C4

3,7)= 1.8006615E-04
3,8)= =3.2095505E~05
399)= -5.1439506E-05
4,0)= 2.2837472F CO
491)= 5.6962520E-01

492)= —2.2008068E~01
493)= 5.915328B1E-02
494)= —1.2776865E-02
495)= 2.0690196E-03
4,6)= —1.3788859E-04
4,7)= —6.5351884E-05
498)= 3.7177252E-05
44G)= 6.2712352E-05

- 37 -
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BOUND= 1.4901161€-08
BOUND= 1.6938429E-08
BOUND= 7.5697899E~-06
BOUND= T7.3164701E-06
29) AND X{ 30)
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SOLUTION AT X( 31)= 4.1590815E~03

Y[ 1,0)= 1.7534496E-02, ERROR BOUND= 1.6414560F-08
Y{ 240)= -1.5044268E~02, ERROR BOUND= 1.8277206E-08
Y{ 3,C)= 7.1495931E 00, ERROR BOUND= 8,0764294FE-06
YU 4,0)= 2.4346721E 00, ERROR BOUND= 7.6293945E-06

COEFFICIENTS FOR X BETWEEN X{ 30) AND X( 31)

DELTA= 1.2132593E~03
Y{ 1,C)= 1.62€66221E~-C2
Y{ 1y1)= B8.84638176-C3
Y{ 142)= —6.0662813E-04
YU 1,3)= 5.7645639E-(5
Y{ 1y4)= —2.8106945E-06
Y{ 145)= -9.4881327F~-07
Y{ 1y6)= 4.5184824E-07
YU 1,7)= -1.2903889E-07
Y{ 1,8)= 2.9019271E-08
Y( 149)= 5.6922431E-09

Y{ 2,0)= -1.5465707€-02
Y{ 2,1)= 2.8660248E-03
YU 242)= 3.2132116E~-04
Y{ 243)= -8.5711106E-05
Y( 2y4)= 1.7809955E-05
Y{ 245)= —-3,2184441F~-06
Y{ 246)= 4.7458050E-07
YO 247)= -4.0751166E~08
Y{ 2,8)= -6,0739245E-09
Y{ 249)= -1.3805263E-08

Y 3,0)= 7.2914188F Q0

Y{ 351)= =9.9999750E~01
Y{ 3,2)= 1.4253912E-01
Y{ 343)= -9.2665912E-03

Y{ 3,4)= -3,9101834E-03
Y({ 3,5)= 2.2345507€E-03
YU 346)= —=T7.4450057E-04
Y{ 3,7)= 1.9134753F-04
Y{ 3,8)= -3.8343199€E~05
YU 3,9)= -5,9504294E-05

YU 4,0)= 2.3622525E 00
Y( 4,1)=  5.2968258E~0]

Y( 492)= =2.11936006~01

YO 493)= 5.8717721E-02

Y( 4y4)= —1.3263628E-02

Y{ 4,5)= 2.3469699E-03

Y( 4,6)= =2.3511723E04

Y 4y7)= ~4.005C297E~05 L
Y( 4,8)= 3.2568845E—05 38
Y( 4,9)= 7.0957816E~05



SOLUTION AT X{ 55)=

Yt 1,0)= 5.6302577€-02,
Y{ 240)= 5.7992573E-03,
YU 3,C)=  4.22392751E 00,
Y{ 4,0)= 2.9321976E 00,

Y (
Y
Y(
Y
Y
Y
Y(
Y
Y
Y (

Y(
Y {
Y(
Y
Y
Y{
Y (
Y
Y
Y

Y
Y (
Y(
Y
Y
Y
Y {
AR
Y
Y (

Y
Y(
Y
Y
Y
Y{
Y(
Y
Y {
Y

1.1396442E~-02

ERROR
ERROR
ERROR

ERROR

COEFFICIENTS FOR X BETWEEN X(

DELTA= 4.6183784E-03
1yC)l= 5.42646144E-02
ly1)= 1.9968908E-02

142)= -2.3091688E-03
1,3)= 5.0380888FE-04
ly4)= —1.2841514E-04
1,5)= 3.48092263E-05
ly6)= —9.5619999E-06
1,7)= 2.5651524E-06
1y8)= -6.4067957E-07

1,9)= 9.5953691E-C7
290)=  4.3990668E-03
2y 1)= 1.3594577E-02
292)= =2.4933268E-04

293)= =1.0558745E-04
2y41=  5.9510480£~-05
295)= =2.5400825E~-C5
296)= 1.0C75071E-05
297)= —-3.8652956E~-06

24y8)= 1.4512523E-C6
2+9)= -9.1843753E-07
3yC)= 4.3237922F Q0
3,1)= —-9.6999115E~01
3:2)= 3.2726349E-01
3,3)= -1.1127098E-01
3y4)= 3.76R4508E-02
395)= —=1.2422542E~0?
3y€)= 3.8879592E-03
3,7)= —-1.1097914FE~03
3,8)= 2.6150950E-04

399)= -1.29287865E—03

4yC)=  2.9440155E QO
491)= —1.0797412FE-01
492)= -6.8587351E-02
493)= 5.1542316E~C?
by4)= =2.7499723E~-C2
495)= 1.3089103E-(C2
496)= —-5.8585649E-03
497)= 2.5134734E-C3

4,8)= -1.0427660E-03
4,G9)= B2.1846331FE-04
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BOUND= 1.4924444FE-07
BOUND= 1.0136864E~07
BOUND= 2.7000904E-05
BOUND= 1.3872981E-05
54) AND X{ 55)



Y
Y{
Y (

Y(

Y
Y

SOLUTION AT X( 56)= 1.1894594E-02
1,0)= 5.2382172E-02, ERROR
2+0)=  7.2565989E-03, ERROR
3,0)=  4.1263477E 00, ERROR
4,0)= 2.9186078E 00, FRROR

COEFFICIENTS FOR X BETWEEN X|{
DELTA=  4.9349204E~-03
1,0)= 5.,6302577E-02
ly1)= 2.0244980E~02
142)= —=2.4674368E-03

Y {
Y
Y
Y(
Yi
Y
Y
Y {

Y
Y
Y
Y{
Y
YA
Y
Y
Yo
Y

Y(
Y
Y {
Y (
Y
Y
Y
Y(
Y(
Y

Y {
Y{
Y(
Y
Y (
Y
Y
Y (
Y {
Y{

1y3)= 5.5427710E-04
ly4d)= ~1.4566612E-0C4
1,5)= 4.09928331E-05
l46)= -1.1741450F-05
Ly7)= 3.3172033E~-C6
148)= —8.9029517E-07

1y9)= 1.2558048€-06
2+y0)= 5.7992573E-03
291)= 1.4470162E~02
292)= —3.1796065E~-04

293)= —-1.01900576~04
294)= 6.2414846E-05
295)= ~2.7783990E-05

2+96)= 1.1417753E-(5
2y7)= =4.53173076~06
2+8)= 1.7605739E-06
299)= —1.1204358E~06
3,C)= 4.2239751F 00
3,1)= -9.9989052E-n]

3,2)= 3.3695199€~01
393)= -1.1823179%E-01
394)= 4.1528367E-0Q2
395)= -1.4275550E-C2
3,6)= 4.7053288E~-03
3¢97)= —-1.4432576E~03
3+8)= 3.8650850E-04
399)= =1.5346296E-03

440)= 2.9321976E 00
491)= ~1.28B6151E-0C1
492)= —6.1946631E-02

493)= 5.0590357€E~92
49y4)= -2.815C393E-02
495)= 1.3881990E~-(2
4y96)= -6.428C904E-03
4y7)= 2.8540665E-03

498)= —-1.2262760F-123
44G)=

9.5137954E-04
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BCUND= 1.6321428E-07
BOUND= 1.0835356E-C7
BOUND= 2.8222799E-05
BOUND= 1.4171004E-05
55) AND X{ 56)
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SOLUTION AT X= 1.2415448E~02

Y{ 1,0)= 6.0506257E-02, ERROR BOUND= 1.7834827E-07
Y{ 2,0)= 8.7729341E-73, ERROR ROUND= 1.1606608E-C7
Y{ 3,C)= 4.0308B46E CO, ERROR BOUND= 2.9504299E-05
Y{ 4,0)= 2.9033469E (0, ERROR BOUND= 1.4498830E-05
TIME REQUIRED FMR COMPUTATICN= 5.29 MINUTES

ELAPSED TIwE HAS EXCELDED THAY ALLOWED BY ESTIMATED RUN TIME. THE LAST VALUE OF THE INCEPENDENT
VARTABLE FOR WHICH THE PROGRAM CCMPLETED THE SOLUTION, TOGETHER WITH THE SOLUTION VALUES, IS SHOWN
ABOVE. SHDULD THE USER DESIRE TO CONTINUE INTEGRATION BEYOND THIS POINT, HE MAY USE THE ABCVE RESULTS

AS INPUT DATA FOAR THE INITIAL VALUES QF THE INDEPENDENT AND DEPENDENT VARIABLES, AND RE~SUBNMIT THE PRCGRAM.
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