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CHAPTER I
INTRODUCTION

Interval arithmetic is a part of that branch of numerical analysis con-
cerned with estimating numerical error. It is a means of determining a com-
plete error bound for the errors that occur in digital computation, because of
inaccuracies in physicaf measurements, round-off or truncation of numbers, or
truncation of infinite processes. By an error bound we mean an estimate which
is correct with probability one, i.e., with certainty.

The form of the error bound will be a number pair representing the
closed interval of real numbers for which that number pair serves as end points.
For example, [1,2] will represent all real numbers, x, suchthat1 < x < 2.
Such a number pair will be called an interval number. An algebraic system with
interval number elements called interval arithmetic is developed as an extension
of arithmetic with real numbers in Chapter II, We shall be able to compute with

interval numbers in much the same manner as we compute with approximations

to real numbers. If we exercise the usual care in computation, we should

arrive at a result interval which is a useful error bound.

Interval arithmetic was first suggested by P. S. Dwyer [1] in 1951.
Development of interval arithmetic as a formal systerh and evidence of its value
as a computational device was provided by R. E. Moore [2], [3] in 1959 and
1962. Recently Moore and others [4], [5], [6] have developed applications to
differential equations. It is also used in matrix computations by Dwyer [7] and

E. R. Hansen [8]. Work on the programming of interval arithmetic for digital



computers is included by Moore and others [4]}, R. E. Boche [9], [10], [11],
and S, Shayer [12].

In Chapter- II we present the definitions and principal known properties
of‘interval arithmetic and establish some notation. Proofs of several theorems
and results in this chapter can be found in Shayer [12]. In the last section of
Chapter II two speciai definitions are included: the first is from [3] and [9];
the second is new, at least formally.

~ In Chapter III a containment result known to Moore [3], [5], is developed
as a rnajor theorem. Chaptér III also presents an extension of interval arithmetic
into the complex plane along lines suggested by K. Knopp [13].

In Chapter IV some applications known to Moore [5] are presented in a
much simnlified manner through the containment theorem of Chapter III: in par-
ticular, a means of accounting for truncation error in finite approximations to
infinite processes.

In Chapter Vla computing algorithm for polynomial roots is developed.
The algorithm was suggested to the author in outline by E. R. Hansen, and the

root counting procedure was suggested by M. Billik.

Motivating Examples

Let us suppose that we perform some computations or '"data reduction,"
using somebtest results, Suppose thatvwe carry a nuxnber of decimal places in
the computation, say four, and suppose that the test data are obtained by reading
a gauge or another device which can be read accurately to only three places. If
the reading is, say, .123+ where the "+" denotes something greater than'. 123

but less than . 124, then the uncertainty in the reading could be represented by



computing with the intervai number [. 1230, .1240] . If the computation is long
and complex, it may be impossible to determine by a priori analysis the effect
of computing with an inexact number; however, the interval result of a corfe—
sponding interval computation automatically takes into account any effects of
such inaccuracies.

Although uncert’ainty in physical measurement is a well-known phenomenon,
it is only a minor justiﬁc:;tion for interval arithmetic. A far more important
(though lesser known) source of uncertainty in digital computation is round-off
error, The effects of rom;d—off error were seldom encountered in any dramatic
fashion prior to the advent of modern high speed computers.

A digital computer represents all real numbers as rational numbers of
finite length. Therefore, in computing with an irrational number, there will
certainly be round-off error in the rational approximation. Similarly, if the
representation of a rational number requires more digits than the "word length'
of the computer at hand, round-off error will result. Also those rational num-
bers which are repeating decimal numbers such as 1\/ 3 will obviously produce
round-off error. In order to bound round-off error we may represent Pi by
the interval number [3.1415926, 3.1415927] and 1/3 by [.33333333, .33333334].
Additionally we must consider the fact that most computers use the binary num-
ber system. The decimal number .1, for example, is equal to the repeating
binary number .0001100 , and again a round-off error results.

In computations which involve relatively few operations round-off error
may have little effect on the accuracy of the result, but round-off error becomes
an important concern in computations involving thousands or even millions of

arithmetic operations.
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Computation 1. Supposec we are to compute sinenw, n = 0,1,2,.... A
typical digital computer program computes sine x where -1/2 < x =7/2
accurately by means of an approximating function valid in the specified range.
For values of the argument outside the specified range the argument is "scaled,"
a process which in this case consists of dividing by 7 and using a remainder as
argument. As n increases, dividing by an approximation to Pi, remultiplying,
and subtracting will almost cerfainly result in round-off error and, in turn, a
non-zero result.

Computation 2. Suppose we are to compute the value of the determinant

311
111
012

The steps in the reduction will be indicated using four-decimal places with
rounding by truncation. The method used is a reduction to triangular form

using row operations. Dividing by 3 and subtracting gives

3 2 1
0 .3334 .6667
0 1 2

Interchanging Rows 2 and 3, dividing by 3, and subtracting gives

3 2 1
-10 1 2 ,
0 .0001 .0001

from which the program concludes that the value of the determinant is ~.0003.
This computation was encountered when a large program run on the
IBM 7094 computer failed. The inversion of a singular matrix caused the fail-

ure. A singular matrix may be recognized by most programs only by detecting
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a zero determinant. In the case at hand both single and double precision arith-
metics give similar incorrect results. Although the example here depends on
the logic of the computer's arithmetic unit, it is safe to assume that for any
given logical circuitry a similar example could be constructed.

Coinputation 3. Symmetric rounding is no assurance of accuracy. For

instance, (2/3 - 1/3 - 1/3) < 9000 - 9000 should equal zero. However, with

.6667 . 3334 . 0001 . 9000
-. 3333 -. 3333 x9000. - x9000.
. 3334 , . 0001 , . 9000 , and 8100.

we see that the slight difference between zero and non-zero can be magnified
considerably. This computation also indicates another problem related to
rounding. This problem of subtracting out significance is called cancellation.
The input numbers indicatq_ four signifi'cant figures. However, after the second
subtraction the result contains, at most, one significant figure.

Interval arithmetic does not prevent round-off error; it bounds all the
round—qff error that may have occurred. Thus while an ordinary computation
provides a result of completely unknown accuracy, interval arithmetic provides

simultaneously, information on the accuracy of a result.
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CHAPTER II
INTERVAL ARITHMETIC

Definitidn' 2.1: A set congsisting of a closed interval of real numbers, x,
such that 2 < x =< b is called an interval number.

An interval number will be denoted by an upper case letter. When it is
desirable to emphasize that operations on the closed intervals may be accom-
plished by operating on the end points, we use the notation [a,b]. In other
instances, a standard set notation is helpful; thus the following are equivalent:
A = [a,b] = {x]a = x = b}.

Two interval numbers [a,b] and [c,d] are equal if and only if a = ¢
and b = d. Equality of interval numbers is an equivalence relation.

The four basic darithmetic operations for interval numbers are defined
below. In adding two interval numbers [a,b] e'md [e,d], sincea = x < b and
c =y = d, the smallest possible value in the set of sum x + y is a + ¢, and
the largest is b + d. This concept motivates the deﬁnition of interval
arithmetic,

Definition 2.2: [a,b] + [e,d] = [a + ¢,b + d].

]

Definition 2.3: [a,b] - [c,d] [a - d,b ~ c].

Definition 2.4: [a,b] < [c,d] [min(ac,ad,bc,bd), max(ac, ad, be, bd)].

Definition 2.5: If 0 £ [c,d],
[a,b]/[c,d] = [min(a/c,a/d,b/c,b/d), max(a/c,a/d,b/c,b/d)].
The interval numbers [0,0] and [1, 1] serve as additive and multiplica-
tive identities, respectively, IInterval arithmétic is closed, associative, and

commutative with respect to addition and multiplication (See Shayer [12]).



Definition 2. 6: The width of the interval number [a,b] is b-a.

A real number can be thought of as corresponding to an interval number
of width zero. The correspondence is indicated by a-«— [a,a], and con-
sidered as an embedding of the real numbers in the interval numbers where
they appear as interval numbers of zero width,

Elementary Theorems, Properties, and Further Definitions

Theorem 2, 1: Additive inverses exist only for interval numbers of
zero width,

Theorem 2, 2: Multiplicative inverses exist only for non-zero interval
numbers of zero width.

Theorembz. 3: If A+ B = A+ C, the cancellation law for addition
holds, and B = C. '

Theorem 2.4: If AB = AC and 0 £ A, the cancellation law for multi~

plication holds, and B = C.

It

Proof: Let A = [a,b], B = [¢,d], and C [e,f] . Consider the case
0<asb,0=c=d. Wehave AB = AC = [ac,bd] . The min(ae,af,be,
bf) must equal ac. As 0 <a and 0 = ¢, then 0 < ac, and hence
0 = e = {. Therefore the minimum must be ae or be. But a = b and
0 = e; sothe minimum is ae. Since ac = ae,c = e. Similarly we may
show that d = f, and therefore B = C.

The case 0 <a =b,c = 0 = d may be treated in the same manner.
Multiplication by [-1,-1] allows the other possible cases to be included in the
two above, and we conclude that the cancellation law for multiplication holds.

Theorem 2,.5: The distributive law for interval numbers does not hold

in general.
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Proof: By counter example, [0,1]-([1,2] + [-1,0]) = [0,1]- [0,2] = [0,2],
but [0)1] * [1’2] + [0’1] ’ [—1:0] = [0)2] + [—1’0] = [—1’2]-

Interval numbers may be partially ordered by the relations of set inclusion

-

and less than:

[a,b] < [c,d] ifandonlyif b < c ,

[a,b] € [c,d] ifandonlyif c = a=Db=4d.

Theorem 2.6: The following relation called subdistributivity holds for
interval numbers: A(B + C) € AB + AC .

Theorem 2.7: In the special case where the interval number A is of
zero width, A(B + C; = AB+ AC.

Deﬁnition 2.7; The union of two interval numbers, A U B, is the
interval number {x[x‘ €A or x ¢ B} .

Definition 2.8: The intersection of two interval numbers, A N B, is the
interval number {x|x ¢ A and x € B} .

Finally we note that the set of interval numbers forms an Abelian semi-
group under the operation of addition and als/o uﬁder the operation of multiplication.

Illustrative Computations

Let A =104,5], B =1[-3,-2], and C = [0,1] . Then we may perform
the computation AX2 + BX + C as follows.

Firstlet X = [1,2] . Then X2 = [1,2]- [1,2] = [1,4] by Definition 2.4.
Also by Definition 2.4, AXZ = [4,5]- [1,4] = [4,20] , and
BX =[-3,-2][1,2] = [-6,-2] . By Definition 2.2,
AX?2 + BX + C = [4,20] + [-6,-2] + [0,1] = [-2,19] .

If the expression (AX + B)X + C is evaluated with A,B,C, and X as

above, the result is different: AX+ B = [4,5]" [1,2] + [-3,-2] = [1,8] by
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Definitions 2.4 and 2.2; (AX+ B)X+C = [1,8]+[1,2] +[0,1] = [1,17] also
by Definitions 2.4 and 2. 2.

We note that although the real expressions axz +bx+c and (ax +b)x + ¢
are equivalent, the corresponding interval expressions are not. In fact
(AX+ B)X+C C AX2 + BX + C as it must be according to Theorem 2.6. In this
example the containment is proper containment and we have the relation
[1,17] € [~-2,19] .

The widths of the interval numbers [1,17] and [-2,19] are 16 and
21, respectively, by Definition 2.6. According to Definitions 2.7 and 2.8, their |
union is [-2,19] and their intersection is [1,17] .

Finally we nbte that computations with interval numbers do not always
grow in width with additional operations: As an illustration, consider the
recursive computation Xn 41 = Xn- [%, %] , and let XO = [0,1] . Then
Xn = [0, 1/2n] , andbwe see that as n increases, the width of the result interval
decreases.

Two Special Definitions

According to our deﬁnition of multiplication, if A = [-1,1] and
B = [-1,1] , then AB = [-1,1] . This result is acceptable providing A and
B are cdincidentally equal. However, if this same result were obtained as
A2 = [-1,1] , we would be concerned about admittinglnegative numbers into
a set of squares of real numbers. This problem can be alleviated by making
careful note of the identity of factors in the product A2 and defining the resultant
set accordingly. |

Definition 2.9: A2 = {x%|x c A} .

In contrast, the product A-A = {xy|x € A, y ¢ A} .
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If A and B are as above, then A - B = [-2,2] . This expression could
be written aé A+ (-B) = [-2,2] where - B implies 0 - B. Again this result
is acceptable if the equality of A and B is coincidental. However, if we wish
to represent by A - A the subtracting of A from itself, we have identity rather
than equality. The definition for subtraction gives
A-A={x-ylxeA,yeA} = [0,0] in general.

Definition 2.10: The sum of an interval number and its negative is [0,07 .

In this last definition the possessive form "its negative' is used to imply

identity, and symbolically A+ (- A) = {x -x|x ¢ A} = [0,0] = 0.



CHAPTER III

COMPLEX INTERVAL ARITHMETIC

Extension to the Complex Plane

There is no need to limit the application of interval numbers to the mecas~-
ure of uncertainty in real numbers. We would like to use interval numbers to
determine a region of uncertainty in computing with complex numbers. No new
difficulties arise if we choose the Cartesian representation for complex numbers.

As is customary, we denote the complex numbers as an ordered pair of
real numbers, (a,a').

Definition 3.k1: The sum of two complex numbers, (a,a') and (b,b") ,
is the complex number (a +b, a'+b') .

Definition 3. 2: The product of two complex numbers, (a,a') and (b,b'),
is the complex nuinber (ab - a'b', ab' + a'b) .

Under these definitions we note that the real number, a , corresponds to
and may be identified with the complex number, (a, O) . Traditionally the complex
number, (0,1) is denoted by the letter i . Then since (0,1)- (0,1) = (-1,0),

i" = - 1. Insummary the complex number (a,a'), could be represented as
(a,a') = (a,0)+ (0,a') = a+a'(0,1) = a+a'i.

We wish to develop complex interval numbers in a similar manner.

Definition 3.3: A complex interval number is an ordered pair of interval
numbers (A, B) .

Upper case script letters are used to denote complex interval numbers.
As in the case with ordinary éomplex numbers, we shall have occasion to refer

to the complex interval number, ([0,0],[1,1]) as "i."
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In set notation a complex interval number may be represented in the form
oA=1[ab] +[c,d]i= {x+yila =x =b, ¢c =y =d}. Geometrically a com-
plex interval number may be conceived of as a closed rectangular region in the
cdmplex piane (see Figure 3.1). In terms of vectors we may think of the set of
all vectors whose initial point is the origin and whose terminal poini lies in or

on the boundary of the rectangular region.

7
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Figure 3.1

If we attempt to express the set of complex numbers represented by a
complex interval number, A , in its polar form, we encounter certain difficulties.
Although the set of complex numbers determined by the absolute value and the
amplitude of of contains all the complex number elements of the complex interval
number of , it will in general also contain a great many others. The shaded
portions of Figure 3. 2 represent additional complex numbers included in a polar
representation of a complex interval number.

Such a polar representation could serve as the basis for an alternative
definition of complex interval numbers. We could of course determine a rectan-

gular region containing all élements of such a polar representation. However, it
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Figure 3.2

is easy to see that the only complex interval numbers for which the pblar and
Cartesian representations are equal have one of three forms:
| [a,a] + [b,b] i,
[e,d] + [0,0] i,
or |
[0,0] + [c,d] i,
where 0 is not contained in the open interval (c,d) .

Definition 3.4: The conjugate of a complex interval number, A , is that
complex interval number, & , which determines a region symmetric to oA with
respect to the axis of reals.

Definition 3.5: The negative of a complex interval number, oA , is that
complex interval number, &, which determines a region symmetric to of with ‘
respect to the origin ( & may be denoted - of ).

Definition 3.6: The sum of two complex interval numbers (A, A') and
(B, B") is the complex interval number (A + B, A'+ B') . With the alternative
notatipn,

([a,b] + [c,d] i) + ([e,f] + [g,h] i) = [a+e, b+f]+[c+g, d+h]i.



14

Dcfinition 3.7: The product of two complex interval numbers (A, A') and
(B,B') is the complex interval nufnbor (AB - A'B', AB' + A'B) .

Unfortunately the properties of ordinary complex conjugates do not hold
in general for complex interval conjugates, because of the lack of additive inverses
in interval arithmetic. For example, by Definition 3. 1 the sum of the conjugate
complex numbers (a,b) + (a, -b) = (2a,0) is equal to 2a, a real number.
However, by Definition 3.6 the sum of the conjugate complex interval numbers
(A,B) + (A, -B) = (2A, B-B) is not équal to 2A since
B-B = [a,b] -[a,b] = [a~b, b-a] = [0,0] unless a = b . Consider the
product of the conjugate compleé; interval numbers
(A, B)- (A, -B) = (A £ B%, AB - AB) = (A% - B%,0) , and again we sce that the
failure of additive invérses causes the sacrifice of another important property of
complex numbers.

The difficulties arising from the lack of additive inverses may be avoided
in some instances. In considering the product of a complex interval number and
its conjugate above, we indicated our recognition of identity of interval numbers
by denoting the product A- A as A2 . This notation is in accordance with
Definition 2.9 and serves to insure that negative elements are not included in a
set of self products of real numbers. If care is taken in the distinction of identity,
the product of a complex interval number and its conjugate may be defined in such
a way that the product will be a real interval number. The phrase, "its conjugate,"
is used below to imply identity except for sign in the second component of the
ordered pairs of interval numbers comprising complex interval numbers. Specif-
ically Definitions 3.8 and 3. 9.below do not apply to the complex interval numbers

(A,B) and (A,-C) evenif B =C.

-
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Definition 3.8: The sum of a complex interval number (A, B) and its
conjugate (A,-B) is the complex interval number (24, 0) .

Definition 3.9: The product of a complex interval number (A,B) and its
conjugate (A, -B) is the complex interval number (A2 - Bz, 0) .

Using the phrase "its negative' in a similar manner, we have the following
definition, corresponding to Definition 2. 10, for real interval numbers.

Definition 3. 10: Tfle sum of a complex interval number (A,B) and its
negative (-A,-B) is the complex interval number (0,0) .

The quotient of two ‘complex interval numbers may now be defined.

Definition 3.11: If (A, A') and (B,B') are two complex interval numbers
and 0 £ (B,B'), their quotient, (A,A")/(B,B') , is defined as the complex
interval number (C,C') where

(A,A) _ (A AY-(B,-B") _ (A AY): (B, -BY)
(B,B")  (B,B'): (B,-B) B2 | B2 0)

(C,C) =

(AB + A'B', A'B - AB') _ (AB + A'B' A'B - AB‘>

B2 - B2, 0) B?-p2 ’ p2.p?

providing 0 £ B2 - B'2 . Intermediate steps in the definition show that it is
consistent with previous definitions.

In addition to Definitions 3.7 and 3.9 we have employed a correspondence
between complex interval numbers and real interval numbers analogous to the
similar correspondencé between complex numbers and real numbers, i.e. ,

A +—(A,0) . We have also ascribed to complex interval numbers another analog

to a property of complex numbers; namely, a- (b,c) = (ab,ac), or for intervals,

A- (B,C) = (AB,AC) . This later property is also a consequence of the corre-

spondence just noted. We may employ other properties of a similarly analogous
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nature without specific elaboration. However, those propertics of complex
interval numbers developed here should prove adequate for the present work.

Finally we note that if we are to employ complex interval numbers in
computation successfully, special care must be taken to develop conjugate pairs
simultaneously and consciously whenever possible.

Containment Theorem

The following foﬁr lemmas will be needed for the containment theorem to
follow.
Let I,d, K, and L be interval numbers suchthat I Cc K and J C L,
Lemma 3.1: I+J CK+ L.
Proof: Let I = [a,\b] ,d =[c,d]l, K={e,f], and L = [g,h] . Then from the
definition of interval addition, I+J = [a+c,b+d] , and K+ L = [e+ g,f+h] .
Since ICK and J CL, e=a,g=<c,b=1f,and d = h. Combining
these relations gives e+g = a+c¢ and b+d = f+h. Hence I+J CK+ 1.
Lemma 3.2: I1-J CK-L.
Proof: Let I, J, K, and L be as in Lemma 3. 1. ~ Then from the definition of
interval subtraction, I-J = [a-d,b-c] , and K - L, = [e-h,f-g] . Combining
the relations e = a and d = h gives e-h = a -d. Similarly, from b = f
and g = c¢c weget b-c=f-g. Hence I-JCK-~-L.
Lemma 3.3: I-J CK- L.
Proof: With the set notation, I+J = {w*x|a =w = b,¢c = x = d}, and
K-L={y-zlesy=s£f,g=z=h}. Then e =a=Db =1 and
g = ¢ =d = h, and we note that every element, w-x , of the set, I-J, is

also an element, y- 2z, oftheset K- L . Therefore I-J C K- L .
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Lemma 3.4: I/J CK/L if 04 L.

Proof: Again, with the set notation, I/J = {w/x|a = w = b,¢ = x = d} , and
K/L ={y/zle =y =f,g=1z= h} . Then, using e = a = b = { and
g=sc¢c=d= h‘, we find that every element, w/x , of the set 1/J is also an
element, y/z , of the set K/L . Therefore, if 0 4L, I/J C K/L .

Theorem 3.1: Let F(Xl’XZ’ ca ’Xn) be a rational expression in the
interval variables Xl’XZ’ e ,Xn . If Y1 C Xl’YZ C XZ’ - ’Yn c Xn , then
F(Yl’Yz’ ces ,Yn) c F(Xl,Xz, . ,Xn) .

Proof: Every interval arithmetic operation specified by F(Yl’ Yz, veey Yn) may
be associated with an interval arithmetic operation in F(XI’XZ’ cen ’Xn) .

Let ® specify any of the four interval arithmetic operations: addition,
subtraction, multiplication, or division. If I and J each represent either an
interval constant or one of the interval variables Yi and if K and L each
represent either the corresponding interval constant or the corresponding interval
variable Xi » then I CK and J C L. Then as each interval operation is per-
formed, 1 ® J €K ® L by the appropriate lemma, 3. 1, 3.2, 3.3, or 3.4; we
now have a reduced expression in which each interval constant, interval variable,
or interval valued sub-expression appearing in F(Yl, Yz, - ’Yn) is contained
in the corresponding interval constant, interval variable, or interval valued sub-
expression appearing in F(Xl,Xz, . ,Xn) . Since the number of operations is
finite, we conclude that F(Yl’ Y2, . ’Yn) Cc F(Xl’ X2, ce ,Xn) .

A particularly important application of Theorem 3.1 is the case in which
the intervals Yi and the constant intervals employed are all of width zero. Then

by the correspondence exhibited in Chapter II we may conclude that if

¥y € Xl,y2 € Xz, cees Yy € Xn , then F(yl,yz, . ,yn) is a real ‘number, and
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further the function of real values f(yl, Yo ,yn) € F(Xl’XZ’ N ,Xn) .
Conversely if f(yl,yz, “e ,yn) is a real valued function of the real values
yl,yz, ces ¥y and if each yi € Xl,y2 € XZ’ cen Y € Xn and if each operation

specified by f is defined for the interval variables Xi , We associate the
functions f(yl,yz, ces ,yn) and F(Xl,Xz, e ,Xn) and refer to F as an interval
valued function.

Definition 3.12: Given a real valued function, f(xl,xz, e ,xn) , where
each of the real variables, X; , may assume any of the set of real values, Xi ,
we define the corresponding interval valued function, F(Xl, - ’Xn) , by the set
FX,Xg, ... X ) = {yly = f(xl, ceaX) X, eX (i = 1,...,n)} .

Containment Theorem in the Complex Plane

The four basic arithmetic operations have now been defined?for complex
interval numbers. If we consider any one of the four operations denoted by .® ,
we have oA = £ C or (A,A") = (B,B') ® (C,C'") where each of the interval
numbers A and A' is some interval valued function of the interval variables
B,B',C,C'. Wemaysay A = F(B,B',C,C") and A' = Fo(B,B',C,C') .
Now suppose we have complex interval numbers J, J K , and .(' such that
Jc K and Jc L. Inexpanded notation, ICK, I' CK', J C L, and
J'C L'. Againif @ represents any of the four arithmetic operations where
they are defined, we have the following theorem for complex interval numbers.

' Theorem 3.2: J ® JcC Ke L.
Proo_f: Let J®] = (Y,Y') where Y = Fl(I,I',J,J') and Y' = F2(I,I',J,J').
Let K@[ = (X,X') where X = Fl(K,K',L,L‘) and X' = FZ(K,K',L,L') .

Then by Theorem 3.1, Y ¢ X and Y'C X', Therefore 4® Jc Ko L .



T

19

The extension to a general containment theorem for rational expressions
of complex interval numbers and a formal definition of compléx interval functions
may now be made to parallel the development above for interval numbers and
interval functions. Again, in the special case where a fuhction of complex
interval numbers consists only of single complex numbers, each in turn con-
tained in some complex interval number, the function of complex variables may
be associated with the function of complex interval variables, and in all cases
the resulting complex number will be an element of the corresponding complex

interval number.



CHAPTER IV
APPLICATIONS

The procedures described in this chapter are intended to illustrate the
broad applicability of interval arithmetic. Ea’ph procedure could be developed
into an effective computing algorithm. The guaranteed error bounding makes
each of them of interest as a diagnostic tool, even in the present form.

Summation of Series

Let sn(x) =
i=0

n
Theorem 3.1 includes S = Z A.(x), and s_ €S_. Further, if s is the
noo &, n n n

ai(x) L If ai(x) = f(x,1) and Ai(X) = F(X,i), then

Ve

n-th partial sum of an infinite series, uniformly convergent for x ¢ [a, bl ,

o 5(x) = 2 ai(x) ; and if s(x) = sn(x) tr where r, is the remainder term
i=0
which satisfies
o0
jr | = a.(x)| < 6(n)
n iZhwl !

for n sufficiently large and for all x ¢ [a,b] , then letting Rn = [-6(n), 6(n)] ,
SX) = Sn(X) + Rm and s(x) € S(X) . Thus interval arithmetic can be extended
directly from rational interval functions to those elementary functions for which
a series representation of the indicated form exists.

Evaluation of Definite Integrals

b
Let f(x) be a real valued function such that f f(x) dx exists and such
a

that the associated interval valued function F(X) is defined for X = [a,b] .
Nowlet Y = [¢,d] = F(X), andlet y = f(x) . If x takes on any value such

that a = x = b, we observe directly from Theorem 3.1 that y ¢ Y, and hence
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we may conclude that Y = [c,d] includes all values that f(x) may take on in
the interval [a,b] . In particular we noté that ¢ is a lower bound and ' d is
an upper bound for f in [a,b] .

| From Figure 4 we see that d(b-a) and c(b-a) are an upper and lower

b
bound, respectively, on f f(x) dx . Selecting intermediate points
a

a<a;<ay <., < a, < b leads to a computing algorithm since
b al 3.2 b
[ fx)ydx = [ fx) dx + [ f(x) dx + ... + [ f(x) dx .
a a aj a,
y
d s | e WD SRS GEES SR wme emmn
X

Figure 4

Isolation of Roots

Let f(x) and F(X) be as in the previous section. Then if the interval
valued function F(X) is evaluated over the interval [a,b] , we know that in the
result interval, Y = [c,d], ¢ is a lower bound andi d is an upper bound on
f(x) dver [a,b] . Therefore if f(x) has a real root in the interval [a,b] , the
interval [c,d] must contain zero. If 0 ¢ [c,d] , subdivision of [a,b] and
re-evaluation may continue until all real roots in the interval have been located,

a process again leading to a computing algorithm.
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CHAPTER V
A COMPUTING ALGORITHM FOR POLYNOMIAL ROOTS

Let P(x) be an arb‘itrary polynomial of finite degree with real coefficients,
i.e., | Px) = § aixi with the ay all real. From the fundamental theorem of
algebra we knc;v; (zhat P(x) may be represented as a product of factors of the
form P(x) = a, i/}o (x - ri) where the r, are complex numbers. The relevant
problem here is t};at of determining the roots, r, of a polynomial of this type.
Several numerical methods for this purpose are well known and in common use
but few (if any) known metﬂods can claim to be always successful or even nearly
always correct. Wé propose to develop here a method employing interval arith-
metic which will be nearly glways successful and, far more important, always
correct. The significance of the claim "always correct' becomes clear in con-
sidering the problems inherent in implementing known methods on a digital
computer. Although not all difficulties are common to all methods, one of those
most frequently encountered is the direct result of round-off error that occurs
because only numbers of finite length can be used in digital computers. Interval
arithmetic allows us to compute with a digital computer in a manner which pro-
vides guaranteed error bounds together with results. Thus there is no need to
be concerned with such common occurrences as an itérative numerical method
converging to an incorrect root or failing to converge because of round-off error.

The most important consideration in recognizing the need for the program

proposed is encountered in facing the numerical difficulties entailed in asking

whether or not a given complex number is a root of a particular polyndmial.
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Again, because of round-off error, we cannot answer such a question. Then, as
might be anticipated, in general the coefficients of a polynomial of reduced
degree cannot be determined with accuracy and confidence even when we believe
that a root of the original polynomial has been correctly identified.

In the remainder of this chapter we shall devote our attention to the
development of a computing algorithm for polynomial roots. It should be recog-
nized that the selection of particular procedures to be followed, the order in
which procedures are to be applied, andv the choice of many computing parameters
are arbitrary. The goal is to bound the roots of a polynomial as closely as pos-
sible and practical within the constraints imposed by the word length of the

computer at hand. In particular, multi-precision arithmetics and fixed point

arithmetics are specifically excluded from consideration here..

Determining a Region Containing All Roots

n .
Let P(x) = 2 aix1 be an arbitrary polynomial (of finite degree) with
i=0
real coefficients. Now suppose that r is a root of P(x) and |r[ = 1. Then

n i ‘
P(r) = Z air1 = 0 ;
<0

n-1
-art = a.ir1
i=0
Divide by anrn"1 :
n-1 arl n-1 a
e ir 2 i
a I,n—l a rn-1—1
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By using the "triangle inequality,"

n-1 a
x| = 2 —t
n-1-i
. i=0 anr
and since |r| =1,
n-1 a n-1
i 1
,r|s§£—=la|§|ai[=s.
j=o | ™ =0

Therefore |r| = s whenever |r| = 1, and s may be readily computed from
the coefficients of the original polynomial.

Suppose instead that r| = 1. Then

\»
n-1 .
n i
-ar = z a.r .
n . i
i=0

Divide this time by a and note that |r| = 1:

-1
—rn< 1nZa = 8
AR wDNLIEEY
1=

1/n

or |r| = s whenever |r[ =1,

1/n , all roots of the polynomial P(x)

Now if t is the larger of s and s
lie in a circle of radius t about the origin. It is convenient to note that the
circle of radius t and hence all roots are contained in the single complex

interval number T = [-t,t] +[-t,t] 1.

Determining Approximate Roots

The algorithm to be developed in this chapter requires, as a starting
point, some approximate roots. The Quotient-Difference algorithm (see

Henrici [14]) deserves special consideration. However, any standard technique

may be used. If the technique selected also requires some starting approximations,
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these may be determined ir; an arbitrary but systematic manner from within the
region containing all roots. This procedure is not as haphazard as it may sound,
because the major algorithm will provide a means of both refining any approxi-
mation obtained and also determining an error bound.

Interval arithmetic may be used to free the algorithm from many of the
constraints imposed by ordinary machine arithmetics. For example, we could
select those approximate ;'oots whose error bound satisfies predetermined
criteria and use interval arithmetic to determine wifh error bounds the interval
coefficients of a polynomiai of reduced degree. Then we could proceed with a

presumably simpler problem.

Determining an Error Bound for an Approximate Root

Suppose that z is an approximate root of P(x) . Then

n
Piz) =a_ [J] z-r,),
nk=1 k
or
P(z n
___(_) - ]7 Iz_rl
a k
n k=1

Suppose that z is approximately equal to root, r and assume that

z2-r,| = |z-r | for (k =2,...,n). Then
1 k

P(z n
22| = ja-ry",
n
and
1/n
P(z
|2 -7 =q = 7’{::1
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Since z = y +yi, a root must lie in the complex interval number or "box" B :
B=1[x-qx+q]+[y-q,y+q]i. Again B contains a circular region which
in turn contains a root.

Improving the Error Boun& for an Approximate Root

If r is arootof P(z) and z is an approximate root, then r = z +h ,

“and P(z +h) = 0. By expansion about z ,

2
P(z +h) = P(z) + hP'(z) + 5 P'(z) + ...

If terms of order h2 or higher are neglected (since presumably h is small),

we obtain h = - IDE'-((EZI)_ . Correcting the approximate root z by the approximate

error h yields the well-known Newton's method,
¢
P(Zn)

4l T P TPz
n

In the previous section a method for determining an error bound for an
approximate root was presented. Denote the box comprising the error bound by
B o and let z, be the approximate root used to determine B0 . Then if we
apply the Newton iteration n times and apply the method of the previous section
to the new approximate root, z, . we get a new 5ox, B1 » which also contains
4 root.

If the process fails to converge for a particular value of z, or converges
to some root not in B0 , Bo N B1 may be null, and we will elect to terminate
the process. The process will also be terminated if Bo C B1 .

if both B0 and B1 are "good" error bounds and B0 N B1 is non-null,
we assume that round-off error may be,a factor and that their intersection con-

tains a root. If the center of the box B0 n B1 is selected as a new approximate
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1oot, zé) , an error bound, B(’) , may be determined about z(') by the method of
the previous section. If (as assumed) BO and B, contain the same root, we
would expect B(') to be sma.}ler than either. If so, we replace Bo with B(')
and z, with z(‘) and begin again; if not, we select the smaller of BO and B1
and consider the process terminated.

Counting Roots

Suppose that we have determined a region containing one or more roots.
We need to determine the number of roots (not necessarily distinct) in the region.
A promising method for counting roots is outlined below. The exact conditions
of applicability and a detailed proof are itemé for further study.

The basis of our contention is two-fold:

1. In progressing around the boundary of a region of the complex plane
known to contain one or more roots, the argument of the function progresses
through a period of 27 n times where n is the number of enclosed roots.

2. A change of 7 in the argument is determined when the boundary is
intersected by both the "level curves," U0 and V0 .

The example below illustrates the procedure.

‘Let P(z) = z2 +4 = 0 and suppose we have determined a bok containing

aroot, B = [-1,1] +[1,3]i. Evaluation along the right-hand edge shows

P(1 + [1,3] i) = ([1,1] +[1,3] )2+ [4, 4]
= ([1,1}] - [1,9] + 2[1,3] i) + [4,4] = [-4,4] +[2,6]i = U+Vi.
Since 0 ¢ U but 0 £ V, a useful piece of information has been obtained, i.e.,
the argument of P(z) has not changed by as much as = . Evaluating along the

top gives U+ Vi = [-6,-4] + [-6,6] i, and since 0 U and 0 ¢ V, the
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argum ent has now changed by 7 . A similar evaluation along the left-hand edge
and the bottom again shows the argument has changed by = ; we conclude that the
region B contains exactly one root of P(z) .

An Algorithm

The algorithm described here is of course, not intended for direct imple-
mentation. Rather it is intended to illustrate how the sections of this chapter
might fit together to satisfy our objective.

The algorithm as stated contains abundant opportunities for failure.
However, even in this crude form it is "always correct" if properly programmed.
That is, it detects its own failures.

The procedures described in this chapter should prove adequate for the
development of a considerably refined and nearly always successful algorithm.
Although a complete computer program based on this algorithm would be extremely
long} and time consuming, such a program could be very economical. Short, fast
programs are available, but relative costs cannot be used to measure the worth
of an essential result which may be obtainable in no ;)ther way.

1. Provide as "input" subroutines for evaluation of P(x) and P'(x) ,
and input computing parameters.

2. Determine a region, T , containing all roots.

3. Select appropriate starting values, if required, and apply an ordinary
method to determine n approximate roots.

4. Determine an error bound for each approximate root.

5. Select the approximate root with the "best" error bound.

6. Iterate to completion the process for improving the error bound.
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7. Repeat Steps 5 and 6 for all approximate roots which satisfy error
bound criteria.

8. Select the best approximate root available.

9. If the "box" selected does not intersect any other box, count roots.

If it does intersect another box, go to Step 12.

10. Conjugate roots if appropriate.

11. If all roots are located, go to Step 16. If all roots which satisfy
crror bound criteria are located but other roots remain, go to Step 15. Other-
wise go to Step 8.

12. Determine the box which contains completely the original box and
any others necessary to form a new box disjoint from all remaining boxes.

13. Count the roots in the new box. If there is only one, take the inter-
section of the original boxes and go to Step 10.

14. Subdivide the new box and count the roots in each partition. Continue
until the roots are isolated or the process fails. Then go to Step 10.

15. If it is possible to use roots already dete‘rmined to factor the original
polynomial, return to Step 2 with the reduced polynomial.

16. Output those roots determined successfully together with complete

error bound, and stop. ¢



Pt
K

REFERENCES



e N

31

REFERENCES

[1] P. S. Dwyer, Linear Computations, New York, 1951,

[2] R. E. Moore, Automatic Error Analysis in Digital Computation,
LMSD-48421, Lockheed Missiles & Space Company, Sunnyvale, California, 1959.

[3] R. E. Moore, Interval Arithmetic and Automatic Error Analysis in
Digital Computing, Technical Report number 25, Stanford University, 1962.

[4] R. E. Moore, d. A. Davison, H. R. Jaschke, and S. Shayer,
DIFEQ Integration Routine — User's Manual, Technical Report LMSC 6-90-64-6,
Lockheed Missiles & Space Company, Palo Alto, California, 1964.

[5] R. E. Moore, "The Automatic Analysis and Control of Error in
Digital Computation Based on the Use of Interval Numbers." In Error in Digital
Computation, Volume I, L. B. Rall (Editor), New York, 1965.

[6] R. E. Moore, "Automatic Local Coordinate Transformations to
Reduce the Growth of Error Bounds in Interval Computation of Solutions of
Ordinary Differential Equations." In Error in Digital Computation, Volume II,
L. B. Rall (Editor), New York, 1965. .

[7] P. S. Dwyer: Matrix Inversion with the Square Root Method,
Technometrics, Volume 6, number 2 (1964).

[8] E. R. Hansen, Interval Arithmetic in Matrix Computations, Part I,
Journal of Siam, Series B, Volume 2, number 2 (1965).

[9] R. E. Boche, "An Operational Interval Arithmetic," delivered at
IEEE National Electronics Conference, Chicago, 1963.

[10] R. E. Boche, Specifications for an Interval Input Program,
submitted (1965) to ACM.

[11] R. E. Boche, Some Observations on the Economics of Interval
Arithmetic, Communications of the ACM, Volume 8, number 11 (1965).

[12] S. Shayer, Interval Arithmetic with Some Applications for Digital
Computers, unpublished master's thesis, San Jose State College, 1965.

[13] K. Knopp, Elements of the Theory of Functions, New York, 1952,

[14] P. Henrici, "Elementary Numerical Analysis," lecture notes
prepared for use at the Summer Institute for Numerical Analysis, University
of California at Los Angeles, 1962.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

